Skip to main content

On Polygonal Paths with Bounded Discrete-Curvature: The Inflection-Free Case

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8845))

Abstract

A shortest path joining two specified endpoint configurations that is constrained to have mean curvature at most \(\varsigma \) on every non-zero length sub-path is called a \(\varsigma \) -geodesic. A seminal result in non-holonomic motion planning is that (in the absence of obstacles) a \(1\)-geodesic consists of either (i) a (unit-radius) circular arc followed by a straight segment followed by another circular arc, or (ii) a sequence of three circular arcs the second of which has length at least \(\pi \) [Dubins, 1957]. Dubins’ original proof uses advanced calculus; Dubins’ result was subsequently rederived using control theory techniques [Sussmann and Tang, 1991], [Boissonnat, Cérézo, and Leblond, 1994], and generalized to include reversals [Reeds and Shepp, 1990].

We introduce and study a discrete analogue of curvature-constrained motion. Our overall goal is to show that shortest polygonal paths of bounded “discrete-curvature” have the same structure as \(\varsigma \)-geodesics, and to show that properties of \(\varsigma \)-geodesics follow from their discrete analogues as a limiting case, thereby providing a new, and arguably simpler, “discrete” proof of the Dubins characterization. Our focus, in this paper, is on paths that have non-negative mean curvature everywhere; in other words, paths that are free of inflections, points where the curvature changes sign. Such paths are interesting in their own right (for example, they include an additional form, not part of Dubins’ characterization), but they also provide a slightly simpler context to introduce all of the tools that will be needed to address the general case in which inflections are permitted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In an earlier draft [18], the authors proposed an alternative definition which had some deficiencies that are resolved by the definition used in this paper.

  2. 2.

    We ignore for the present the fact that successive maximal discrete circular arcs of opposite orientation could share an edge. In this case we are free to impose disjointness of arcs by assigning the shared edge to just one of the two arcs.

References

  1. Agarwal, P.K., Biedl, T., Lazard, S., Robbins, S., Suri, S., Whitesides, S.: Curvature-constrained shortest paths in a convex polygon. In: SoCG (1998)

    Google Scholar 

  2. Agarwal, P.K., Raghavan, P., Tamaki, H.: Motion planning for a steering-constrained robot through moderate obstacles. In: SToC, pp. 343–352 (1995)

    Google Scholar 

  3. Ahn, H.-K., Cheong, O., Matousek, J., Vigneron, A.: Reachability by paths of bounded curvature in a convex polygon. Comput. Geom. 45(1–2), 21–32 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bereg, S., Kirkpatrick, D.: Curvature-bounded traversals of narrow corridors.In: SoCG, pp. 278–287 (2005)

    Google Scholar 

  5. Bitner, S., Cheung, Y.K., Cook IV, A.F., Daescu, O., Kurdia, A., Wenk, C.: Visiting a sequence of points with a bevel-tip needle. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 492–502. Springer, Heidelberg (2010)

    Google Scholar 

  6. Boissonnat, J.-D., Bui, X.-N.: Accessibility region for a car that only moves forwards along optimal paths. Research report 2181, INRIA Sophia-Antipolis (1994)

    Google Scholar 

  7. Boissonnat, J.-D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. Int. J. Intell. Syst. 10, 1–16 (1994)

    Google Scholar 

  8. Bui, X.-N., Souères, P., Boissonnat, J.-D., Laumond, J.-P.: Shortest path synthesis for Dubins nonholonomic robot. In: IEEE International Conference Robotics Automation, pp. 2–7 (1994)

    Google Scholar 

  9. Chang, A., Brazil, M., Rubinstein, J., Thomas, D.: Curvature-constrained directional-cost paths in the plane. J. Global Optim. 53(4), 663–681 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chitsaz, H., LaValle, S.: Time-optimal paths for a Dubins airplane. In: 46th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  11. Chitsaz, H., Lavalle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation paths for differential-drive mobile robots. Int. J. Rob. Res. 28, 66–80 (2009)

    Article  Google Scholar 

  12. Chitsaz, H.R.: Geodesic problems for mobile robots. Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, AAI3314745 (2008)

    Google Scholar 

  13. Djath, K., Siadet, A., Dufaut, M., Wolf, D.: Navigation of a mobile robot by locally optimal trajectories. Robotica 17, 553–562 (1999)

    Article  Google Scholar 

  14. Dolinskaya, I.: Optimal path finding in direction, location and time dependent environments. Ph.D. thesis, The University of Michigan (2009)

    Google Scholar 

  15. Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duindam, V., Jijie, X., Alterovitz, R., Sastry, S., Goldberg, K.: Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. Int. J. Rob. Res. 29, 789–800 (2010)

    Article  Google Scholar 

  17. Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 38, 340–356 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eriksson-Bique, S.D., Kirkpatrick, D.G., Polishchuk, V.: Discrete dubins paths. CoRR, abs/1211.2365 (2012)

    Google Scholar 

  19. Foldes, S.: Decomposition of planar motions into reflections and rotations with distance constraints. In: CCCG’04, pp. 33–35 (2004)

    Google Scholar 

  20. Fortune, S., Wilfong, G.: Planning constrained motion. Ann. Math. AI 3, 21–82 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Furtuna, A.A., Balkcom, D.J.: Generalizing Dubins curves: minimum-time sequences of body-fixed rotations and translations in the plane. Int. J. Rob. Res. 29, 703–726 (2010)

    Article  Google Scholar 

  22. Giordano, P.R., Vendittelli, M.: Shortest paths to obstacles for a polygonal dubins car. IEEE Trans. Rob. 25(5), 1184–1191 (2009)

    Article  Google Scholar 

  23. Jacobs, P., Canny, J.: Planning smooth paths for mobile robots. In: Li, Z., Canny, J.F. (eds.) Nonholonomic Motion Planning, pp. 271–342. Kluwer Academic Pubishers, Norwell (1992)

    Google Scholar 

  24. Kim, H.-S., Cheong, O.: The cost of bounded curvature. CoRR, abs/1106.6214 (2011)

    Google Scholar 

  25. Krozel, J., Lee, C., Mitchell, J.S.: Turn-constrained route planning for avoiding hazardous weather. Air Traffic Control Q. 14, 159–182 (2006)

    Google Scholar 

  26. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  27. Li, Z., Canny, J.F. (eds.): Nonholonomic Motion Planning. Kluwer Academic Pubishers, Norwell (1992)

    MATH  Google Scholar 

  28. Ma, X., Castan, D.A.: Receding horizon planning for Dubins traveling salesman problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA (2006)

    Google Scholar 

  29. Markov, A.A.: Some examples of the solution of a special kind of problem on greatest and least quantities. Soobshch. Kharkovsk. Mat. Obshch. 1, 250–276 (1887). In Russian

    Google Scholar 

  30. Morbidi, F., Bullo, F., Prattichizzo, D.: On visibility maintenance via controlled invariance for leader-follower dubins-like vehicles. In: IEEE Conference on Decision and Control, (CDC), pp. 1821–1826 (2008)

    Google Scholar 

  31. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  32. Reif, J., Wang, H.: Non-uniform discretization for kinodynamic motion planning and its applications. In: Laumond, J.-P., Overmars, M. (eds.) Algorithms for Robotic Motion and Manipulation, pp. 97–112. A.K. Peters, Wellesley, MA (1997); Proceedings of 1996 Workshop on the Algorithmic Foundations of Robotics, Toulouse, France (1996)

    Google Scholar 

  33. Robuffo Giordano, P., Vendittelli, M.: The minimum-time crashing problem for the Dubins car. In: International IFAC Symposium on Robot Control SYROCO (2006)

    Google Scholar 

  34. Savla, K., Frazzoli, E., Bullo, F.: On the dubins traveling salesperson problems: novel approximation algorithms. In: Sukhatme, G.S., Schaal, S., Burgard, W., Fox, D. (eds.) Robotics: Science and Systems II. MIT Press, Cambridge (2006)

    Google Scholar 

  35. Schmidt, E.: Über das extremum der bogenlänge einer raumkurve bei vorgeschreibenen einschränkungen ihrer krümmung. Sitzber. Preuss. Akad. Berlin, pp. 485–490 (1925)

    Google Scholar 

  36. Schur, A.: Über die schwarzsche extremaleigenschaft des kreises unter den kurven konstanter krümmung. Math. Ann. 83, 143–148 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shkel, A.M., Lumelsky, V.J.: Classification of the dubins set. Robot. Auton. Syst. 34(4), 179–202 (2001)

    Article  MATH  Google Scholar 

  38. Sigalotti, M., Chitour, Y.: Dubins’ problem on surfaces ii: nonpositive curvature. SIAM J. Control Optim. 45(2), 457–482 (2006)

    Article  MathSciNet  Google Scholar 

  39. Sussman, H.J.: Shortest 3-dimensional paths with a prescribed curvature bound. In: Proceedings of 34th IEEE Conference Decision Control, pp. 3306–3311 (1995)

    Google Scholar 

  40. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. Research report SYCON-91-10, Rutgers University, New Brunswick, NJ (1991)

    Google Scholar 

  41. Szczerba, R.J., Galkowski, P., Glickstein, I.S., Ternullo, N.: Robust algorithm for real-time route planning. IEEE Trans. Aerosp. Electron. Syst. 36, 869–878 (2000)

    Article  Google Scholar 

  42. Wilfong, G.: Motion planning for an autonomous vehicle. In: Proceedings of IEEE International Conference Robotics Automation, pp. 529–533 (1988)

    Google Scholar 

  43. Wilfong, G.: Shortest paths for autonomous vehicles. In: Proceedings of 6th IEEE International Conference Robotics Automation, pp. 15–20 (1989)

    Google Scholar 

Download references

Acknowledgements

We thank Sergey Bereg, Stefan Foldes, Irina Kostitsyna and Joe Mitchell for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kirkpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Eriksson-Bique, S., Kirkpatrick, D., Polishchuk, V. (2014). On Polygonal Paths with Bounded Discrete-Curvature: The Inflection-Free Case. In: Akiyama, J., Ito, H., Sakai, T. (eds) Discrete and Computational Geometry and Graphs. JCDCGG 2013. Lecture Notes in Computer Science(), vol 8845. Springer, Cham. https://doi.org/10.1007/978-3-319-13287-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13287-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13286-0

  • Online ISBN: 978-3-319-13287-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics