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Abstract. In this paper, we present CodeXt—a novel malware code ex-
traction framework built upon selective symbolic execution (S2E). Upon
real-time detection of the attack, CodeXt is able to automatically and ac-
curately pinpoint the exact start and boundaries of the attack code even
if it is mingled with random bytes in the memory dump. CodeXt has a
generic way of handling self-modifying code and multiple layers of encod-
ing, and it can automatically extract the complete hidden and transient
code protected by multiple layers of sophisticated encoders without using
any signature or pattern of the decoder. To the best of our knowledge,
CodeXt is the first tool that can automatically extract code protected by
Metasploit’s polymorphic xor additive feedback encoder Shikata-Ga-Nai,
as well as transient code protected by multi-layer incremental encoding.

Keywords: Malware Forensics, Binary Analysis, Symbolic Execution.

1 Introduction

Automatically recovering malware attack code is critical to improving effective
malware analysis, forensics, and reverse engineering. Existing methods involve
substantial manual effort. Given the sheer number of new malwares that arrive
every year, it would be invaluable to be able to automate recovery (from the
run-time memory) upon detection of an attack.

First, we must automatically pinpoint the exact start and boundaries of the
attack code, possibly spread across disjoint segments and intermingled in random
surrounding data and/or code bytes within memory, per Figure 1. Second, the
attack code can be easily obfuscated with self-modification such as encoding
and packing which renders static analysis ineffective. Third, the attack code
may never reveal its complete unpacked version in run-time memory at any
singular moment, such as multiple layers of decoding or unpacking where each
layer only extracts a portion of the final attack code, such as in Figure 2. Such
an incremental decoding makes it very difficult to automatically recover the
complete attack code even if one can dump run-time memory at any time.

A number of approaches [26, 9, 31] detect attack code in network traffic. These
methods can detect some snippets of code from the packet data, but neither
determine the exact start, boundaries, nor recover the complete attack code.
Existing dynamic analysis based unpacking approaches (e.g., PolyUnpack [21],
Renovo [14], OmniUnpack [19]) recover hidden code from packed executables,
and thus assume knowledge of the exact starting point and are not effective when
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Fig. 1. Multiple Disjoint and Misaligned Code Fragments Mingled with Random Bytes

the packed byte code is mingled with random data or code. Traditional dynamic
analysis approaches normally cover only one execution path and may miss hidden
code and data in other (unexplored) paths. To the best best of our knowledge,
no existing unpacking method has been shown to be able to recover the complete
hidden code protected by the incremental encoding we present is this paper. Since
existing software emulators (e.g., QEMU, S2E [10]) do not have full support of
FPU instructions, they can neither execute nor recover the code protected by
encoders (e.g., Shikata-Ga-Nai [2]) that use FPU instructions. This is the reason
why SHELLOS [24] abandoned emulation for hardware virtualization.

In this paper, we seek to advance the current capability of automatic attack
code extraction from run-time memory. We present CodeXt—a novel malware
forensics framework based on selective symbolic execution (S2E) [10]. CodeXt
uses two key techniques to achieve unprecedented capability in automatic attack
code recovery: 1) combination of concrete and symbolic execution to recover
potentially disjoint, misaligned, self-modifying code from all execution paths
within a given memory range; 2) intelligent memory update clustering and multi-
layer snapshots to recover all the code fragments of incremental decoding.

We have empirically validated the effectiveness of CodeXt with real world
attack code and 9 well-known third party encoders (e.g., Shikata-Ga-Nai [2])
as well as 3 encoders (e.g., multi-layer incremental encoding) developed by our-
selves. CodeXt is able to accurately locate the attack code that is mingled with
random bytes and extract the complete (including transient) code hidden by
all of the 12 encoders we have tested. To the best of our knowledge, CodeXt is
the first tool that can automatically extract the code protected by Metasploit’s
polymorphic xor additive feedback encoder Shikata-Ga-Nai and the transient
code protected by multi-layer incremental encoding.

2 Overview

Our approach does not seek to determine if a given piece of code is malicious
or not, but rather extract hidden attack code from run-time memory upon real-
time detection of malware or attack. CodeX thas the following advantageous
features. 1) It can automatically identify the exact start and boundaries of all
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hidden code fragments, even if they are mingled with random data in the run-
time memory dump. 2) It can automatically recover the complete attack code,
including transient code, protected by sophisticated self-modifying code such
as multi-layer incremental encoding and/or packing with overlapped ranges and
different keys. 3) It can automatically collect relevant intermediate results during
multi-layered decoding, revealing obfuscations used at each layer. 4) It can merge
all hidden code fragments into logically related collections. 5) It can recover the
complete attack code protected by advanced polymorphic encoders that typically
evade emulation, such as those that use FPU instructions or self-modify the
current basic block of the run-time decoder. 6) It can validate the extracted
hidden code via symbolic execution to verify that execution of extracted hidden
code will lead to any detection conditions reported by the intrusion or malware
detection system. 7) It is generic and does not rely on any signature or pattern
of any particular decoder.

We assume there is some intrusion or malware detection system that can
detect the execution of attack code in real-time (e.g., [18, 30]) and it will dump
the memory around the instruction (e.g., system call) where the attack has been
detected and other attack context information. Since many intrusion detection
systems (e.g., [13, 32, 22, 28, 12, 18, 30]) use system calls to detect an attack, we
assume the attack context information includes some system call triggered by the
attack code and corresponding register values. We further assume the dumped
memory is large enough to contain all hidden attack code present in the run-
time memory when the attack was detected. To avoid the undecidability problem
in unpacking determination [21], we assume there is no infinite loop in the the
attack code and our system will terminate after a configurable maximum number
of instructions have been executed.

2.1 Overall CodeXt Architecture

CodeXt uses a combination of symbolic and concrete execution during analysis.
Symbolic execution allows CodeXt to pinpoint the exact code start and bound-
aries by exploring all the legitimate execution start points and paths. On the
other hand, concrete execution enables CodeXt to handle potential dynamic bi-
nary transformation and self-modifying code. We choose to build CodeXt upon
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Selective Symbolic Execution (S2E) [10] which supports in-vivo multi-path anal-
ysis and allows us to execute any basic block either concretely with QEMU or
symbolically with KLEE [8].

Figure 3 shows the overall architecture of CodeXt with an online and offline
component. The online component consists of a number of S2E plugins which
can monitor, track, and direct the selective symbolic execution of any given byte
stream by exploring all execution paths from all offsets. It filters out impossi-
ble code snippets (e.g., invalid instruction, invalid memory access) and records
those that are feasible and satisfy the attack context information given. To han-
dle self-modifying code, CodeXt detects and records all instructions dynamically
generated before execution and takes snapshots of each layer of self-modification
outputting intermediate results. The offline component further analyzes the on-
line results to derive the hidden code’s start and boundaries.

3 Design and Implementation

How to Locate Hidden Code? We need to determine the existence of, exact
start, and the boundaries of any hidden code from a given memory dump. The
hidden code is usually mingled with random data/code. These constraints are
different from that of traditional unpacking tools (e.g., PolyUnpack [21], Omni-
Unpack [19] and Renovo [14]) which assume the execution start point is already
known. We need to treat every offset in the memory dump as a possible logical
start, or entry point, of the hidden code we are looking for. To leverage the
system call information from the IDS, we have developed a S2E plugin to catch
all the system calls triggered from within a given memory dump.

To reliably locate the logical start of the attack code in the memory dump, we
use S2E and make the offset of the memory dump symbolic. This also employs
S2E’s efficient built-in state forking. To avoid unnecessary symbolic execution, we
have the following online kill conditions that immediately terminate an offset’s
execution: exception due to an invalid instruction; invalid memory access such as
a segmentation fault; any instruction does not align to the system call we know;
detected system call number or address does not match given context from the
IDS; execution of end of path system calls (e.g., exit, exec); and, jumps out of
bounds of the memory buffer (we assume it contains the complete attack code).

Because any application level attack code must execute one or more seg-
ments of privileged code (i.e., system calls) to cause any real harm, we record
the symbolically executed instructions that end with a system call as a code
fragment for each starting offset. We leverage research from [5] and assert that
valid fragments should have at least 6 instructions and contain at least 15 bytes.
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To model code with multiple system calls, we define a code chunk as a sequence
of code fragments in a control flow. To extract code with multiple system calls,
we merge adjacent code fragments into a code chunk if the following conditions
are met: each code fragment itself is a code chunk; code chunks X and Y are
adjacent if the start of Y is immediately after the logical end of X; and, if code
chunks X and Y are adjacent and the end of X is not an end of path system call
(e.g., exit, exec). This process may generate a number of code chunks, subsets
of others are eliminated.

How to Handle Self-Modifying Code? In order to recover transient code
involved in multiple layers of self-modification, we need to take snapshots for
each layer of decoding. Since a defining characteristic of self-modifying code is
executing dynamically generated instructions, we can reliably identify it if any
instruction consists of bytes written by the code under observation. This can be
achieved by tracking all the memory updates within the memory buffer range
at run-time. However, we do not want to take a snapshot for each dynamically
generated instruction as one layer of decoding normally consists of multiple cor-
related instruction blocks (e.g., strcpy). Instead we developed a clustering based
approach for obtaining appropriate snapshots of self-modifying code.

We maintain a global counter of all the instructions executed, and we assign
the current global counter to each to be executed instruction as its unique se-
quence number, which reflects the temporal order of the execution of all instruc-
tions. The memory updates within one layer of decoding tend to be clustered to
each other in both time and space. Our heuristic clusters writes from memory
update instructions whose execution sequence numbers are no more than ∆ (e.g.,
∆ = 10) apart and combines clusters with adjacent memory update ranges.

We treat one cluster of writes as one snapshot. We mark those snapshots
from which we executed any instructions after the snapshot was created. These
marked snapshots correspond to each layer of self-modifying code executed.

By stringing the snapshots together, we can generate a memory map to show
the changes over time. Specifically, we can see all the values of all memory bytes
translated, executed, or written, even if the same memory location has been
overwritten multiple times during the execution.

Implementation We have implemented the prototype of CodeXt upon the S2E
engine with 4,006 lines of C/C++ code. We have also extended the functionalities
of S2E, KLEE and QEMU with 444 lines of C/C++ code. We have chosen to
use the Strictly Consistent System-level Execution (SC-SE) consistency model
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Surrounding Run-time Code Sec. per
Type Hints Found? Offset

Nulls

EIP, EAX Yes 0.92
EIP Yes 0.94
EAX Yes 0.98
Neither Yes 0.98

Random

EIP, EAX Yes 1.08
EIP Yes 1.09
EAX Yes 1.13
Neither Yes 1.11

Captured

EIP, EAX Yes 1.04
EIP Yes 1.08
EAX Yes 1.00
Neither Yes 1.09

Table 1. Accuracy and speed for searching for the start of hidden code within a buffer.

that is “both strict and complete” [10]. Currently our prototype only monitors
Linux system calls but it can be extended to monitor Windows system calls.
Our prototype consists of a wrapper, shown in Figure 4, for loading an arbitrary
byte stream for execution, a S2E plugin for online analysis, and a number of
offline analysis modules. Our S2E plugin hooks into S2E’s “CorePlugin” signals
to define custom instructions and their handlers. It conducts deep analysis of
the execution of any given byte stream from all offsets until a kill condition is
reached, forwarding each offset’s result to further offline analysis.

4 Empirical Evaluation

4.1 Locating the Hidden Code from Memory Dump

In this section, we evaluate CodeXt’s capability in pinpointing the start and
boundaries of potentially disjoint, misaligned code hidden in multiple execution
paths from a given memory buffer. We vary two primary factors: the unrelated
bytes surrounding the hidden code; and, amount of attack code context infor-
mation (i.e., run-time hint). Specifically, we put our sample malware code into
three types of buffers of different fill values for the bytes surrounding the code:
1) all nulls (0x00); 2) uniformly random; 3) capture (memory dump) from a real
world code injection attack. Then we combined the three surrounding data types
with varying amount of run-time hints: 1) with the address of a known system
call (EIP) plus the system call number (EAX); 2) with the address of a known
system call only; 3) with the system call number only; 4) neither.

Because it is easier to locate longer attack code, we deliberately used short
attack code in our experiment: a 41-byte (per section 4.2) and 81-byte in-the-
wild (ghttpd exploit) shell. We used a buffer of size 1024 bytes. We made the
offset variable symbolic which directed CodeXt to explore 1024 potential paths.

For each of the four context information scenarios we experimented twenty
runs with the random surrounding bytes, one run with fixed null surrounding
bytes and one run with fixed captured bytes. CodeXt has successfully located
the hidden code without any false positive in all runs for all the combinations.
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Technique Extracted?

Junk code insertion Yes

Ranged XOR Yes

Multi-layered Yes

Incremental Yes

ADMmutate Yes

Clet Yes

Alpha2 Yes

MSF Call+4 Dword XOR Yes

MSF Single-byte XOR Countdown Yes

MSF Variable-length Fnstenv/mov Dword XOR Yes

MSF JMP/CALL XOR Additive Feedback Encoder Yes

MSF BloXor Yes

MSF Shikata-Ga-Nai Yes

Table 2. Encoding Techniques Tested. MSF is Metasploit Framework. Multi-layered
varied nesting combinations and depths of junk code insertion and ranged xor.

Table 1 shows the average time needed to search each offset for all the run
combinations. It shows that the run-time hints do not have significant impact on
the performance in any combination. It took about the same time (1 second per
offset) to search through null, random and fixed captured surrounding bytes.

To validate CodeXt recovering multiple execution paths, we embedded the
algorithm shown in Figure 1 into a 1KB buffer, and marked x to be symbolic.
CodeXt successfully explored all the three feasible execution paths (it detected
a fourth, if (y==1 && z==0), as infeasible) and recovered their byte code.

We also investigated the probability of false positives. The probability for two
consecutive random bytes to be the system call instruction int 0x80 (0xcd80)
is 2−16 = 1.52 × 10−5. It is highly likely that a long string of random bytes
contains some executable instructions, but far less likely to contain a false posi-
tive (i.e., set EAX to a specific value or range, and end in a system call before
EAX is clobbered). In addition, previous research details that 90% of random
strings should fail execution within 6 instructions [5]. We tested CodeXt with
buffers of pure, uniformly random bytes of 1KB, 10KB and 100KB respectively.
Specifically, we input 20 different 1KB, one 10KB and one 100KB random bytes.
CodeXt did not reported any hidden code detected from these random bytes.

4.2 Extracting Encoded Bytes

To evaluate CodeXt extracting encoded bytes, we have used 12 different encoders
to encode a running example of byte code, called hw.shell, that prints “Hello,
world!” to the standard output via the write system call.

Besides using 9 well-known third party encoders (e.g., ADMmutate [1], Clet
[11], Shikata-Ga-Nai [2]), we developed 3 encoders ourselves: the junk code inser-
tion encoder and the ranged xor encoder based on [3], and a novel incremental
encoder. Table 2 lists all 12 encoders plus an entry to represent multi-layer com-
binations (nested) of our in-house encoders. CodeXt was able to automatically
recover the original shellcode in all tested cases. In the following subsections, we



8 Ryan Farley and Xinyuan Wang

xor(key2, 5, 10, xor(key1, 
30, 10, xor(key1,1 0, 10,
junk(s)))) [give image to 

visualize, or output]

xor(key2, 5, 10) xor(key1, 30, 10) xor(key1, 10, 10) de-junk()

xor_key1

0          5         10         15         20         25         30        35         40

junk inserted bytes

xor_key1

xor_key2
xor_key2 of xor_key1

Fig. 5. Multiple layers of ranged xor encoding that overlap each other and use different
keys, all layered on top of a junk code inserted encoding.

elaborate the experiments with multi-layer combinations of junk code insertion
and ranged xor, the incremental encoder, and Shikata-Ga-Nai.

Multi-Layer Combinations To evaluate CodeXt’s capability in extracting
code protected with multiple layers of encoding, we tested combinations of our
in-house encoders: junk code insertion and ranged xor. Junk code insertion in-
terjects a random length of random value bytes between each input byte, such
that junk(i) means to generate encoded output from input i. Junk code inser-
tion, while very rudimentary, effectively interferes with common disassemblers.
Ranged xor uses a 1B key to iteratively encrypt a specified range of input bytes,
such that xor(kn, o, b, i), means to encode input i with key kn at offset o for b
bytes; also we will use xor(kn, i) to mean encoding all bytes in i.

In our trials we tested combinations such as 1) xor of junk: xor(k1, junk(i)),
2) junk of xor: junk(xor(k1, i)), 3) xor of xor: xor(k2, xor(k1, i)), and, as il-
lustrated in Figure 5, 4) xor of xof of xor of junk: xor(k2, 5, 10, xor(k1, 30, 10,
xor(k1, 10, 10, junk(i)))). CodeXt was able to recover the original shellcode from
all tested multiple layer combinations of encodings.

Incremental Encoder We have developed a sophisticated incremental en-
coder, such that during decoding it will incrementally de-obfuscate one portion
(or segment) of the original code at a time. After executing the decoded segment,
it will decode another code segment into the same buffer and so on. Except the
final decoded code segment, all other decoded segments are transient in that
they will be overwritten right after execution. Therefore, a memory dump or
snapshot at any moment will never reveal the entire decoded form. In order to
extract the complete code protected by the incremental encoder, we need to take
multiple snapshots at the right moments and places during run-time.

We have used the incremental encoder to encode a popular TCP based reverse
connect shellcode with 5 system calls into 4 code segments, roughly representing
its basic blocks. CodeXt generated 8 snapshots when executing the incremen-
tally encoded shellcode. This accurately represents the algorithm copying each
encoded segment into a buffer and then decoding it. CodeXt has successfully
extracted the complete code protected by the incremental encoding.

Shikata-Ga-Nai Shikata-Ga-Nai is a polymorphic xor additive feedback en-
coder within the Metasploit Framework. This encoder offers three features that
provide advanced protection when combined. First, the decoder stub genera-
tor uses metamorphic techniques, through code reordering and substitution, to



CodeXt: Automatic Extraction of Obfuscated Attack Code... 9

produce different output each time it is used, in an effort to avoid signature
recognition. Second, it uses a chained self modifying key through additive feed-
back. This means that if the decoding input or keys are incorrect at any iteration
then all subsequent output will be incorrect. Third, the decoder stub is itself par-
tially obfuscated via self-modifying of the current basic block as well as armored
against emulation using FPU instructions.

Offset Bytecode Mnemonic ; Comment
0000 DAD4 fcmovbe st4 ; any fpu insn
0002 B892BA1E5C mov eax,0x5c1eba92 ; key = 92ba1e5c
0007 D97424F4 fnstenv [esp-0xc] ; write fpu records to

; put EIP on top of stack
000B 5B pop ebx ; ebx = EIP
000C 29C9 sub ecx,ecx ; clear ecx
000E B10B mov cl,0xb ; loop 11 times
0010 83C304 add ebx,byte +0x4 ; PC += 4
0013 314314 xor [ebx+0x14],eax ; [0x0018] = [0x0018]^key
0016 034386 add eax,[ebx-0x7a] ; key += [ebx + Encoded Byte]
0019 58 pop eax ; False Instruction, Encoded Byte
001A EBB7 jmp short 0xffffffd3 ; False Instruction, Encoded Bytes

The above code snippet shows the instructions from an instance of Metas-
ploit’s polymorphic xor additive feedback encoder Shikata-Ga-Nai [2]. It uses
FPU instructions as a way to get EIP, via fnstenv/pop. Since most emulators,
including S2E/QEMU, do not fully support FPU instructions, they have been
used to detect emulated environments. For such FPU instruction combinations
(e.g., fpstenv/pop), we implemented special handlers in our S2E plugin to emu-
late their semantics (e.g., update FPU internal values).

The instruction at address 0x0013 changes 4 bytes starting from address
0x0018, which changes the subsequent 3 instructions to be executed from address
0x0016. Therefore, Shikata-Ga-Nai dynamically modifies the instructions in the
current basic block. S2E/QEMU was not able to handle such intra-basic block
modification. To fix this problem, we extended the S2E translation mechanism
so that our S2E plugin can force a re-translation should we detect any write
within the memory range of upcoming instructions in the current basic block.
With the added support of FPU instructions and intra-basic block modification,
CodeXt has successfully extracted the hw.shell protected by Shikata-Ga-Nai.

5 Related Work

Attack Code Detection A number of methods [26, 9, 31, 20] have been pro-
posed to detect attack code from network packet payloads based on various
heuristics. Work [9] used static analysis based approach to look for the NOP
sledge in the packet payload. SigFree [31] detects the presence of code from
packets by checking the push-call instruction pattern and data flow anomaly
from the static disassembled instruction sequences, and it depends on static dis-
assembling. SHELLOS [24] utilizes hardware virtualization and KVM to detect
the existence of injected code. Because it directly executes the instructions on
the CPU, it can execute Shikata-Ga-Nai encodings that most CPU emulators
(e.g., QEMU, S2E) can not. While existing attack code detection methods are
able to detect the existence of attack code even if the attack code is mingled with
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random data, they are not able to determine the exact location and boundary
of the attack code. Therefore, existing attack code detection methods can not
automatically extract the attack code.

Binary Code Extraction BCR [7] is not designed to extract the complete
hidden code from a given memory dump, but rather to extract certain reusable
code fragments from a given binary program. It requires the knowledge of the
entry point to be effective and it can not handle self-modifying code.

Automated Unpacking of Hidden Code Automated unpacking hidden code
[6, 34] has been an active research area and many methods [15, 21, 14, 19, 29, 4,
33, 16] have been proposed to address the unpacking issue. Earlier methods (e.g.,
[15]) have used static analysis, and later approaches have used combination of
static and dynamic analysis. Notably, PolyUnpack [21] detects the self-modifying
code by checking if the to-be-executed instruction sequence is part of the static
code model generated before execution. Because of the need of static modeling,
it is not easy to apply PolyUnpack to code packed with multiple layers. Omni-
Unpack [19] detects unpacking by looking for written-then-execute pattern. It
ignores intermediate layers of unpacking and only takes actions upon the invoca-
tion of some dangerous system call, which is assumed to be after the innermost
layer of unpacking. This is a similar with Justin [16] that assumes a known code
entry point and takes action upon a singular confluence of events; which does not
account for incremental unpacking. OmniUnpack operates at the granularity of
memory page, and it does not give any information about the intermediate layers
of unpacking. As a result, it is faster. Renovo [14] also uses the written-then-
execute pattern to detect the unpacking. It checks at the granularity of basic
block. Specifically, it dumps the memory pages that contain the current basic
block and has been written recently. Eureka [25] is a coarse-grained unpacking
approach that uses Windows specific heuristics and x86 code statistical pattern.

To the best of our knowledge, all existing automatic unpacking mechanisms
require the knowledge of the exact start of the code, and they are not effective
when the hidden code is mingled with other bytes (i.e., the exact start of the
hidden code is unknown). In addition, most existing unpacking methods only
recover the hidden code and data on one execution path. No existing generic
unpacking approach has been shown to be able to handle Metasploit’s polymor-
phic xor additive feedback encoder Shikata-Ga-Nai and the incremental encoder
that encodes only a segment of the hidden code in each layer of encoding. In
fact, SHELLOS [24] abandoned attempted QEMU-based approach because of
QEMU’s incapability in handling FPU instructions and Shikata-Ga-Nai.

In contrast, CodeXt is able to explore multiple execution paths via combina-
tion of symbolic execution and concrete execution and recover the hidden code
and data on multiple execution paths. To the best of our knowledge, it is the first
system that can automatically recover hidden code protected by Shikata-Ga-Nai
and the incremental encoder that encodes only a segment of the hidden code in
each layer of encoding.
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6 Conclusion

Extracting attack code is indispensable for effective malware analysis, forensics
and reverse engineering. No existing approach has been shown to be able to
automatically recover 1) disjoint, misaligned attack code mingled with random
bytes; and 2) those transient code protected by multi-layer incremental encoding.

In this paper, we have presented CodeXt to address the above mentioned
challenges. Based on selective symbolic execution and its unique multi-layer
snapshot, CodeXt is designed to accurately pinpoint the exact start and the
boundaries of the attack code and recover the hidden and transient code pro-
tected by various multiple layers of self-modification. Our experiments with real
world shellcode and shellcode encoders have demonstrated that CodeXt is able to
accurately extract the hidden code mingled with random bytes even if the code is
protected by sophisticated encoders such as polymorphic xor additive feedback
mechanisms like Shikata-Ga-Nai. In addition, CodeXt is able to automatically
recover the transient code protected by multi-later incremental encoding.
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