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Abstract. We propose a new authenticated encryption scheme PAEQ, which employs a fixed pub-
lic permutation. In contrast to the recent sponge-based proposals, our scheme is fully parallelizable.
It also allows flexible key and nonce length, and is one of the few which achieves 128-bit security
for both confidentiality and data authenticity with the same key length.

The permutation within PAEQ is a new design called AESQ, which is based on AES and is 512
bits wide. In contrast to similar constructions used in the SHA-3 competition, our permutation
fully benefits from the newest Intel AES instructions and runs at 2.5 cycles per byte if used as the
counter-mode PRF.
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1 Introduction

It has been known for a while that standard blockcipher modes of operation do not provide any
integrity/authenticity protection, and hence additional mechanisms are needed to ensure the
receiver that the ciphertext has not been modified of generated by the adversary. Whenever two
distinct keys are available, the problem can be solved with a simple combination of encryption
and MAC generation [4], and the Encrypt-then-MAC paradigm has become an international
standard [25]. In contrast to confidentiality-only modes, the authenticated encryption schemes
do not provide any decryption but return “invalid” (⊥), if the ciphertext has been created or
modified by an adversary.

Since at least the year of 2000, cryptographers have tried to design an authenticated en-
cryption (AE) scheme, which would use a single key and would be at least as efficient as
Encrypt-then-MAC. The research went in two directions. The first one deals with new modes
of operation which use an arbitrary block cipher. The ISO standards [25] GCM, CCM, and
OCB are typical examples. The patented OCB mode runs almost as fast as the counter mode
of encryption, which yields the speed below one cycle per byte on modern CPUs if used with
AES [19]. The second direction is to design a dedicated AE scheme, like Phelix [26] ALE [9], or
AEGIS [28].

Modern authenticated encryption schemes are also able to authenticate so called associated
data (AD) without encrypting it [24]. A typical application is Internet packets, whose contents
are encrypted, whereas headers are not (for routing purposes), while they still should be bound
to the encrypted data.

Features of modern authenticated encryption schemes AE schemes provide larger func-
tionality compared to regular encryption modes, and the list of features has been expanding for
a while. Let us comment on the most important properties of such schemes:

– Performance (both software and hardware). If the scheme uses AES as underlying block
cipher, it can use special instructions on modern CPUs. The resulting encryption speed
ranges from 0.6 to 4 cycles per byte [19].



– Security level. Whereas AES supports keys up to 256 bits long, the existing security proofs
guarantee little security beyond the half of the block size (64 bits for all AES variants).
Some dedicated schemes provide higher level of security, but they have not been subject of
third-party cryptanalysis or have been broken. Some modes (e.g., GCM) have non-trivial
security limitations because of tag length (security drops too fast for small tags). Whereas
64-bit security seems fine for now, it might not be so for the distant future.

– The existence of security proofs closely relates to the previous feature. Modes of operation
usually enjoy reasonable, but lengthy and complicated proofs of security in the standard
model assuming that the underlying block cipher is a secure PRP, or proofs in the ran-
dom oracle model, which assume absence of non-trivial properties of the underlying fixed
permutation. Dedicated designs usually have little to no security proofs, but provide some
evidence of resisting to certain types of attacks. As lengthy proofs are subject to bugs [16],
it is desirable to have them compact and verifiable by the third parties.

– Parallelism. If a lot of resources are available, one may desire to run the encryption, decryp-
tion, or verification in parallel. The modes that use chaining (like the ones derived from the
CBC encryption or the sponge construction) are difficult to parallelize.

– Tag update. Most of the schemes, with a few exceptions like GCM, require to recompute
almost entire ciphertext if a small portion of plaintext is modified. If the ciphertext can be
updated quickly, it would allow much faster processing of large amounts of encrypted data,
e.g., hard-drive encryption.

– Variable key, nonce, or tag length. All the three parameters are usually restricted by the
application that uses an AE scheme. In turn, AE schemes have their own, sometimes incom-
patible restrictions. The more variability the scheme has, the more applications it suits.

– Processing of associated data (AD). All the modern schemes allow for the authentication
of associated data, which is not encrypted. Some of them, however, can not preprocess AD
before the plaintext is over, which might be a penalty on the performance.

Blockcipher- vs. permutation-based designs The most generic AE schemes employ block-
ciphers. However, they are not the only source of good transformations. If the mode is encryption-
only (see above), the transformation does not need to be invertible (cf. the folklore use of hash
functions for the CTR mode). Quite recently, the hash function Keccak [7], which employs a
1600-bit permutation, has been selected as the new SHA-3 standard. We expect that it will
be widely deployed in the near future, and hence its building block will be readily accessible
to other cryptographic applications. On resource-constrained devices, where the space is lim-
ited, it would be very tempting to use a single cryptographic primitive, such as the Keccak
permutation, for many purposes. Whenever Keccak or AES are considered too expensive for a
device, the lightweight hash functions like Spongent [8] and Quark [3] are also based on a single
permutation and may offer it for other schemes. A wide permutation also simplifies the security
proofs, as additional inputs such as tweaks and counters can be easily accommodated within
the permutation input.

This idea also fits the recent paradigm of the permutation-based cryptography [10] as opposed
to the blockcipher-based cryptography. From the practical point of view, it would allow to have
a single permutation for all purposes, whereas it would simplify the analysis as a target for a
cryptanalyst would be much simpler. The downside of the permutation-based approach is that
the security proof has to be devised in the random oracle/permutation model, and does not rely
on the PRP assumption.

Our contributions. We offer a new mode, called PPAE, which employs a public fixed per-
mutation (let us denote its bit width by n). We have tried to make the mode as universal as
possible, and to provide the users with almost every capability an authenticated encryption
mode might have. We summarize the properties of our scheme in Table 1.



Alongside the mode, we propose an AES-based permutation called AESQ, which is 512-bit
wide and has been optimized for recent CPU with AES instructions. It can be used in other
permutation-based constructions, e.g. the extended Even-Mansour cipher or the sponge con-
struction. It has a large security margin against the most popular attacks on permutation-based
schemes: differential-based collision search, rebound attack, and meet-in-the-middle attack. The
authenticated encryption scheme PAEQ is the instantiation of PPAE with AESQ.

The wide permutation allows to get a much higher security level compared to the other AES-
based designs (AES-GCM, AES-CBC+HMAC-SHA-256, OCB, COPA [1], COBRA, OTR).
These schemes can not deliver a security level higher than 64 bits due to the birthday phenomena
at the 128-bit AES state. In contrast, PAEQ easily brings the security level of 128 bits and
higher. We note that this security level assumes a nonce-respecting adversary, who does not
repeat nonces in the encryption requests.

PAEQ allows to encrypt and decrypt the data on the arbitrary number of subprocessors
with tiny amount of shared memory. Those processors, threads, or other computation units
may perform decryption and encryption of incoming blocks in any order.

PAEQ is based on the AES block cipher, and does not use any operations except those
of AES. The mode of operation around the AES-based permutation AESQ uses only XORs
and counter increments, and aims to be amongst easiest authenticated encryption modes to
implement.

The paper is structured as follows. We provide a formal syntax of authenticated encryption
modes and describe PPAE and PAEQ in this context in Section 2. We discuss its performance
in Section 3 and give the design rationale in Section 4. The security aspects are discussed in
Sections 5 and 6.

Key/nonce/tag length We allow keys, nonces, and tags of arbitrary length, as long as they fit into the
permutation, fulfill some minimal requirements, and constitute the integer number of
bytes.

Performance Depending on the key size, the encryption speed is about 6 cycles per byte on modern
CPUs with permutation AESQ.

Security level Depending on the key length and the permutation width, we support a range of
security levels from 64 to 256 bits. For the permutation of width n bits we can use
a key of about (n/3− 6) bits and get the same security level for both confidentiality
and ciphertext integrity. Hence a permutation of 400 bits width already delivers a
security level of 128 bits.

Security proof Our mode is provably secure in the random permutation model, whereas the security
proof is short and verifiable by the third parties.

Parallelism Our scheme is fully parallelizable: all blocks of plaintext and associated data can be
processed in parallel; only the last call of the permutation needs all the operations to
finish.

Online processing Our scheme is fully online, being able to process plaintext blocks or blocks of associ-
ated data as soon as they are ready without knowing the final length.

Patents It is not patented, and we are not aware of any patent covering any part of the
submission.

Tag update If the tag is not truncated, then the last permutation call can be inverted given the
key, and only two extra permutation calls are needed to encrypt and authenticate a
new plaintext with one new block.

Inverse The permutation is used in the forward direction only, with a sole exception of tag
update, if this feature is needed.

Nonce misuse If the nonce is reused, then the integrity is still provided. Additionally, a user may
generate a nonce out of the key, the plaintext, and the associated data with a dedicated
routine.

Table 1. PPAE/PAEQ features.



2 PAEQ as Authenticated Encryption Scheme

2.1 Notation

The authenticated encryption scheme is denoted by Π and is defined as a pair of functions E
and D, which provide encryption and decryption, respectively. The inputs to E are a plaintext
P ∈ P, associated data A ∈ A, a nonce N ∈ N = {0, 1}r, a key K ∈ K = {0, 1}k, and a tag
length τ . P is the set of byte strings with length between 1 and 296, and A is the set of byte
strings with length between 0 and 296. The encryption function outputs ciphertext C ∈ C and
tag T ∈ T = {0, 1}τ :

E : K ×N ×A×P → C × T .
For fixed (N,A,K) the encryption function is injective and hence defines the decryption func-
tion. The decryption function takes a key, a nonce, associated data, the ciphertext, and the tag
as input and returns either a plaintext or the “invalid” message ⊥:

D : K ×N ×A× C × T → P ∪ {⊥}.

For brevity we will write EN,AK (·) and DN,AK (·).
To accomodate nonce-misuse cases, the user may choose to generate N as a keyed function

of plaintext, key, and associated data. It is then called extra nonce and denoted by Ne. The user
is then supposed to communicate Ne to the receiver, with ordinary nonce transmission rules
applied.

Let X be an internal s-bit variable. Then we refer to its bits as X[1], X[2], . . . , X[s] and
denote the subblock with bits from s1 to s2 as X[s1 . . . s2]. In pictures and formulas the least‘
significant bits and bytes are at the left, and the concatenation of multi-bit variables is defined
as follows:

X||Y = X[1]X[2] . . . X[t]Y [1]Y [2] . . . Y [s].

The counter values have their least significant bits as the least significant bits of corresponding
variables.

PAEQ is a concrete instantiation of generic mode PPAE, which takes permutation F of
width n.

2.2 PPAE mode of operation

For the domain separation the following two-byte constants are used:

Di = (k, (r + i) (mod 256)), i = 1, 2, 3, 4, 5, 6,

where the second value is taken modulo 256.
We refer to Figure 1 for a graphical illustration of the PAEQ functionality.

Encryption.

1. During the first stage the plaintext is split into blocks Pi of (n− k− 16) bits (n/8− k/8− 2
bytes) P1, P2, . . . , Pl. We encrypt block Pi as follows:

Vi ← D0||Ri||N ||K;

Wi ← F(Vi);

Ci ←Wi[17..(n− k)]⊕ Pi.

Here Vi,Wi are n-bit intermediate variables, and Ci is a (n− k− 16)-bit block. The counter
Ri = i occupies the (n− k − r − 16)-bit block. If last plaintext block is incomplete and has
length t′, then D0 is replaced with D1.
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Fig. 1. Encryption and authentication with PAEQ.



2. During the second stage we compute intermediate variables for authentication:

Xi ← D2||Ci||Wi[(n− k + 1)..n];

Yi ← (F(Xi))[17..(n− k)].

If the last plaintext block Pt is incomplete, then we define P ′t = Pt||a||a|| . . . ||a, where a is
one-byte variable with value equal to t′, the byte length of Pt, and define

C ′t ←Wt[17..(n− k)]⊕ P ′t ;
Xt ← D3||C ′t||Wi[(n− k + 1)..n].

Finally,

Y ←
⊕
i

Yi;

3. During the third stage we compute an intermediate variable for authenticating associated
data. The AD is splitted into blocks A1, A2, . . . , As of length n− 2k− 16. Then we compute

X ′i ← D4||Ri||Ai||K;

Y ′i ← (F(X ′i))[17..(n− k)],

where Ri is a k-bit counter starting with 1. If the last AD block is incomplete (has t′′ bytes),
it is padded with bytes whose value is t′′, and the constant D4 is changed to D5. Finally,

Y ′ ←
⊕
i

Y ′i ;

4. In the final stage we compute the tag. First, we define

Z ← Y
⊕

Y ′.

and then,

T ← F(D6||Z||K)⊕ (0n−k||K),

where 0n−k stands for (n− k) zero bits.

The tag T is truncated to T [1 . . . τ ].

The encryption and authentication process is illustrated in Figure 1.

Decryption. The decryption process repeats the encryption process with minor corrections. We
decrypt as

Pi ←Wi[17..(n− k)]⊕ Ci
with appropriate corrections for the incomplete block if needed. Ci is used as given when com-
posing Xi. Finally, the tag T ′ is computed and matched with submitted T . If T 6= T ′ (including
length mismatch), the decryption process returns invalid.

The plaintext is returned only if the tags match.

2.3 The AESQ permutation

The F permutation in PAEQ is the AESQ permutation, which is defined below. AESQ operates
on 512-bit inputs, which are viewed as four 128-bit registers. The state undergoes 20 identical
rounds. The rounds use standard AES operations: SubBytes, ShiftRows, and MixColumns, which
are applied to the 128-bit registers exactly as in AES (Figure 5).



Input: 128-bit states A,B,C,D, round constants Qi,j,k

for 0 ≤ i < R = 10 do
for 0 ≤ j < 2 do

A← MixColumns ◦ ShiftRows ◦ SubBytes(A);
A0 ← A0 ⊕Qi,j,1;
B ← MixColumns ◦ ShiftRows ◦ SubBytes(B);
B0 ← B0 ⊕Qi,j,2;
C ← MixColumns ◦ ShiftRows ◦ SubBytes(C);
C0 ← C0 ⊕Qi,j,3;
D ← MixColumns ◦ ShiftRows ◦ SubBytes(D);
D0 ← D0 ⊕Qi,j,4;

end
(A,B,C,D)← Shuffle(A,B,C,D)

end

Algorithm 1: Pseudocode for the AESQ permutation with 2R rounds

The round constants are chosen as follows in the matrix register view:

Qi,j,k =


8i+4j+k 8i+4j+k 8i+4j+k 8i+4j+k

0 0 0 0
0 0 0 0
0 0 0 0


Here is the Shuffle mapping that permutes columns of the internal states:

A B C D

From A[0] A[1] A[2] A[3] B[0] B[1] B[2] B[3] C[0] C[1] C[2] C[3] D[0] D[1] D[2] D[3]

To A[3] D[3] C[2] B[2] A[1] D[1] C[0] B[0] A[2] D[2] C[3] B[3] A[0] D[0] C[1] B[1]

2.4 Extra nonce

The extra nonce Ne is a function of the key, the plaintext, and the associated data. It is not
online, i.e. it needs to know the length of all inputs and the output. It is the sponge hash
function:

T1 = F(Q1||02k), T2 = F(T1 ⊕ (Q2||02k)), . . . , Tm = F(Tm−1 ⊕ (Qm||02k)),
and Ne is the truncation of Tm to r bits. The injection blocks Qi come from the string Q, which
is composed as follows:

Q = |P | || |A| || kb|| rb ||K||P ||A||10∗1,

where |P | is the plaintext length in bytes, |A| is the associated data length in bytes, kb is the
key length in bytes, rb is the nonce length in bytes, and 10∗1 is the sponge padding: one byte
with value 1, then as many zero bytes as needed to fill all but one bytes in the injection block,
and then the byte with value 1.

3 Performance

3.1 Benchmarks for PAEQ

Now we provide speed benchmarks for PAEQ. On the recent Haswell CPU family we obtain
the speed of AESQ as 5 cycles per byte (cpb) for the 64-bit key, 6 cpb for the 128-bit key, and
9 cpb for the 256-bit key.

Security level / Key length PAEQ (20 rounds, cycles per byte)

64 4.9

80 5.1

128 5.8

256 8.9



3.2 Implementing AESQ

Our permutation is best suited for the last Intel and AMD processors equipped with special AES
instructions. Of the AES-NI instruction set, we use only AESENC instruction that performs
a single round of encryption. More precisely, AESENC(S,K) applies ShiftRows, SubBytes, and
MixColumnsto S and then XORs the subkey K. In our scheme the subkey is a round constant.
For two rounds of AESQ, we use the following instructions:

– 8 aesenc instructions for AES round calls;
– 8 vpunpckhdq instructions to permute the state columns between registers;
– 8 vpaddq instructions to update round constants.

This gives a total of 24 instructions per 64 bytes of the state in two rounds. This means
that the full 2R-round AESQ permutation needs 24R instructions, and theoretically may run
in 3R/8 cycles per byte if properly pipelined. This speed may be achieved in practice, since
the throughput of AES instructions is 1 cycle starting from the Sandy Bridge architecture
(2010), and the vpaddq instruction may be even faster. The following strategy gives us the best
performance on the newest Haswell architecture:

– Process two 512-bit states in parallel in order to mitigate the latency of 8 cycles of the
AESENC instruction. Store each state into 4 xmm registers.

– Store round constants in 4 xmm registers and use them in the two parallel computations.
– Use one xmm register to store the constant 1 to update the round constants, and one

temporary register for the Shuffle operation.

We note that on the earlier Westmere architecture the AESENC instruction has latency 6
and throughput 2, hence the AES round calls should be interleaved with mixing instructions
conducted on several parallel states.

We have made our own experiments and concluded that the 16-round version of AESQ
(R = 8) runs at 2.4 cycles per byte on a Haswell-family CPU, whereas the 20-round version
runs at 3 cycles per byte. This can be compared to the speed of the Keccak-1600 permutation.
As eBASH reports, on a Haswell CPU the Keccak hash function with rate 1088 runs at 10.6
cpb, which implies that the full 1600-bit permutation runs at approximately 10.6·1088

1600 = 7.2 cpb.
Therefore, the 20-round AESQ is 2.5 times as fast as Keccak-1600.

4 Design rationale

4.1 Design of PPAE

When creating the new scheme, we pursued the following goals:

– Offer high security level, up to 128 bits, ideally equal to the key length,
– Make the mode of operation simple enough to yield compact and reliable security proofs.
– Deliver as many features as possible.

To achieve these goals, we decided to trade performance for clarity and verifiability.
Existing block ciphers were poor choice for these goals. They commonly have a 128-bit block,

which almost inevitably results in the loss of security at the level of 264 cipher calls. The 256-bit
cipher Threefish could have been used, but the lack of cryptanalysis in the single-key model
makes it a risky candidate. Our mode of operation would be also restricted to a single cipher.

Instead, we constructed a permutation-based mode, which takes a permutation of any width
if it is at least twice as large as the key. This choice makes the scheme much more flexible, allows
for variable key and nonce length, and simplifies the proof. The key update also becomes very
easy. The downside of the permutation-based approach is that the security proof has to be
devised in the random oracle/permutation model, and does not rely on the PRP assumption.



This is inevitable, but the success of the sponge-based constructions tells that it is not necessarily
a drawback.

For the encryption stage we have chosen an analogy with the CTR mode, so that we do not
have to use the permutation inverse. It also allows us to truncate some parts of the intermediate
variables. For the authentication stage we use a parallel permutation-based construction. It takes
the yet unused secret input from the encryption stage, which provides pseudo-randomness.

It remains to choose a permutation. Initially we thought of using a family of permutations
with different widths. Examples could be Keccak [7], Spongent [8], or Quark [3] permutations.
However, the performance loss would be too high given two invocations of a permutation per
plaintext block. Instead, we designed our own permutation which shows the best performance
on modern CPUs. It can be used in other permutation-based constructions, e.g. the extended
Even-Mansour cipher or the sponge construction.

4.2 Design of AESQ

When designing AESQ, we needed a permutation wide enough to accomodate 128-bit keys and
nonces. The AES permutation would be too short, while AES-based permutations used in the
SHA-3 context would be too large or not well optimized for AES instructions on modern CPUs.

We decided to run 4 AES states in parallel and regularly shuffle the state bytes. Since two
AES rounds provide full diffusion, the shuffle should occur every two rounds. The shuffle oper-
ation should make each state to affect all four states, resembling the ShiftRows transformation
in AES. The recent Intel processors, along with dedicated AES instructions, provide a set of in-
structions that interleave the 32-bit subwords of 256-bit registers. Those subwords are columns
of the AES state, so we shuffled the columns. The shuffle function in this submission is one
of the permutations that provide full diffusion and needs the minimal 8 number of processor
instructions.

5 Security of PPAE

In this section we provide the security analysis of the PPAE mode of operation, which takes a
permutation F of width n. Though PAEQ fixes the permutation to AESQ and its width to 512
bits, the following proof is useful when defining other scheme within the PPAE mode.

The security of a AE scheme is defined as the inability to distinguish between the two worlds,
where an adversary has access to some oracles and a permutation. One world consists of the
encryption oracle EK(·, ·, ·) and decryption oracle DK(·, ·, ·), where the secret key is randomly
chosen and shared. The second world consists of the “random-bits” oracle $(·, ·, ·, ·) and the
“always-invalid” oracle ⊥ (·, ·, ·, ·). In addition, the adversary and all the oracles have an oracle
access to the permutation F . The encryption requests must be nonce-respecting, i.e. all the
nonces in those requests must be distinct. A decryption request (N,A,C, T ) shall not contain
the ciphertext previously obtained with (N,A), but it may repeat nonces with other ciphertexts.

We give a security proof for a fixed key length k, nonce length r, and random permutation
F of width n. The variable-length security proof is not given in this paper, but can be mounted
thanks to the Di constants. The proof also does not take into account the calls to F made in
the extra nonce computation.

5.1 Confidentiality

We prove confidentiality as indistinguishability of the pair (ciphertext, tag) from a random
string for the tag length n. The result for truncated tags is a trivial corollary. Let Π[F ] be the
PPAE mode instantiated with permutation F . We do not consider the decryption oracle here,
as we later show that with overwhelming probability it always returns ⊥.



Theorem 1. Suppose adversary A has access to Π[F ], F , and F−1, and let K
$←− K. Let σΠ

be the total number of queries to F made during the calls to the Π oracle, and σF be the total
number of queries to F and F−1 oracles together. Then his advantage of distinguishing the
oracle Π[F ] from the random-bits oracle $ is upper bounded as follows:

Advconf
Π (A) ≤ (σF + σΠ)2

2n
+

2σ2Π
2n−k−16

+
2σF
2k

+
2σFσΠ
2n−16

. (1)

Proof. We denote i-th ciphertext by C(i) and its j-th block by C
(i)
j . The same notation is used

for intermediate variables X,Y, Z.

In the games Gi below, pi is the probability that A outputs 1. The following transitions
between games are made to prove the high probability of the following properties: first, that
Π and the adversary ask non-intersecting sets of queries to F or F−1, and secondly, that
the ciphertexts and the tags are composed of random and independent blocks and hence are
indistinguishable from random strings.

Game G0. The permutation F is randomly chosen. The adversary interacts with Π, F , and
F−1.

Game G1. The permutation F is still randomly chosen but is defined in a lazy manner: we
maintain a table TF = {(x,F(x))} which is initially empty, and fill the table values whenever
F or F−1 are queried alone or within Π.

Game G2. We modify oracles F or F−1 so that when a new value has to be added to the table,
it is chosen completely at random from {0, 1}n. If this choice creates a collision, i.e. either F or
F−1 is no longer a permutation, then we explicitly abort. The probability of such an abort is
upper bounded by (σF + σΠ)2/2n.

Game G3. We now require Π to explicitly abort if there is a collision in the set {X(i)
j [17 . . . (n−

k)]}i,j or in the set {T [1 . . . (n − k)](i)}. The probability of this event is upper bounded by
σ2Π/2

n−k−16.

Game G4. We now require that the adversary does not ask the oracle F with a query ending
with K. Since the outputs of F−1 are completely random, the adversary has no choice but to
guess K. Hence the probability of this event is upper bounded by σF/2k.

Game G5. We now require the oracle F−1 to explicitly abort if its reply ends with K. The
adversary can guess the unknown parts of X or T ⊕ K, respectively (he can not hope for
collisions in X or T due to the transition in game G3). The probability of this event for all cases
is upper bounded by σF/2k.

Game G6. We requireΠ to abort if it produces suchX
(i)
j that it is already in TF . The probability

of this event is upper bounded by σFσΠ/2n−16. We note that the adversary can not manipulate
Xj with Mj since the choice is made before the Xj is generated.

Game G7. In the same manner, we require F to abort if it is queried with an already generated

X
(i)
j and F−1 to abort if it is queried with an already generated X

(i)
j . The probability of this

event is upper bounded by σFσΠ/2n−16.



Game G8. Finally, we require Π to abort if there is a collision in the set {Z(i)}i. Since every
Z is the XOR of uniformly generated Yi and Y ′i , the probability of this event is upper bounded
by σ2Π/2

n−k−16 .
Let us now look at game G8. The oracle Π, in fact, never asks the oracle F with a query

that corresponds to an existing entry in TF . We ruled out such an event in games G4, G5 for the
first layer of encryption and the layer of the AD processing. We ruled out the event in games
G6, G7 for the second layer of encryption. Finally, we ensure this for the authentication level in
game G8. The game G3 is auxiliary.

The indistinguishability of the pair (ciphertext,tag) from a random string follows from the
following facts:

– all the V
(i)
j inputs are distinct (nonce-misuse requirement);

– hence, all the values W
(i)
j are chosen uniformly in Games G2–G8;

– all the Z(i) values are distinct (Game G8);
– all the tags T are chosen uniformly (and independently of ciphertexts) in Game G8.

Therefore, Game G8 is indistinguishable from the interaction with the random-bit oracle.
The adversary’s advantage in Game G0 is upper bounded by the sum of transition probabilities
in Games G1–G8, which yields Equation (1).

This concludes the proof.

5.2 Ciphertext integrity

Theorem 2. Let an adversary be in the setting of Theorem 1. Suppose he makes q decryption
requests to Π. Then his advantage of distinguishing Π−1 from the “always-invalid” oracle ⊥ is
upper bounded as follows:

Advint
Π (A) ≤ Advconf

Π (A) +
σ2Π

2n−k−16
+

q

2τ
+

σΠq

2n−k−16
+

q

2k
. (2)

Proof. We first need to strengthen our setting. With probability Advconf
Π (A) we are in Game

G8. Let us make additional computations in Game G9.
Let M be a plaintext to encrypt, and A be the associated data, Y (N,M) and Y ′(A) be

intermediate variables. Then for each encryption request (N,M,A) we also compute Y (N,M ′)
and Y ′(A′), for every full-block prefix M ′ of M and every full-block prefix A′ of A. We store all
the resulting Y and Y ′ in special tables Yext and Y ′ext. Let us note that the size of both tables
is upper bounded by σΠ .

Game G9. We additionally require Π to explicitly abort if there are collisions in the set {Zext =
Y ⊕ Y ′ |Y ∈ Yext, Y ′ ∈ Y ′ext}. The probability of this event is upper bounded by σ2Π/2

n−k−16.

Lemma 1. Suppose we are in Game G9. A valid decryption (N,A,C, T ) request does not gen-
erate ⊥ with probability upper bounded by

2−τ + σΠ/2
n−k−16 + 1/2k.

The proof can be found in Appendix A.
Now we are ready to prove Theorem 2. The requirements of Game G9 are fulfilled with

probability Advconf
Π (A)+

σ2
Π

2n−k−16 . The first decryption request returns ⊥ with probability lower
bounded in Lemma 1. Then the adversary learns nothing with his request, and we can ignore
filling the table TF . All the other requests have the same lower bound to be invalid, so we merely
multiply this probability by q.

This concludes the proof of Theorem 2.
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Fig. 2. Rebound attack on AESQ.

5.3 Basic robustness to nonce misuse

In this section we investigate the level of robustness of PAEQ to nonce misuse, i.e. to the
multiple use of the same nonce(s) for encryption.

First, we note that confidentiality is almost destroyed in the case of nonce reuse. In fact, it
is easy for any person to compute a new ciphertext C ′ for message M under the same nonce N ,
as

C ′ = M ⊕M ′ ⊕ C.

However, with high probability the tag T is still indistinguishable from the random string,
which allows us to prove the integrity property in the case of nonce reuse, though with a worse
bound.

Lemma 2. Suppose adversary A has access to Π[F ], F , and F−1, and let K
$←− K. Let σΠ

be the total number of queries to F made during the calls to the Π oracle, and σF be the total
number of queries to F and F−1 oracles together. The adversary is allowed to repeat nonces,
but not to repeat plaintexts.

Then his advantage of distinguishing the tag T produced by the oracle Π[F ] from the random-
bits oracle $ is upper bounded as follows:

Advconf
Π (A) ≤ 2

(σF + σΠ)2

2k
. (3)

The proof can be found in Appendix B. Now we can prove the same bounds for integrity.

Theorem 3. Let an adversary be in the setting of Lemma 2. Suppose he makes q decryption
requests to Π. Then his advantage of distinguishing Π−1 from the “always-invalid” oracle ⊥ is
upper bounded as follows:

Advint
Π (A) ≤ 2

(σF + σΠ)2

2k
. (4)

Proof. The proof directly follows from Lemma 2. Since the adversary can not distinguish a tag
from a random string under repeating nonces, she can not create a forgery. Indeed, suppose
that an adversary B has advantage α of distinguishing Π−1 from the “always-invalid” oracle
for a single query, i.e. she can guess the tag with probability α. Then B can distinguish Π from
the random-bit oracle with the same probability, which is in turn bounded in Lemma 2.



5.4 Extra nonce

The extra nonce Ne is a function of P , K, and A. It invokes a sponge construction, which is
proved indifferentiable from random oracle up to 2c/2 queries [6], where the parameter c is equal
to 2k in PAEQ (and PPAE). The extra nonce function is thus pseudo-random and generates
unique nonces unless it reaches the birthday bound of 2r/2 queries (this is smaller than the 2k

indifferentiability bound in this paper). Therefore, the following statement holds.

Proposition 1. Let A be the adversary that makes q encryption queries (P,A) to the PPAE

encryption oracle ΠK with extra nonce feature. Let K
$←− K and F $←− Perm(n). If, additionally,

all the pairs (P,A) are distinct, then the advantage of the adversary to violate confidentiality

or data integrity are bounded by values given in Theorems 1 and 2 or max( q
2

22k
, q

2

2r ), whatever is
larger.

6 Security of AESQ

In this section we discuss the security of the AESQ permutation. We expect that the reader is
familiar with properties of the AES internal operations, and refer to [12] in case of questions.

6.1 Structure and decomposition

SB
SR
MC

SB
SR

subkey

SB
SR

SB
SR
MC

∼ AK

Fig. 3. SuperSBox in AES.

First we recall that one round of AES does not provide full
diffusion as it mixes together only 32 bits. For instance,
consider a column in the AES round that undergoes the
MixColumns transformation. Before that its bytes have been
permuted by ShiftRows and substituted by SubBytes; after-
wards they are xored with a subkey and again go through
SubBytes and ShiftRows. These operations can be grouped
into a single 32-bit so-called “SuperSBox́’ parametrized with
a 32-bit subkey. As a result, two AES rounds can be viewed
as a layer SuperSubBytes of four 32-bit SuperSBoxes followed
by ShiftRows and MixColumns, so that we can view AES-128
as a 5-round cipher with larger S-boxes.

The same strategy applies to the AESQ permutation.
The two-round groups that process the registers A,B,C,D
can be viewed as a single round with 16 = 4 · 4 parallel
SuperSBoxes and a large linear transformation. This yields
an R-round SPN permutation with 32-bit S-boxes out of the original 2R-round one.

We can go further and view as many as four rounds of AESQ as a single round with
MegaSBoxes (cf. MegaBoxes in [11]). Indeed, refer to Figure 4 and Algorithm 1. Consider a
128-bit register in round 2, for instance register A. Let us first look at its input. Going into
backward direction, the columns spread to all the registers and then each column undergoes
MixColumns without any influence from the other parts of the register. Then the values are
shuffled by ShiftRows, and finally updated byte-wise by SubBytes. Hence we can recompute the
16 bytes at the beginning of round 1, even though they are located in different registers. Let us
now look at the register A at the end of round 3. Its columns again spread to all the registers, and
again undergo SubBytes and ShiftRows independently of the other register bytes. As a result, we
can view as many as four rounds as a layer MegaSubBytes of four 128-bit MegaSBoxes followed
by a MixColumns-based linear transformation, which we call MegaMixColumns (cf. the analysis
in [17]). It has branch number 5, as it is exactly a set of MixColumns transformations with
reordered inputs and outputs. Note that this decomposition must start with an odd round, and
does not work for even rounds.
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6.2 Analysis of permutations in the attack context

Only a few permutations as a single and secure object have been designed for the use in practical
constructions. The most well-known is the Keccak 1600-bit permutation, which is used in the
Keccak/SHA-3 hashing algorithm; the others are used in the SHA-3 competitors: CubeHash [5],
Grostl [14], JH [27]. It is worth noticing that a permutation per se can not be formally defined
“secure”. The best we can make is an informal statement like the 2l “flat sponge” claim [7],
which basically states that no attack with complexity below 2l and specific for the particular
permutation exists. The parameter l is used in defining the capacity parameters in sponge
functions and in fact measures the designers’ confidence.

In our case we claim l = 256 or the 256-bit security of AESQ against all attacks. In order
to support our claim, we look at the existing attacks on permutation-based designs and check
if they apply to AESQ.

Collision attacks. We first consider collision attacks on sponge-based hash functions. The colli-
sion attacks on the reduced Keccak [13] strongly rely on high-probability differential trails [22],
and only add a couple of rounds over their length with the help of message-modification tech-
niques. The so-called internal-differential attack [23], while exploiting similarities within the
internal state, is also limited by the propagation of difference generated by the round con-
stants. Hence to prevent these attacks we have to demonstrate the absence of high-probability
differential trails for a high number of rounds.

Let us now consider compression functions based on permutations. For example, Grostl uses
functions

P (x⊕ y)⊕Q(y)⊕ x and x⊕ P (x),

where P and Q are AES-based permutations. The main strategy in collision attacks on the
AES-based designs [15, 20] is the construction of a truncated differential trail with low input
and output Hamming weight. Then the conforming inputs are found with the rebound attack
and are tested for a collision.



Preimage attacks. The preimage attacks on sponge-based hash functions have been also based
on the differential properties of the permutation. As long as a differential generated by message
difference ∆M has high probability in some output bits, it can be used to speed up the preimage
search [21]. There are also generic methods that can save a factor of several bits by exploiting
incomplete diffusion in the final rounds, but we note that their complexity can not be reduced
much. The invariant attacks [2] do not apply because of round constants.

Preimage attacks on Grostl are based on the meet-in-the-middle framework. Whereas it is
difficult to formalize the necessary conditions for these attacks to work, we notice that the num-
ber of rounds attacked with meet-in-the-middle/bicliques is smaller compared to the rebound
attack (even though the attack goals are distinct).

Other attacks. A more generic set of attacks are given by the CICO and multi-CICO prob-
lems [7], which require the attacker to find one or more (input, output) pair conforming to
certain bit conditions. There is no comprehensive treatment of these attacks, but they seem to
be limited by twice the number of rounds needed for full diffusion.

Consider an 8-round version F of AESQ, for instance, that F (X) = Y , and we know the
last 384 bits of both X and Y . How difficult is it to restore X and Y ? The last 384 bits mean
three registers B,C,D. Hence, we can compute registers B,C,D through rounds 0,1 and 6,7.
Then we know 96 bits of each register in the beginning of round 2 and in the end of round 5.
By a simple meet-in-the-middle attack we match between rounds 3 and 4 and recover X and Y
with complexity 232. However, we did not manage to extend this technique to more rounds.

6.3 Possible attacks

Differential analysis of AESQ. Let us evaluate the differential properties of AESQ. We are
backed up with the analysis of AES by Daemen and Rijmen. They prove the following lemma1.

Lemma 3. Any differential trail over 4 AES rounds has at least 25 active S-boxes.

We have demonstrated in Section 6.1 that four rounds of AESQ can be viewed as a layer
of 128-bit S-boxes and a large linear transformation, which has branch number 5. The 128-bit
MegaSBoxes are exactly four-rounds of AES without the key additions and the last MixColumns.
Hence each active MegaSBox has at least 25 active S-boxes.

The branch number of MegaMixColumns implies that eight AESQ rounds starting from an
odd round have at least 5 active MegaSBoxes, and hence 125 active S-boxes. Therefore, nine
rounds starting from an even round (as required by the permutation) have at least 126 active
S-boxes, as the first round must have at least one. More generally, 8R+ 1 rounds must have at
least 125R+ 1 active S-boxes. In turn, the last round has at maximum 64 active S-boxes, so the
lower bound for 8R rounds is 125R− 63 active S-boxes. The other bounds are given in Table 2.

Rounds Active S-boxes Rounds Active S-boxes

2 5 8R+2 125R +2
4 10 8R+4 125R +7
6 27 8R+6 125R + 27

8R 125R-63 8R+8 125R+68

Table 2. Minimal number of active S-boxes in the AESQ permutation.

The table implies that a 20-round trail has at least 257 active S-boxes. Given that the
maximal differential probability of each S-box is 2−6, the vast majority of these trails have

1 Actually, they prove a more general theorem for SPN ciphers but the AESQ permutation does not satisfy its
assumptions.



differential probability close to zero. The effect of clustering these trails into a single differential
and the resulting probability is not completely studied, but the bound of maximum expected
differential probability for 4 rounds of AES of 2−113 [18] indicates that these values should be
very low for 16 rounds of AESQ and more unless the round constants accidentally admit a large
number of conforming pair for a differential (the so called height parameter).

If we consider slide-like attacks, where differences between registers or states shifted by
several rounds are considered, we obtain that the round constants generate one-byte difference
in every round, so we can not hope for high probability differentials in this case.

Rebound attacks. Rebound attacks aim to construct a conforming input for a truncated differ-
ential trail with a little amortized cost. The attack consists of two phases: inbound phase, where
a conforming input is constructed for the low-probability part in the meet-in-the-middle man-
ner, and the outbound phase, where the differences are traced through the rest of the primitive
without the control of the cryptanalyst.

Again, given the decomposition of AESQ into MegaSBoxes, we can generate a full difference
distribution table for MegaSBoxes with the complexity 2256. Consider MegaSBoxes in rounds
5–8 of the permutation. Let us select an active S-box in rounds 4 and 9, and select a one-byte
difference in them. Then we apply MegaMixColumns and obtain input/output differences for
MegaSBoxes. We obtain actual state values and then recompute the difference in the outer
directions. Active S-boxes in round 4 activates one MegaSBox in rounds 1–4, and then activates
all the S-boxes of round 0. At the other end, the active S-box in round 9 activates a MegaSBox
in rounds 9–12, which activates all S-boxes in round 13. This yields a clear distinguisher for 12
rounds of AESQ with complexity 2256, and possibly a distinguisher for 14 rounds.

Final choice. We take the 20-round AESQ permutation within PAEQ, which should provide
a 256-bit security against all attacks. After the third-party cryptanalysis, if little improvement
over our analysis will be shown, we might consider reducing the number of rounds to 16 for 80-
and 128-bit security.
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8 Conclusion

We have proposed a new mode PPAE and its instantiation PAEQ, that delivers virtually all
features of a modern authenticated encryption scheme. To the best of our knowledge, no other
scheme combines parallelism, 128-bit security, online processing and a quick tag update. The
scheme has a compact security proof in the random permutation model.

Unfortunately, these advantages come at some cost. Our scheme employs (2 + ε) calls to a
permutation of width n to encrypt n bits of the message. To mitigate this effect, we suggested
to use a reduced Keccak permutation or a new AES-like permutation AESQ of width 512 bits.
We conduct the basic security analysis of AESQ and concluded that the most relevant attacks
leave a significant security margin. The resulting scheme runs at 6-7 cycles per byte on modern
processors.

For the future research, we plan to extend our security proof to capture variable-length
keys and nonces. We also plan to optimize the permutation AESQ so that it provides the same
security with reduced number of operations.
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1. Fresh nonce;
2. Old nonce, fresh ciphertext (not obtained with that nonce);
3. Old nonce, old ciphertext, fresh associated data;
4. Old nonce, old ciphertext, old associated data, fresh tag.

The last option clearly never succeeds.

Fresh nonce. Since N is fresh, the decryption request turns out to be a valid encryption request.
Let M ′ be the plaintext of length |C| that consists of zero bits, and let C ′ be its ciphertext
under nonce N . Then the decryption request (N,A,C, T ) results in the encryption request
(N,A,C⊕C ′), which generates the tag uniformly at random according to Game G8. Therefore,
the probability to forge the tag is upper bounded by 2−τ .

Old nonce N , fresh ciphertext C. Let C ′ be the ciphertext previously obtained with N . Consider
two cases.

1. C ′ is a prefix of C. Then Z is fresh due to requirements of Game G9 and is chosen uniformly
at random.

2. C ′ is not a prefix of C. Let j be any block index where C ′ differs from C. By definition, the
variables X ′j and Xj are distinct. There are two cases:
– The block X ′j [17 . . . (n − k)] has been previously obtained with nonce N ′′ as block
X ′′s [17 . . . (n−k)]. Only one such nonce could exist because of the requirements of Game
G3. Since all Xi generated during encryption requests are sampled uniformly at random,
the probability of X ′′s = X ′j is upper bounded by 1/2k.

– The block X ′j [17 . . . (n − k)] has never been obtained before. Then Y (X ′j) is sampled

uniformly at random, and with probability σΠ/2
n−k−16 generates a not-fresh Z.

Therefore, Z (and hence the tag) is chosen uniformly at random in all cases except one that
has probability 1/2k. Thus probability to forge the tag in this case is upper bounded by

2−τ + σΠ/2
n−k−16 + 1/2k.

Old nonce N , old ciphertext C, fresh associated data A. Let Y ′(A) be the value obtained during
the processing of the associated data A. There are two options:

– Y ′(A) = Y ′(A0) for some previously queried A0. Due to requirements of Game G9, the value
Y (N,C)⊕ Y ′(A0) = Z(N,C,A) is fresh.

– Y ′(A) is fresh. Then it generates a not-fresh Z with probability upper bounded by σΠ/2
n−k−16.

Therefore, the probability to forge the tag in this case is upper bounded by

2−τ + σΠ/2
n−k−16.

This concludes the proof of lemma.

B Proof of Lemma 2

To prove this lemma, we follow the same games as in Theorems 1 and 2. The transitions from
Game G0 to G1 and G2 hold with the same probability.

The Game G3 is replaced with Game G′3, where we require Π to abort if there are collisions

in {X(i)
j [(n− k + 1) . . . k]} for all used nonces and counter values. The probability of this event

is upper bounded by (σF + σΠ)2/2k.
Games G4–G7 remain unmodified.
Finally, we unite Games G8 and G9 by requiring no collisions in Zext. Since all the pairs

(plaintext, associated data) are distinct and there is no collision in X[(n−k+1) . . . k] according
to G′3, every Z has a fresh and uniformly chosen Y or Y ′ in its XOR. Therefore, the upper
bound on the collision event is (σF + σΠ)2/2k.

As long as all Z are unique, the tags are uniformly generated. Therefore, the adversary’s
advantage is upper bounded by 2(σF + σΠ)2/2k.
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SB SRMC

24

SB SRMC

25

SB SRMC

29

SB SRMC

26

SB SRMC

30

SB SRMC

27

SB SRMC

31

SB SRMC

28

SB SRMC

32

to bytes 0,4,8,12
Constants are added

Fig. 5. 8 rounds of the AESQ permutation.
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