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Abstract—We consider the problem of Partial Quantifier Elim-
ination (PQE)1. Given formula ∃X[F (X,Y ) ∧G(X,Y )], where
F,G are in conjunctive normal form, the PQE problem is to
find a formula F ∗(Y ) such that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G].
We solve the PQE problem by generating and adding to F ∗

clauses over the free variables that make the clauses of F
with quantified variables redundant. The traditional Quantifier
Elimination problem (QE) is a special case of PQE where G is
empty so all clauses of the input formula with quantified variables
need to be made redundant. The importance of PQE is twofold.
First, many problems are more naturally formulated in terms of
PQE rather than QE. Second, in many cases PQE can be solved
more efficiently than QE. We describe a PQE algorithm based
on the machinery of dependency sequents and give experimental
results showing the promise of PQE.

I. INTRODUCTION

The elimination of existential quantifiers is an important
problem arising in many practical applications. We will refer
to this problem as the Quantifier Elimination problem, or QE.
Given a formula ∃X[F ] where F is a propositional formula,
the QE problem is to find a quantifier free formula G such that
G ≡ ∃X[F ]. In this paper, we assume that all propositional
formulas are represented in conjunctive normal form (CNF).

Unfortunately, the efficiency of current QE algorithms still
leaves much to be desired. This is one reason that many
successful theorem proving methods such as interpolation and
IC3 avoid QE and use SAT-based reasoning instead. These
methods can be viewed as solving specialized versions of the
QE problem that can be solved efficiently. For example, find-
ing an interpolant I(Y ) of formula A(X,Y )∧B(Y, Z) comes
down to solving a special case of QE where I ≡ ∃X[A] needs
to hold only in subspaces where B ≡ 1. So it is important to
perform a systematic study of the QE problem, looking for
variants of the problem that can be solved efficiently. Such a
study can help us better understand existing algorithms that
sidestep the use of QE in favor for more limited, specialized
methods. The study may also lead to the discovery of new
applications of QE.

In this paper, we consider a variation of the QE problem
called Partial QE (PQE). Let ∃X[F (X,Y ) ∧G(X,Y )] be
a formula where variables of X are quantified. The PQE
problem is to find a formula F ∗(Y ) such that F ∗∧∃X[G] ≡
∃X[F ∧G]. We will say that F ∗ is obtained by taking F out
of the scope of the quantifiers. Note that if F ∗ → ∃X[G]

1The only difference of this technical report from the previous version [10]
is as follows. The description of the algorithm given in [10] was missing a
case. (The implementation that we tested in experiments was correct but the
pseudo-code of the algorithm we gave missed a few lines addressing the case
in question.) The missing part of the algorithm is described in Section VII of
this report.

holds, then F ∗ ≡ ∃X[F ∧G]. That is, in this case, a solution
to the PQE problem is also a solution to the QE problem. We
will say that in this case QE reduces to PQE.

Our motivation for solving the PQE problem is twofold.
First, in many cases, a verification problem can be formulated
as an instance of PQE rather than QE. Besides, even if the
original problem is formulated in terms QE it can sometimes
be reduced to PQE. Second, in many cases, the PQE problem
can be solved much more efficiently than QE. We are espe-
cially interested in applying PQE when formula F is much
smaller than G.

The relation between efficiency of solving PQE and QE can
be better understood in terms of clause redundancy [9]. The
PQE problem specified by ∃X[F ∧G] reduces to finding a
set of clauses F ∗ that makes all X-clauses of F redundant in
formula ∃X[F ∧G]. (An X-clause is a clause that contains
a variable from X .) Then every clause of F can be either
dropped as redundant or removed from the scope of the
quantifiers as it contains only free variables.

One can view the process of building F ∗ as follows. X-
clauses of F are made redundant in ∃X[F ∧G] by adding
to F resolvent clauses derived from F ∧ G. Notice that no
clause obtained by resolving only clauses of G needs to be
made redundant. Adding resolvents to F goes on until all X-
clauses of the current formula F are redundant. At this point,
the X-clauses of F can be dropped and the remaining clauses
of F form F ∗.

If F is much smaller than G, the process of solving PQE
looks like wave propagation where F is the original “pertur-
bation” and G is the “media” where this wave propagates.
Such propagation can be efficient even if G is large. By
contrast, when solving the QE problem for ∃X[F ∧G] one
needs to make redundant the X-clauses of both F and G
and all resolvent X-clauses including the ones obtained by
resolving only clauses of G.

In this paper, we describe a PQE-algorithm called DS-
PQE that is based on the machinery of D-Sequents [8], [9].
One needs this machinery for PQE for the same reason as for
QE [8]. Every clause of F ∗(Y ) can be obtained by resolving
clauses of F ∧ G. However, the number of clauses that are
implied by F ∧ G and depend only on Y is, in general,
exponential in |Y |. So it is crucial to identify the moment
when the set of clauses derived so far that depend only on
Y is sufficient to make the X-clauses of F redundant in
∃X[F ∧G]. The machinery of D-sequents is used for such
identification. Namely, one can stop generating new clauses
when a D-sequent stating redundancy of the X-clauses of F
is derived. We experimentally compare DS-PQE with our QE
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algorithm from [9] in the context of model checking.
The following exposition is structured as follows. In Sec-

tions II and III, we discuss some problems that can benefit
from an efficient PQE-algorithm. A run of DS-PQE on a
simple formula is described in Section IV. Sections V and VI
give basic definitions and recall the notion of D-Sequents. In
Section VII, DS-PQE is described. We discuss previous work
in Section VIII. Experimental results are given in Section IX.
Finally, we make conclusions in Section X.

II. USING PQE FOR MODEL CHECKING

In this section and the one that follows we describe some
applications where using an efficient PQE solver can be very
beneficial. A few more applications of PQE are listed in an
extended abstract [11].

A. Computing pre-image in backward model checking

Let T (S, S′) be a transition relation where S and S′ specify
the current and next state variables respectively. We will refer
to complete assignments s and s′ to variables S and S′ as
present and next states respectively. Let formula H(S′) specify
a set of next-states and G(S) specify the pre-image of H(S′).
That is, a present state s satisfies G iff there exists a next state
s′ such that H(s′) ∧ T (s, s′) = 1.

Finding G reduces to QE that is to building a formula
logically equivalent to ∃S′[H ∧ T ]. However, one can con-
struct the pre-image of H by PQE as follows. Let H∗ be a
formula such that H∗ ∧ ∃S′[T ] ≡ ∃S′[H ∧ T ] i.e., H∗ is a
solution to the PQE problem. Notice that H∗ implies ∃S′[T ]
because ∃S′[T ] ≡ 1. Indeed, for every present state s there
always exists some next state s′ such that T (s, s′) = 1. So
H∗ ≡ ∃S′[H ∧ T ] and hence specifies the pre-image of H . In
other words, here QE reduces to PQE.

B. State elimination in IC3-like model checkers

In this subsection, we discuss state elimination, a key
problem for IC3-like model checkers [2]. Given a transition
relation T (S, S′), the problem of eliminating a state s is to find
a clause C falsified by s and inductive relative to a formula
F . The latter means that F ∧ C(S) ∧ T → C(S′).

The performance of IC3 strongly depends on the efficiency
of solving the state elimination problem and the quality of
inductive clauses generated to solve it. An IC3-like model
checker would benefit from an efficient algorithm finding the
pre-image of the state s to be eliminated [14]. Finding the
pre-image of s can be useful when no inductive clause C
eliminates s. In this case, IC3 removes some states that satisfy
F and from which a direct transition to s is possible. This is
done by adding new clauses to F , which eventually leads to
appearance of a clause C that is inductive relative to F and
eliminates s. Finding the best states to remove is crucial for
the performance of IC3. The pre-image of s can be very useful
to identify such states.

Finding the pre-image of s is a special case of the problem
we discussed in Subsection II-A. Let H be the set of unit
clauses specifying state s i.e., s satisfies H . Let G(S) be a

SAT by PQE(G){
1 while (true) {
2 C := GenClause(G);
3 R := SolvePQE(∃X[C ∧G]);

- - - - - - - - - - - -
4 if (R is derived without using C) {
5 G := AddClause(G,R);
6 if (R ≡ 0) return(UNSAT );
7 continue;}

- - - - - - - - - - - -
8 if (R ≡ 1) {
9 G := G ∪ {C};
10 continue; }

- - - - - - - - - - - -
// the only possibility left is R ≡ 0
11 if (G→ C) return(UNSAT );
12 else return(SAT );

Fig. 1. SAT checking by PQE

formula such that F ∧G∧∃S′[T ] ≡ F ∧∃S′[H(S′) ∧ T ]. The
complete assignments satisfying G specify the pre-image of s
“relative” to F . Any clause C inductive relative to F has to be
falsified by assignments satisfying F ∧G. The PQE-algorithm
we describe in this paper is not efficient enough to be used in
the loop of IC3 right away, but this may change soon.

III. USING PQE FOR SAT-SOLVING

In this section, we describe a SAT-algorithm based on PQE.
(We will refer to this algorithm as PQE-SAT.) We also contrast
PQE-SAT with a SAT-solver based on Conflict Driven Clause
Learning (CDCL).

A. High-level view of the algorithm

The pseudocode of PQE-SAT is shown in Figure 1. Let
G(X) be a CNF formula to be checked for satisfiability. In the
main loop, PQE-SAT performs the following actions. First, it
generates a clause C that is not trivially subsumed by a clause
of G (line 2). Then PQE-SAT solves an instance of the PQE
problem (line 3). Namely, it calls procedure SolvePQE to find
formula R such that R∧∃X[G] ≡ ∃X[C ∧G]. Depending on
the type of formula R returned by SolvePQE, PQE-SAT either
updates G by adding a clause or makes a final decision on
whether G is satisfiable (lines 4-12).

SolvePQE returns three kinds of formula R. The actions
PQE-SAT take for every kind of formula R are separated by
the dotted lines in Figure 1. We will refer to a formula R
returned by SolvePQE as a formula of the first kind if it is
obtained by resolving only clauses of G (lines 4-7). In this
case, R is just a clause that subsumes C. (In particular, R can
be equal to C.) On the one hand, the fact that R is derived
without using clause C means that R is implied by G. On the
other hand, the fact that R subsumes C suggests that C is also
implied by G. Thus C is trivially redundant in ∃X[C ∧G].
PQE-SAT adds clause R to G. If clause R is empty, then G
is obviously unsatisfiable.

If resolution derivation of the formula R returned by
SolvePQE involves clause C we will refer to R as a formula of
the second or third kind. In this case, R is a constant. That is R



either has no clauses (formula of the second kind, R ≡ 1) or it
is an empty clause (formula of the third find, R ≡ 0). Indeed,
just derivation of a clause A subsuming C does not mean that
C is redundant in ∃X[C ∧G]. The reason is that A is derived
using clause C and so A may not be implied by G. On the
other hand, if A is not empty (and hence contains variables
of X) , it cannot be taken out of the scope of quantifiers.

Actions of PQE-SAT when SolvePQE returns a formula R
of the second kind are shown in lines 8-10. The fact that R ≡ 1
means that C is redundant in ∃X[C ∧G]. That is either C is
implied by G or C eliminates some (but not all) assignments
satisfying G. In either case, C ∧G is equisatisfiable to G. For
that reason PQE-SAT adds C to G.

What PQE-SAT does when SolvePQE returns a formula R
of the third kind is shown in lines 11-12. The fact that R ≡ 0
means that either G is unsatisfiable or C is falsified by every
assignment satisfying G. PQE-SAT tells these two cases apart
by checking if C is implied by G.

B. Difference between PQE-SAT and a CDCL SAT-solver

The difference between PQE-SAT and a CDCL SAT-solver
is twofold. First, PQE-SAT employs non-resolution derivation
of clauses. This derivation occurs, when SolvePQE returns a
formula R of the second kind (i.e. R ≡ 1). In contrast to a
formula of the first kind, in this case, SolvePQE proves that
C is redundant in ∃X[C ∧G] without generation of a clause
subsuming C. A simple example of a clause obtained by non-
resolution derivation is a blocked clause [19] (see Section IV).
Adding clauses obtained by non-resolution derivation allows
one to get proofs that are much shorter than those based
on pure resolution. For example, in [18] it was shown that
extending resolution with a rule allowing to add blocked
clauses makes it exponentially more powerful.

The second difference between PQE-SAT and a CDCL SAT-
solver is in the way they generate a satisfying assignment.
When SolvePQE returns an empty clause (a formula of the
third kind) it checks if G implies C. A counterexample
showing that G 6→ C is also an assignment satisfying G.
Checking if G→ C holds reduces to testing the satisfiability
of G in the subspace where C is falsified.

As far as finding a satisfying assignment is concerned, PQE-
SAT potentially has three advantages over CDCL-solvers. The
first advantage is that PQE-SAT can derive clauses that elim-
inate satisfying assignments of G. This is important because
the ability of a CDCL-solver to efficiently find a satisfying
assignment hinges on its ability to derive short clauses. For
example, if a unit clause v is derived by a CDCL-solver, it
can immediately set v to 0. However, such a clause cannot
be derived if formula G has satisfying assignments with
v = 0 and v = 1. The ability of PQE-SAT to add clauses
removing satisfying assignments in general leads to enhancing
the quality of learned clauses. Suppose, for example, that
PQE-SAT adds to G a clause C that eliminates all satisfying
assignments with v = 1 (but preserves at least one satisfying
assignment with v = 0). Then formula G implies clause v and
hence the latter can be derived from G by resolution.

The second advantage of PQE-SAT is that if clause C is
long (i.e. C has many literals), then checking G→ C can
be much simpler than just testing the satisfiability of G. The
third advantage of PQE-SAT is that in case C is short PQE-
SAT can exploit the resolution derivation of an empty clause
it obtained. Let P denote such a derivation produced by PQE-
SAT. The fact that G is satisfiable and C ∧ G is not means
that every assignment satisfying G falsifies C. This entails
that every cut of P must contain either clause C itself or a
descendant clause A of C such that G 6→ A. Note that even if
C is a short clause, it can have descendants that are very long.
So if C is short, one can replace computationally hard check
G→ C with a sequence of checks G→ A starting with the
longest descendant clauses of C.

IV. EXAMPLE

In this section, we describe a run of a PQE algorithm
called DS-PQE that is described in Section VII. DS-PQE is
a modification of the QE algorithm called DCDS [9] based
on the machinery of Dependency sequents (D-sequents). In
this section, we use notions (e.g., that of D-sequents) that will
be formally defined in Section VI. Recall that an X-clause is
a clause that contains at least one variable from a set X of
Boolean variables.

Let F = C1 ∧ C2 where C1 = y ∨ x1, C2 = y ∨ x3 Let
G = C3 ∧C4 ∧C5 ∧C6 where C3 = x1 ∨ x2, C4 = x1 ∨ x2,
C5 = x3 ∨ x4, C6 = y ∨ x4. Let X = {x1, x2, x3, x4} be the
set of variables quantified in formula ∃X[F ∧G]. So y is the
only free variable of F ∧G.

Problem formulation. Suppose one needs to solve the PQE
problem of taking F out of the scope of the quantifiers
in ∃X[F ∧G]. That is one needs to find F ∗(y) such that
F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G]. Below, we describe a run of DS-
PQE when solving this problem.

Fig. 2. The search tree built by DS-
PQE

Search tree. DS-PQE is
a branching algorithm. It
first proves redundancy of
X-clauses of F in subspaces
and then merges results of
different branches. When DS-
PQE returns to the root of the
search tree, all the X-clauses
of F are proved redundant
in ∃X[F ∧G]. The search
tree built by DS-PQE is given
in Figure 2. It also shows
the nodes where new clauses
C7 and C8 were derived.

DS-PQE assigns free variables before quantified. For that
reason, variable y is assigned first. At every node of the
search tree specified by assignment q, DS-PQE maintains a
set of clauses denoted as PR(q). Here PR stands for “clauses
to Prove Redundant”. We will refer to a clause of PR(q) as
a PR-clause. PR(q) includes all X-clauses of F plus some
X-clauses of G. The latter are proved redundant to make
proving redundancy of X-clauses of F easier. Sets PR(q) are



shown in Figure 4. For every non-leaf node of the search tree
two sets of PR-clauses are shown. The set on the left side
(respectively right side) of node q gives PR(q) when visiting
node q for the first time (respectively when backtracking to
the right branch of node q).

Fig. 3. Derived D-sequents

Using D-sequents. The
main concern of DS-PQE is
to prove redundancy of PR-
clauses. Branching is used
to reach subspaces where
proving redundancy is easy. The
redundancy of a PR-clause C
is expressed by a Dependency
Sequent D-sequent. In short
notation, a D-sequent is a record
s → {C} saying that clause
C is redundant in formula
∃X[F ∧G] in any subspace
where assignment s is made. We
will refer to s as the conditional

part of the D-sequent. The D-sequents S1, . . . , S7 derived
by DS-PQE are shown in Figure 3. They are numbered in
the order they were generated. So-called atomic D-sequents
record trivial cases of redundancy. More complex D-sequents
are derived by a resolution-like operation called join. When
DS-PQE returns to the root, it derives D-sequents stating the
unconditional redundancy of the X-clauses of F .

Merging results of different branches. Let v be the current
branching variable and v = 0 be the first branch explored
by DS-PQE. After completing this branch, DS-PQE proves
redundancy of all clauses that currently have the PR-status.
(The only exception is the case when a PR-clause gets falsified
in branch v = 0. We discuss this exception below.) Then DS-
PQE explores branch v = 1 and derives D-sequents stating
redundancy of clauses in this branch. Before backtracking
from node v, DS-PQE uses operation join to produce D-
sequents whose conditional part does not depend on v. For
example, in branch y = 0, D-sequent S1 equal to (y = 0)→
{C2} was derived. In branch y = 1, D-sequent S5 equal to
(y = 1)→ {C2} was derived. By joining S1 and S5 at variable
y, D-sequent S7 equal to ∅ → {C2} was produced where the
conditional part did not depend on y.

Fig. 4. Dynamics of the PR(q) set

Derivation of new clauses.
Note that redundancy of the
PR-clauses in subspace y =
1 was proved without adding
any new clauses. On the other
hand, proving redundancy of
PR-clauses in subspace y = 0
required derivation of clauses
C7 = x1 and C8 = y. For
instance, clause C7 was gen-
erated at node (y = 0, x1 = 1)

by resolving C3 and C4. Clause C7 was temporarily added to
F to make PR-clauses C3 and C4 redundant at the node above.
However, C7 was removed from formula F after derivation

of clause C8 because the former is subsumed by the latter in
subspace y = 0. This is similar to conflict clause generation in
SAT-solvers where the intermediate resolvents are discarded.

Derivation of atomic D-sequents. S1, . . . , S5 are the atomic
D-sequents derived by DS-PQE. They record trivial cases
of redundancy. (Due to the simplicity of this example, the
conditional part of all atomic D-sequents has only assignment
to y i.e., the free variable. In general, however, the conditional
part of a D-sequent also contains assignments to quantified
variables.) There are three kinds of atomic D-sequents. D-
sequents of the first kind state redundancy of clauses satisfied
in a subspace. For instance, D-sequent S1 states redundancy
of clause C2 satisfied by assignment y = 0. D-sequents of the
second kind record the fact that a clause is redundant because
some other clause is falsified in the current subspace. For
instance, D-sequent S2 states that C1 is redundant because
clause C8 = y is falsified in subspace y = 0. D-sequents
of the third kind record the fact that a clause is redundant
in a subspace because it is blocked at a variable v. That is
this clause cannot be resolved on v. For example, D-sequent
S4 states redundancy of C5 that cannot be resolved on x4 in
subspace (y = 1, x3 = 1). Clause C5 is resolvable on x4 only
with C6 but C6 is satisfied by assignment y = 1.

Computation of the set of PR-clauses. The original set of
PR-clauses is equal to the the initial set of X-clauses of F .
Denote this set as PRinit . In our example, PRinit = {C1, C2}.
There are two situations where PR(q) is extended. The first
situation occurs when a parent clause of a new resolvent is in
PR(q) and this resolvent is an X-clause. Then this resolvent
is added to PR(q) . An example of that is clause C7 = x1

obtained by resolving PR-clauses C3 and C4.
The second situation occurs when a PR-clause becomes unit.

Suppose a PR-clause C is unit at node q, v is the unassigned
variable of C and v ∈ X . DS-PQE first makes the assignment
falsifying C. Suppose that this is assignment v = 0. Note that
all PR-clauses but C itself are obviously redundant at node
q ∪(v = 0). DS-PQE backtracks and explores the branch v =
1 where clause C is satisfied. At this point DS-PQE extends
the set PR(q∪ (v = 1)) by adding every clause of F ∧G that
a) has literal v; b) is not satisfied; c) is not already in PR(q).

The extension of the set of PR-clauses above is done
to guarantee that clause C will be proved redundant when
backtracking off the node q. Let us consider the two possible
cases. The first case is that formula F ∧G is unsatisfiable in
branch v = 1. Then extension of the set of PR-clauses above
guarantees that a clause falsified by q∪(v = 1) will be derived
to make the new PR-clauses redundant. Most importantly, this
clause will be resolved with C on v to produce a clause
rendering C redundant in subspace q. The second case is
that formula F ∧ G is satisfiable in branch v = 0. Then
the redundancy of the clauses with literal v will be proved
without derivation of a clause falsified by q ∪ (v = 1). When
backtracking to node q, clause C will be blocked at variable v
and hence redundant. Note that extension of the set PR(q) is
temporary. When DS-PQE backtracks past node q, the clauses
that became PR-clauses there lose their PR-status.



Let us get back to our example. The first case above occurs
at node y = 0 where PR-clause C1 becomes unit. DS-
PQE falsifies C1 in branch x1 = 0, backtracks and explores
branch x1 = 1. In this branch, clauses C3, C4 of G are made
PR-clauses. This branch is unsatisfiable. Making C3,C4 PR-
clauses forces DS-PQE to derive C7 = x1 that makes C3, C4

redundant. But the real goal of obtaining C7 is to resolve it
with C1 to produce clause C8 = y that makes C1 redundant.

The second case above occurs at node y = 1 where clause
C2 becomes unit. Clause C2 gets falsified in branch x3 = 0.
Then DS-PQE backtracks and explores branch x3 = 1. In
this branch, C5 of G becomes a new PR-clause as containing
literal x3. This branch is satisfiable and C5 is proved redundant
without adding new clauses. Clause C2 gets blocked at node
y = 1 and hence redundant.

Forming a solution to the PQE problem. The D-sequents de-
rived by DS-PQE at a node of the search tree are composable.
This means that the clauses that are redundant individually
are also redundant together. For example, on returning to the
root node, D-sequents S6 and S7 equal to ∅ → {C1} and
∅ → {C2} respectively are derived. The composability of S6

and S7 means that D-sequent ∅ → {C1, C2} holds as well. The
only new clause added to F is C8 = y (clause C7 was added
temporarily). After dropping the X-clauses C1, C2 from F as
proved redundant one concludes that y∧∃X[G] ≡ ∃X[F ∧G]
and F ∗ = y is a solution to the PQE problem.

V. BASIC DEFINITIONS

In this section, we give relevant definitions.
Definition 1: An ∃CNF formula is a formula of the

form ∃X[F ] where F is a Boolean CNF formula, and X is a
set of Boolean variables. Let q be an assignment, F be a CNF
formula, and C be a clause. Vars(q) denotes the variables
assigned in q; Vars(F ) denotes the set of variables of F ;
Vars(C) denotes the variables of C; and Vars(∃X[F ]) =
Vars(F ) \X .

We consider true and false as a special kind of clauses.
Definition 2: Let C be a clause, H be a CNF formula, and

q be an assignment such that Vars(q) ⊆ Vars(H). Denote by
Cq the clause equal to true if C is satisfied by q; otherwise Cq

is the clause obtained from C by removing all literals falsified
by q. Hq denotes the formula obtained from H by replacing
every clause C of H with Cq . In this paper, we assume that
clause Cq equal to true remains in Hq . We treat such a clause
as redundant in Hq . Let ∃X[H] be an ∃CNF and y be an
assignment to Vars(H) \X . Then (∃X[H])y = ∃X[Hy].

Definition 3: Let S,Q be ∃CNF formulas. We say that S,Q
are equivalent, written S ≡ Q, if for all assignments, y, such
that Vars(y) ⊇ (Vars(S) ∪ Vars(Q)), we have Sy = Qy .
Notice that Sy and Qy have no free variables, so by Sy = Qy

we mean semantic equivalence.

Definition 4: The Quantifier Elimination (QE) problem
for ∃CNF formula ∃X[H] is to find a CNF formula H∗ such
that H∗ ≡ ∃X[H]. The Partial QE (PQE) problem for
∃CNF formula ∃X[F ∧G] is to find a CNF formula F ∗ such
that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G].

Definition 5: Let X be a set of Boolean variables, H be
a CNF formula and R be a subset of X-clauses of H . The
clauses of R are redundant in CNF formula H if H ≡ (H \
R). The clauses of R are redundant in ∃CNF formula ∃X[H]
if ∃X[H] ≡ ∃X[H \ R]. Note that H ≡ (H \ R) implies
∃X[H] ≡ ∃X[H \R] but the opposite is not true.

VI. DEPENDENCY SEQUENTS

In this section, we recall clause Dependency sequents (D-
sequents) introduced in [9], operation join and the notion of
composability. In this paper, we will refer to clause D-sequents
as just D-sequents.

Definition 6: Let ∃X[H] be an ∃CNF formula. Let s
be an assignment to Vars(H) and R be a subset of X-
clauses of H . A dependency sequent (D-sequent) has the
form (∃X[H], s) → R. It states that the clauses of Rs are
redundant in ∃X[Hs]. Alternatively, we will say that the
clauses of R are redundant in ∃X[H] in subspace s (and in
any other subspace q such that s ⊆ q).

Definition 7: Let s′ and s′′ be assignments in which exactly
one variable v ∈ Vars(s′) ∩ Vars(s′′) is assigned different
values. The assignment s consisting of all the assignments of
s′ and s′′ but those to v is called the resolvent of s′,s′′ on v.
Assignments s′,s′′ are called resolvable on v.

Definition 8: Let ∃X[H] be an ∃CNF formula. Let D-
sequents (∃X[H], s′) → R and (∃X[H], s′′) → R hold. We
refer to these D-sequents as parent ones. Let s′, s′′ be
resolvable on v ∈ Vars(H) and s be the resolvent of s′ and
s′′. We will say that D-sequent (∃X[H], s) → R is obtained
by joining the parents at v. The validity of this D-sequent is
implied by that of its parents [9].

Definition 9: Let s′ and s′′ be assignments to a set of
variables Z. We will say that s′ and s′′ are compatible if
every variable of Vars(s′) ∩ Vars(s′′) is assigned the same
value in s′ and s′′.

Definition 10: Let (∃X[H], s′) → R′ and
(∃X[H], s′′) → R′′ be two D-sequents where s′ and
s′′ are compatible assignments to Vars(H). We will
call these D-sequents composable if the D-sequent
(∃X[H], s′ ∪ s′′) → R′ ∪R′′ holds.

VII. ALGORITHM

In this section, we describe a PQE algorithm called DS-
PQE where DS stands for Dependency Sequents. DS-PQE is
based on our QE algorithm DCDS described in [9]. In this
section, we will mostly focus on the features of DS-PQE that
differentiate it from DCDS. The algorithm description given in
the first version of this report [10] missed a case. We address
this case in Subsections VII-B and VII-C.

DS-PQE derives D-sequents (∃X[F ∧G], s) → {C} stat-
ing the redundancy of X-clause C in any subspace q
such that s ⊆ q. From now on, we will use a
short notation of D-sequents writing s → {C} instead of
(∃X[F ∧G], s) → {C}. We will assume that the parameter
∃X[F ∧G] missing in s → {C} is the current ∃CNF formula
(with all resolvents added to F ). One can omit ∃X[F ∧G]



// q is an assignment to Vars(F ∧G)
// Ω denotes a set of active D-sequents
// Φ denotes ∃X[F ∧G]
// W denotes PR(q)
// If DS PQE returns clause nil (respectively a non-nil clause),
// (F ∧G)q is satisfiable (respectively unsatisfiable)

DS PQE (Φ,W ,q,Ω){
1 if (∃ clause C ∈ F ∪G falsif. by q) {
2 Ω := atomic Dseqs1 (Ω, q, C);
3 return(Φ,Ω, C);}
4 Ω := atomic Dseqs2 (Φ, q,Ω);
5* if (every PR clause redund(W,Ω)) return(Φ,Ω,nil );

- - - - - - - - - - - -
6 v := pick variable(F ∧G, q,Ω);
7* (Φ,Ω, Cb) :=DS PQE(Φ,W, q ∪ (v = b),Ω);
8 Ωasym := Dseqs to be inactive(F,Ω, v);
9 if (Ωasym = ∅) return(Φ,Ω, Cb);
10 Ω := Ω \ Ωasym ;

11* if (impl assgn(v, b)) W ′ := newPRclauses(W,F ∧G, b);
12* else W ′ := ∅;
13* (Φ,Ω, C

b
) := DS PQE (Φ,W ∪W ′,q ∪ (v = b),Ω);

- - - - - - - - - - - - -
14** if ((Cb = nil ) and (C

b
6= nil )){

15** F := F ∧ C
b
;

16** Ω := discard dseqs(Ω, v);
17** return(Φ,Ω,nil );}

- - - - - - - - - - - - -
18 if ((Cb 6= nil ) and (C

b
6= nil )){

19 C := resolve clauses(Cb, Cb
, v);

20 F := F ∧ C;
21 Ω := atomic Dseqs1 (Ω, q, C);
22* if ((Cb ∈W ) or (C

b
∈W ))

23* W := W ∪ {C};
24 return(Φ,Ω, C);}
25 Ω := merge(Φ, q, v,Ωasym ,Ω, Cb, Cb

);
26 return(Φ,Ω,nil );}

Fig. 5. DS-PQE procedure

from D-sequents because (∃X[F ∧G], s) → {C} holds no
matter how many resolvent clauses are added to F [9]. We
will call D-sequent s → {C} active in subspace q if s ⊆ q.
The fact that s → {C} is active in subspace q means that C
is redundant in ∃X[F ∧G] in subspace q.

A. Input and output of DS-PQE

Recall that a PR-clause is an X-clause of F ∧G whose re-
dundancy needs to be proved in subspace q (see Section IV). A
description of DS-PQE is given in Figure 5. DS-PQE accepts
an ∃CNF formula ∃X[F ∧G] (denoted as Φ), an assignment
q to Vars(F ), the set of PR-clauses (denoted as W ) and a set
Ω of D-sequents active in subspace q stating redundancy of
some PR-clauses in ∃X[F ∧G] in subspace q.

Similarly to Section IV, we will assume that the resolvent
clauses are added to formula F while formula G remains
unchanged. DS-PQE returns a formula ∃X[F ∧G] modified
by resolvent clauses added to F (if any), a set Ω of D-sequents
active in subspace q that state redundancy of all PR-clauses
in ∃X[F ∧G] in subspace q and a clause C. If (F ∧G)q
is unsatisfiable then C is a clause of F ∧ G falsified by q.

Otherwise, C is equal to nil meaning that no clause implied
by F ∧G is falsified by q.

The active D-sequents derived by DS-PQE are com-
posable. That is if s1 → {C1}, . . . , sk → {Ck} are the
active D-sequents of subspace q, then the D-sequent
s∗ → {C1, . . . , Ck} holds where s∗ = s1 ∪ . . . ∪ sk and
s∗ ⊆ q. Like DCDS , DS-PQE achieves composability of D-
sequents by proving redundancy of PR-clauses in a particular
order (that can be different for different paths). This guarantees
that no circular reasoning is possible and hence the D-sequents
derived at a node of the search tree are composable.

A solution to the PQE problem in subspace q is obtained
by discarding the PR-clauses of subspace q (specified by W )
from the CNF formula F returned by DS-PQE. To solve the
original problem of taking F out of the scope of the quantifiers
in ∃X[F ∧G], one needs to call DS-PQE with q = ∅, Ω =
∅,W = PRinit . Recall that PRinit is the set of X-clauses of
the original formula F .

B. The big picture

DS-PQE consists of four parts separated in Figure 5 by the
dotted lines. In the first part (lines 1-5), DS-PQE builds atomic
D-sequents recording trivial cases of redundancy of X-clauses.
If all the PR-clauses are proved redundant in ∃X[F ∧G] in
subspace q, DS-PQE terminates at node q.

If some PR-clauses are not proved redundant yet, DS-
PQE enters the second part of the code (lines 6-13). First, DS-
PQE picks a branching variable v (line 6). Then it recursively
calls itself (line 7) starting the left branch of v by adding to q
assignment v = b, b ∈ {0, 1}. Once the left branch is finished,
DS-PQE explores the right branch v = b (line 13).

The third part of DS-PQE (lines 14-17) takes care of the
situation where
• the left branch is satisfiable
• the right branch is unsatisfiable
• assignment v = b was not derived from a unit clause

. (This situation was not mentioned in the first version of this
report [10].) In this case, DS-PQE simply
• adds to formula F clause Cb derived in the right branch

(and falsified by q ∪ (v = b)),
• discards D-sequents whose conditional part contains an

assignment to variable v (derived in the left and right
branches) and backtracks.

Note that after backtracking, value b is derived from Cb and
the third part of DS-PQE is not invoked again when branching
on variable v. The reason for such a behavior of DS-PQE is
explained in Subsection VII-C.

In the fourth part, DS-PQE merges the left and right
branches (lines 18-26). This merging results in proving all PR-
clauses redundant in ∃X[F ∧G] in subspace q. For every PR-
clause C proved redundant in subspace q, the set Ω contains
precisely one active D-sequent s → {C} where s ⊆ q. As
soon as C is proved redundant, it is marked and ignored until
DS-PQE enters a subspace q′ where s 6⊆ q′ i.e., a subspace
where D-sequent s → {C} becomes inactive. Then clause C



gets unmarked signaling that DS-PQE does not have a proof
of redundancy of C in subspace q′ yet.

C. New features of DS-PQE with respect to DCDS

In this paper, we omit the description of functions of
Figure 5 that operate identically to those of DCDS . What
these functions do can be understood from the example of
Section IV. If this is not enough, the detailed description of
these functions can be found in [9]. In this subsection, we
focus on the part of DS-PQE that is different from DCDS. The
lines of code of this part are marked with asterisks in Figure 5.
Lines 14-17 are marked with double asterisks to indicate that
they are not present in the first version of this report [10].

The main difference between DS-PQE and DCDS is that
at every node q of the search tree, DS-PQE maintains a set
PR(q) of PR-clauses. PR(q) contains all the X-clauses of
F and some X-clauses of G (if any). DS-PQE terminates its
work at node q when all the current PR-clauses are proved
redundant (line 5). In contrast to DS-PQE, DCDS terminates
at node q, when all X-clauses are proved redundant. Line 7
is marked because DS-PQE uses an additional parameter W
when recursively calling itself to start the left branch of node
q. Here W specifies the set of PR-clauses to prove redundant
in the left branch.

Lines 11-12 show how PR(q) is extended. As we discussed
in Section IV, this extension takes place when assignment v =
b satisfies a unit PR-clause C. In this case, the set W ′ of new
PR-clauses is computed. It consists of all the X-clauses that
a) contain the literal of v falsified by assignment v = b; b)
are not PR-clauses and c) are not satisfied. As we explained
in Section IV, this is done to facilitate proving redundancy of
clause C at node q. The set W ′ is added to W before the
right branch is explored (line 13). Notice that the clauses of
W ′ have PR-status only in the subtree rooted at node q. Upon
return to node q from the right branch, the clauses of W ′ lose
their PR-status.

Lines 14-17 address the special situation described in Sub-
section VII-B: the left branch is satisfiable and clause Cb is
derived in the right branch, the latter being unsatisfiable. The
problem here is as follows. To prove redundancy of clause Cb,
one needs to show redundancy of clauses that can be resolved
with Cb on variable v. The redundancy of such clauses is
supposed to be proved in the left branch. However, the left
branch was examined when clause Cb was not in formula F .
So, DS-PQE could not compute the set of PR-clauses of the
left branch correctly. To solve this problem, DS-PQE simply
adds Cb to F and backtracks unassigning variable v. Note that
now assignment v = b can be derived from clause Cb. So DS-
PQE knows that it needs to prove redundancy of clauses that
can be resolved with Cb (line 11).

As we mentioned in Section IV, one more source of new
PR-clauses are resolvents (lines 22-23). Let v = b and v = b be
unsatisfiable branches and Cb and Cb be the clauses returned
by DS-PQE . If Cb or Cb is currently a PR-clause, the resolvent
C becomes a new PR-clause. One can think of a PR-clause
as supplied with a tag indicating the level up to which this

clause preserves its PR-status. If only one of the clauses Cb

and Cb is a PR-clause, then C inherits the tag of this clause.
If both parents have the PR-status, the resolvent inherits the
tag of the parent clause that preserves its PR-status longer.

D. Correctness of DS-PQE

The correctness of DS-PQE is proved similarly to that of
DCDS [9]. DS-PQE is complete because it examines a finite
search tree. Here is an informal explanation of why DS-PQE is
sound. First, the clauses added to F are produced by resolution
and so are correct in the sense they are implied by F ∧ G.
Second, the atomic D-sequents built by DS-PQE are correct.
Third, new D-sequents produced by operation join are correct.
Fourth, the D-sequents of individual clauses are composable.

So when DS-PQE returns to the root node of the search
tree, it derives the correct D-sequent (∃X[F ∧G], ∅)→ FX .
Here FX denotes the set of all X-clauses of F . Thus, by
removing the X-clauses from F one obtains formula F ∗ such
that ∃X[F ∗ ∧G] ≡ ∃X[F ∧G]. Since F ∗ does not depend on
variables of X it can be taken out of the scope of quantifiers.

VIII. BACKGROUND

QE has been studied by many researchers, due to its
important role in verification e.g., in model checking. QE
methods are typically based on BDDs [3], [4] or SAT [20],
[13], [22], [16], [7], [15], [17]. At the same time, we do
not know of research where the PQE problem was solved
or even formulated. Of course, identification and removal of
redundant clauses is often used in preprocessing procedures
of QBF-algorithms and SAT-solvers [6], [1]. However, these
procedures typically exploit only situations where clause re-
dundancies are obvious.

PQE is different from QE in at least two aspects. First, a
PQE-algorithm has to have a significant degree of “structure-
awareness”, since PQE is essentially based on the notion
of redundancy. So it is not clear, for example, if a BDD-
based algorithm would benefit from replacing QE with PQE.
This also applies to many SAT-based algorithms of QE. For
instance, in [8] we presented a QE algorithm called DDS
that was arguably more structure aware than its SAT-based
predecessors. DDS is based on the notion of D-sequents
defined in terms of variable redundancy. DDS makes quantified
variables redundant in subspaces and merges the results of
different branches. Despite its structure-awareness, it is hard
to adjust DDS to solving PQE: in PQE, one, in general, does
not eliminate quantified variables (only some clauses with
quantified variables are eliminated).

The second interesting aspect of PQE is as follows. QE can
be solved by a trivial albeit inefficient algorithm. Namely, to
find a quantifier-free formula equivalent to ∃X[H] one can
just resolve out all variables of X as it is done in the DP
procedure [5]. However, the PQE problem does not have a
counterpart of this algorithm i.e., PQE does no have a “trivial”
PQE-solver. Let C be a clause of H and v be a variable of
C. One can always make C redundant by adding to H all
resolvents of C with clauses of H on v [12], [21]. So one



can always “resolve out” any clause of a CNF formula. It
seems that one can take formula F out of the scope of the
quantifiers in ∃X[F ∧G] using the following procedure. Keep
resolving out clauses of F and their resolvents with G until
all non-redundant resolvents depend only on free variables.
Unfortunately, this procedure may loop i.e., a previously seen
set of clauses F ∧G may be reproduced later. DS-PQE does
not have this problem due to branching.

IX. EXPERIMENTAL RESULTS

Since we are not aware of another tool performing PQE,
in the experiments we focused on contrasting PQE and QE.
Namely, we compared DS-PQE with our QE algorithm called
DCDS [9]. The fact that DS-PQE and DCDS are close in terms
of implementation techniques is beneficial: any difference in
performance should be attributed to difference in algorithms
rather than implementations.

In the experiments, we used DS-PQE and DCDS for back-
ward model checking. We will refer to model checkers based
on DS-PQE and DCDS as MC-PQE and MC-QE respectively.
The difference between MC-PQE and MC-QE is as follows.
Let F (S′) and T (S, S′) specify a set of next-states and
transition relation respectively. The basic operation here is
to find the pre-image H(S) of F where H ≡ ∃S′[F ∧ T ].
So H is a solution to the QE problem. As we showed in
Subsection II-A, one can also find H just by taking F out
of the scope of the quantifiers in formula ∃S′[F ∧ T ]. MC-
QE computes H by making redundant all S′-clauses of F ∧T
while MC-PQE finds H by making redundant only the S′-
clauses of F .

Fig. 6. Performance of model checkers on
282 examples solved by MC-QE or MC-PQE

The current
implementations
of DCDS and
DS-PQE lack D-
sequent re-using: the
parent D-sequents
are discarded after a
join operation. We
believe that re-using
D-sequents should
boost performance like
clause recording in
SAT-solving. However,
when working on a

new version of DCDS we found out that re-using D-sequents
indiscriminately may lead to circular reasoning. We have
solved this problem theoretically and resumed our work on
the new version of DCDS . However, here we report the
results of implementations that do not re-use D-sequents.

We compared MC-PQE and MC-QE on the 758 benchmarks
of HWMCC-10 competition [23]. With the time limit of
2,000s, MC-QE and MC-PQE solved 258 and 279 benchmarks
respectively. On the set of 253 benchmarks solved by both
model checkers, MC-PQE was about 2 times faster (the
total time is 4,652s versus 8,528s). However, on the set of

TABLE I
Model checking results on some concrete examples

benchmark #lat- #gates #ite- bug MC- MC-

ches rati- QE PQE

ons (s.) (s.)
bj08amba3g62 32 9,825 4 no 241 38
kenflashp03 51 3,738 2 no 33 104
pdtvishuffman2 55 831 6 yes >2,000 296
pdtvisvsar05 82 2,097 4 no 1,368 7.7
pdtvisvsa16a01 188 6,162 2 no >2,000 17
texaspimainp12 239 7,987 4 no 807 580
texasparsesysp1 312 11,860 10 yes 39 25
pj2002 1,175 15,384 3 no 254 47
mentorbm1and 4,344 31,684 2 no 1.4 1.7

282 benchmarks solved by at least one model checker MC-
PQE was about 6 times faster (10,652s versus 60,528s). Here
we charged 2,000s, i.e., the time limit, for every unsolved
benchmark.

Figure 6 gives the performance of MC-QE and MC-PQE on
the 282 benchmarks solved by at least one model checker in
terms of the number of problems finished in a given amount
of time. Figure 6 shows that MC-PQE consistently outper-
formed MC-QE . Model checking results on some concrete
benchmarks are given in Table I. The column iterations show
the number of backward images computed by the algorithms
before finding a bug or reaching a fixed point.
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X. CONCLUSION

We introduced the Partial Quantifier Elimination problem
(PQE), a generalization of the Quantifier Elimination problem
(QE). We presented a PQE-algorithm based on the machinery
of D-sequents and gave experimental results showing that PQE
can be much more efficient than QE. Efficient PQE-solver may
lead to new methods of solving old problems like SAT-solving.
In addition, many verification problems can be formulated and
solved in terms of PQE rather than QE, a topic ripe for further
exploration.
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