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Abstract. This paper deals with modeling of network’s dynamic using evolu-
tionary games approach. Today there are many different protocols for data 
transmission through Internet, providing users with better or worse service. The 
process of choosing better protocol could be considered as a dynamic game
with players (users), trying to maximize their payoffs (e.g. throughput). In this 
work we presented the model of network’s dynamic using differential equations 
with discontinuous right side and proved existence and uniqueness of solution, 
formulated payoff matrix for a network game and found conditions of equilibri-
um existence depending of loss sensitivity parameter. The results are illustrated 
by simulations. 
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1 Introduction

This work deals with analytical model of competition between data flows in a net-
work. Each flow belongs to a selfish non-cooperative user. Selfishness means that a 
user wants to utilize as much network resources as possible and the term non-
cooperative does not imply that the users do not cooperate, but it rather means that 
any cooperation must be based on individual information with no communication or 
coordination among the players.

This competitive situation leads to obvious conflict when summary users’ demand 
is bigger then network supply. If this happens network drops users’ data, so generally 
it is not an event good for users. From the other side, network underloading (when 
demand is smaller then network capacity) is also undesirable because it leads to losses 
in efficiency of resource using. 

From the beginning the Internet has been regulated by protocol (algorithms con-
trolling user’s behavior and implicitly forming network behavior as well) called TCP 
(the Transmission Control Protocol), introduced in the 1970s to provide reliable data 
transfer. However, that version was proved to be unreliable because it caused phe-
nomenon known as congestion collapse. Later Van Jacobson improved TCP by de-
veloping a congestion control mechanism.



The main idea is rather simple rule for a user’s behavior, depending on information 
about network state: 

if network is underloaded – increase your rate, 
if network is overloaded – decrease your rate. 

Delivering information about network state to the end user is a challenging prob-
lem and a crucial part of any feedback based protocol. As a rule a user has knowledge 
about successful delivery of his data (in other words he knows that network is proba-
bly underloaded) and about overload event (if he doesn’t receive successful ACK –
acknowledgement packet) with some delay. This type of information is called binary 
feedback. The natural rate control based on this information called AIMD [1] (addi-
tive increase, multiplicative decrease) scheme. There are another possibilities, but it 
was proved that AIMD algorithm will oscillate near the point of effective (all bottle-
necks will be loaded) and fair (in some sense) allocation of network resources.

Nowadays, TCP isn’t one protocol but a big family (number keeps increasing) of 
algorithms implementing different implementation of the origin idea. Protocol devel-
opment went through the competitive evolution between different protocols, aban-
donment of some protocols and appearance of new ones. The possibility to deploy 
new versions of protocols gives users control to improve performance of his connec-
tion by choosing suitable algorithm. When many users are trying to achieve better 
performance it is difficult to predict consequences of such a competition. There is a 
problem how to ensure stable, fair and effective network behavior in the situation of 
dynamic and antagonistic interaction of selfish users. We address this problem with 
evolutionary game approach. 

First we make short introduction of using game and control theory frameworks re-
lated to network problems. The work of F.Kelly et al. [2] was the first example of 
considering of resource allocation as an optimization problem. Later many authors 
[see for example 3 – 5] have developed generalizations and variations of this frame-
work. There are many approaches of investigation of complex networks from differ-
ent directions (static, dynamic, deterministic etc). The evolutionary games concept is 
a part of game theory that focuses on studying interactions between populations rather 
than individual players. One of the earliest publications about the use of evolutionary 
games in networking is [6] that study through simulations some aspects of competi-
tion between TCP users. The evolutionary games based on the concept of the ESS 
(Evolutionary Stable Strategy), defined in 1972 by the biologist Maynard Smith [7]. 
The ESS concept has been used in [8] in the context of ALOHA with power control.
Fundamental survey of applications of game theory to networks is [9]. In this paper 
we develop the line of research presented in [6] by Altman et al. They considered a 
model of users which are using two different TCP connections – peaceful and aggres-
sive. For this model it was shown that dynamic of this process described by difference 
equation has a stable solution and users payoffs are forming a structure of evolution-
ary game known as Hawk-Dove game. Also there were identified conditions under 
which equilibrium is evolutionary stable. However, there are limitations of the pro-
posed approach. 



First, the proposed method could not be generalized on the case of three or more 
protocols. Second, the network considered in this paper has very simple topology (a 
single node) and no extensions in this direction were proposed. 

In current work we propose more general approach to evolutionary game of N dif-
ferent AIMD connections competing for resource. We found the solution using fixed 
point theorem, which makes possible generalization on N connection case and com-
plex network topology. We formulated a game for player population, with strategy of 
choosing the best protocol. We found conditions for equilibrium existence and de-
scribed it properties. Also we illustrate conditions by simulations of system dynamic. 

2 Model

Consider a network of M processing nodes connected in some topology. Every 
node has at least one service link with limited overall capacity (or processing rate) 

ip , Mi ,...,1= . Let I , K be a set of nodes indexes },...,1{ M and service links index-

es },...,1{ L respectfully. There are N users, connected to this network. Let )(tx j be 

the transmission rate of j users, where },...,1{ NJj =Î . There is natural assumption 

about vector of rates ( )Nxxx ,...,1= : NRx +Î . If sum of transfer rates of data flows

using the node’s links is equal or bigger than the node capacity then overload event 
occurs (overload here is a synonym of packet loss). This scheme is an idealized model 
of widely deployed Droptail scheme. We will assume that routing is deterministic and 
uncontrolled and information about overload delivers to users momentarily. Let us fix 
the following notation (used for example in [10]) throughout this paper. 

Denote )(tuk , Kk Î as the service rate of k ’s link. The constituency matrix is 

the LM ´ matrix C whose ijc element is equal to 1 if i ’s link belongs to j ’s node

and otherwise is 0. Using this matrix we define a set U as { }1| £Î + CuRu K . The 

set U contains all possible service rates for the system. Let P be },...,{ 1 Mppdiag -

diagonal matrix.
The routing matrix R is the MM ´ matrix defined for Pji Î, . Element ijr is 

equal to 1 if the output of i ’s link is the input of j ’s link and otherwise is 0. The 

input matrix A is the NL´ matrix defined for JjKi ÎÎ , . Element ija is equal to 

1 if j ’s user uses i ’s link and otherwise is 0.

2.1 Overload conditions

When the system produces overload and how one can analytically predict it? This 
is an important problem of network modeling. 



Proposition 2.1. (Stability condition) If user’s vector of rates )(tx , ],[ 10 ttt Î sat-

isfy condition 1)( <txX , where matrix ( ) ARCP
M
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kTå
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1 then the system doesn’t 

produce any overload events.
Proof. Let )(tx be the users’ rates vector. In order to serve this data flow the sys-

tem allocates the vector of service rates )(tu such that 0)()()( =-- tuPRItAx T . It 

is always possible if UxARIPtu T Î-= -- 11 )()( . The inverse matrix exists as a 

power series å
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kRRI . Stability condition is a formal expression of follow-

ing inclusion: UxARIP T int)( 11 Î- -- , where boundary of U was excluded to pre-

vent overload event. Matrix X describes controllability of the system, defined by 
matrixes ARPC ,,, .

To clarify this notation and stability condition we will now consider some classical 
examples.

2.2 Examples

Single server. This is the simplest possible network. This model fits well for in-
vestigation interaction between users rather then network dynamic. Consider single 
node with capacity p , 1== LM . There are N users with rates 

T
N txtxtx ))(),...,(()( 1= . Matrix [ ]11 K=A , and set +Ì= RpU ],0[ . Here 
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Klimov model. Consider a model shown in Fig. 1. There are N users with vector 

of rates T
N txtxtx ))(),...,(()( 1= and N links, where their data flows are processed. 

Each link has maximum capacity jp , Nj ,..,1= and )(tu j is percentage of use of 

total amount of resource (e.g. CPU time, network bandwidth). Taking into account 

that [ ]11 K=C , 
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Fig. 1. Klimov model
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Simple re-entrant line. Consider a more complex system shown on Fig. 2. 

Fig. 2. Re-entrant line.

There are N users with vector of rates T
N txtxtx ))(),...,(()( 1= sending data to 

first link of first node with 1p maximum capacity and ]1,0[)(1 Îtu control parameter. 

After that packets go to second node with the single link with 2p maximum capacity 

and ]1,0[)(2 Îtu control parameter. Finally, packets return to second link of first node 

( 3p maximum capacity and ]1,0[)(3 Îtu control parameter) and left the system. Links 

1 and 2 are situated on the same node, so their summary capacity is limited.
Let us define all matrixes for this network:
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Finally, 
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If rates x satisfy stability condition then network will be lossless. But from practi-
cal point of view, there are many problems with applicability of this condition. First, 
in real network each user doesn’t have information about system’s current state and 
about rates of other users so he cannot calculate a proper rate. Second, the user cannot 
choose any rate he wants (at least in TCP scheme). Instead he chooses protocol, con-
trolling his rate. The dynamic of protocol is investigated in next section.

2.3 System dynamic

There are different instances of TCP class. The mostly used one is New-Reno. The 
behavior of New Reno is close to pure AIMD scheme. It adapts to the available ca-
pacity by increasing the window size in a linear way by a packets every round trip 
time and when it detects congestion it decreases the window size to b times its val-

ue. The constants a and b are 1 and 1/2, respectively, in New-Reno.

The original TCP specification doesn’t forbid using any user defined congestion 
control mechanism. Even for AIMD like control one have freedom in changing values 
a and b . Obviously, if you set a and b bigger than standard (1, 1/2), you receive 

advantage against flow with lower values. This will cause unfair allocation of network 
resources and thus is undesirable. 

This interaction of first protocol on second one is called unfriendly and it is said 
that the first protocol is more “aggressive” and latter is more “peaceful”. Aggression 
here is an opportunity to grab more network resourses than would be fair. The ques-
tion of protocols interaction is quite complex. Building analytic model for predicting 
network behavior for different protocols is a challenging problem. 

In last years, more aggressive TCP versions have appeared, such as HSTCP (High 
Speed TCP) and Scalable TCP. HSTCP can be modeled by an AIMD behavior where 
a and b are not constant anymore: a and b have minimum values of 1 and of 

1/2, resp. and both increase as the window size increases. Scalable TCP is an MIMD 
(Multiplicative Increase Multiplicative Decrease) protocol, where the window size 
increases exponentially instead of linearly and is thus more aggressive. Versions of 
TCP which are less aggressive than the New-Reno also exist, such as Vegas.

In this section we build a dynamical model of AIMD connection using differential 
equation with discontinuous right-hand side. 



Let 0x be an initial vector of rates and a , b vectors of parameters. According to 

original AIMD scheme [1] user rates are increasing between overloads with rate a . 

When overload occurs the rate drops to xb . Now we will put into formal definitions. 

Define it , 1³i as the first moment of time 1-> ii tt , such that there exists Jj Î : 

[ ] 1)( =jitxX . We will assume that the RTT (round trip times) are the same for all 

connections and losses are synchronized: when the combined rates attain capacity, all 
connections suffer from a loss.

Consider the following equation

( )å
=

---=
tN

i
ii tttxBItx

1

)()()( da& , (1)

where d is delta-function, },...,{ 1 NdiagB bb= , }:max{ ttnN nt £= . Equation 

(1) is well-defined Caratheodory equation with discontinuous right-hand side, differ-
ential equations with impulses have been examined in many papers, which cannot all 
be referenced here (see [11] for references). It is known [11] that there is an almost 
continuous solution (continuous in all points except a set of measure zero)

( )å
=

---=
tN

i
ii tttxBIttx

1

)()()( ha ,                                (2)

where h is the Heaviside step function. Explicit formula (2) is not very practical 

but gives us important information about solution existence and its continuity in al-
most all points. 

Denote V as a set [ ]{ }JjvRv j
N Î=Î + ,1min| X and W as a set 

{ }1| £Î + wRw N X . It is clear that V is compact set, W is convex compact set and 

WV ¶Í . 
Condition 2.1. For any Vx Î it is true that WBx intÎ .
Let us explain Condition 2.1 informally. W is the vector set of possible user rates. 

W is convex compact set and Wtx Î)( for 0tt ³ . As mentioned )(tx is an almost 

continuous function, and drops happened when Vtx Î)( . After drop event users rates 

equal to )(tBx . The condition 2.1 means that after applying decreasing operator B

user rate still will be in the admissible set W . 
We use Brouwer’s theorem to prove existence of limit solution of (1). Let us re-

mind one version of it [12]. First we define homeomorphism and simplexes.
A set X is homeomorphic to the set Y if there is a bijective continuous function 

YXh ®: such that 1-h is also continuous.



A set mn Rxx Ì},...,{ 0 is affinely independent if  0
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Theorem (Brouwer) [12] Let nRX Ì be homeomorphic to simplex 1-Dn and let 
XXf ®: be continuous, then f has a fixed point.

2.4 Solution of dynamic system

Now we can formulate the main result of this section – existence and uniqueness of 
the limit solution.

Proposition 2.2. Let us consider admissible pair a , b . If Condition 2.1 holds 

then for any Wx Î0 solution of (1) exists and is converging to unique periodical 

solution )(ˆ tx .

Proof. Consider a map VVf ®: defined as { }ytBvtVyvf =+>$Î= a:0|)( .
Condition 2.1 holds, this means that )(×f is the well-defined function. It is clear that 

)(×f is continuous. Consider simplex 1-DN defined as },...,{ 1 Neeco , where ie are 

vectors from standard basis. For any Vx Î there exists unique 1-DÎ Ny such that 

yax = , for some Ra Î . This means that V is homeomorphic to 1-DN . Then 

Brouwer’s theorem is applicable and there is a fixed point. Let Vx Î* be the fixed 

point of the map )(×f . Denote g as a vector with components 
i

i
i b

a
g

-
=

1
. Then the 

following is true: ** xTxB =+a , where }:min{ * VtxtT Î+= a . Using this proper-

ty, we can calculate *x directly

TTBIx ga =-= -1* )( .

Condition VTx Î+a* could be re-written as ( ) 1min * =X i
i

x or 1)(min =X i
i

Tg . 

So we can conclude that T is unique, so fixed point also is unique. Now let us solve 

(1) with the initial point *xB . It is clear that *)(ˆ xBttx += a for ),0[ Tt Î and 

)0(ˆ)(ˆ xTx = . So, solution )(ˆ tx is periodical with period T . Consider arbitrary solu-

tion with the initial point Wx Î)0( . Let )( 1tx be the first moment when Vtx Î)( 1 , 

then define )( 1-= nn zfz , ))(( 10 txfz = . All elements of }{ nz , ¥= ,...,0n belong to 

compact set V so there is a limit Vx Î~ , )~(~ xfx = . The only possible solution, asso-



ciated with this limit point is )(ˆ tx . So we proved convergence of any solution to this 

periodical solution.
In next section we solve dynamic system (1) for different examples using Proposi-

tion 2.2. This notation is as follows: T - oscillation period, *x fixed point from set 
V . 

2.5 Applications
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This result was found by solving difference equation directly for two protocols sys-
tem considered in [Altman]. 

Klimov model. Consider a model shown in Fig. 1. Matrix ú
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of following system of equations:
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Re-entrant line.
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. Fixed point is the solution of following system of 

equations:
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3 AIMD game formulation

Now we consider a competition between users which use AIMD version of TCP 
with different parameters. Their connections are sharing a common network. We will 
assume that users send their packets exactly the same way, so we can reduce network 
topology to the single link type with capacity c .

In order to formulate a game in strategic form we must specify the players, their 
strategies, and their potential payoffs. Player here is a user. We assume that there are 
N AIMD strategies is with control parameters ),( ii ba , Ni ,...,1= . Denote S as a 

set of all possible strategies.
We consider payoff of the form )()()( sRsThpsJ ii l-= , where ),...,( 1 Nsss = -

vector of strategies; *)1(5.0)( iii xsThp b+= - average throughput of i ’s player; l -

tradeoff parameter (sensitivity to losses); 
)(

1
)(

sT
sR = - loss rate.

Example. Let us calculate payoffs for two strategies:
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),(),( 121212 ssJssJ = ,

),(),( 211122 ssJssJ =

3.1 Equilibrium in N protocols game.

Consider a game with N AIMD strategies. We assume that all is are ordered lexi-

cographically, Nsss ³³³ ...21 , where ji ss ³ means that ji aa ³ and ji bb ³ . In 

other words protocols are sorted by aggressiveness ordering. 
Proposition 3.1. If l is sufficiently small than the most aggressive protocol is 

dominant strategy. 
Proof. Suppose iaa ³1 , ibb ³1 for all Ni ,...,2= . Consider payoffs for the first 

player ),( 111 -ssJ and ),( 11 -ssJ j . Let us find the period for both strategy profiles:
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And since expression in right side is positive we obtain the result.

3.2 Nash mixed and pure in two protocols game.

Here we investigate the game for two protocols and find conditions for Nash equi-
librium. From definition it is clear that ),(),( kkjkki ssJssJ = - we will write just 

),( kk ssJ , ijssJssJ kpjpki \}2,1{),,(),( Î= . 

The matrix of this game is shown in Table.

Table 1.

Player 2

Player 1

Strategy 1s 2s

1s ),( 11 ssJ , ),( 11 ssJ ),( 21 ssJ , ),( 12 ssJ

2s ),( 12 ssJ , ),( 21 ssJ ),( 22 ssJ , ),( 22 ssJ

Using standard techniques for calculating Nash we obtain:
),()1(),()( 211111 ssJpsspJsJ -+=
),()1(),()( 221221 ssJpsspJsJ -+=

assuming the probability of player 2 using the first strategy is p . In Nash equilib-
rium the payoff can’t be further increased, so these two values should be indistin-
guishable, which leads to the following equation

),()1(),( 2111 ssJpsspJ -+ = ),()1(),( 2212 ssJpsspJ -+
Or, after solving it for p :
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Taking into account that p is a probability, we impose a natural restrictions on it: 

10 ££ p , where cases with 1=p or 0=p result in game having a pure-strategy 

equilibrium (with dominant strategy 1s and 2s , respectively), and 10 << p corre-
sponds to the case of mixed-strategy Nash equilibrium.

Should we investigate the conditions for the former, we get
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Considering the case where game has pure-strategy equilibrium, we get two possi-
ble conditions: 1=p or 0=p .

Solving the equations, we find the values of l that correspond to the case of dom-
inant strategy:
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Now, for the game to have mixed-strategy equilibrium the following system of in-
equalities must hold:

1<p and 0>p

After solving this system for l we get
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We have proved:
Proposition 3.2. If l satisfies (4) then there is Nash equilibrium in mixed strate-

gies. If l satisfies (3) then there is Nash equilibrium in pure strategies

3.3 Extension for protocols parameters.

The game settings in previous sections were limited by aggressive ordering of pro-
tocols. In this section we weaken this condition to cover protocol parameters relation 
that falls beyond the “aggressive-peaceful” scheme, namely situation when 21 aa £

and 21 bb ³ . 
Applying the same considerations as above, we get the same results for pure-

strategy Nash equilibria, but for mixed-strategy equilibrium an additional constraint 
emerges.



Since we’re looking for cases with 10 << p , we get the following conditions for 

0>p :
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(It can be shown that other case with 0),(),( 2221 <- ssJssJ results 0<l , which 
has no physical sense, recalling that l is an error weight).

So, in the end we have the following system of inequalities:
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We get two possible solutions to the system above:
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Proposition 3.3. If 21 aa £ and 21 bb ³ and 
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b
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then there is evolutionary stable equilibrium in mixed strategies.
Formulated conditions are consistent with the previous result with regards to pro-

tocol parameters specifics.
In next section we illustrate theoretical results with numeric simulations.



4 Simulation

We study in this section numerically dynamic system (1) and equilibriums of de-
fined game with replicator dynamics. The practical value of these results could be 
divided on two parts. Firstly, this is analytical tool for predicting shares of network 
resources for given set of AIMD protocols. Existence and uniqueness of this point of 
resource allocation proved in Proposition 2.2. 

Secondly, we can model users behavior (taking into account usual game theory as-
sumption about rationality, common knowledge etc.) using replicator dynamic equa-
tion. This equation is rather quality solution tool that show a dynamic and shares of 
network resources for each users group.

4.1 Solution for dynamic system

Numerical simulations were made using Wolfram Mathematica environment. On 
the picture below we show convergence of AIMD scheme for 2 and 3 dimensions.
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Fig. 3. Simulations results for 2-d and 3-d systems

4.2 Replicator dynamic

We introduce here the replicator dynamics which describes the evolution in the 
population of the various strategies. In the replicator dynamics, the share of a strategy 
in the population grows at a rate equal to the difference between the payoff of that 
strategy and the average payoff of the population. More precisely, consider N strate-
gies. Let x be the N-dimensional vector whose i element ix is the population share 

of strategy i (i.e. the fraction of the population that uses strategy i). Thus, we have 

1)( =å
i

i tx , 0)( ³txi . Then the replicator dynamics is defined as
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We investigate a case with 3=N distinct strategies and pairwise payoff compari-
son:
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We provide a simulation results for 3 sets of parameters:
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Fig. 4 )(1 tx , )(2 tx , )(3 tx - shares of population
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Fig. 5 )(1 tx , )(2 tx , )(3 tx
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Fig. 6 )(1 tx , )(2 tx , )(3 tx

Expand the replicator dynamics differential equation to include a case with 3=N
different strategies.

åå --=-
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We provide a simulation results for 2 sets of parameters:
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Fig. 7 )(1 tx , )(2 tx , )(3 tx
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5 Conclusions

This paper deals with modeling of network’s dynamic using evolutionary games 
approach. It is presented the model of network’s dynamic using differential equations 
with discontinuous right side and proved existence and uniqueness of solution, formu-
lated payoff matrix for a network AIMD connections game and found conditions of 
equilibrium existence depending of loss sensitivity parameter. The results are illus-
trated by simulations using Wolfram Mathematica.
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