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Abstract. This paper aims at improving symbolic model checking for
explicit state modeling languages, e.g., Promela, Dve and mcrl2. The
modular Pins architecture of LTSmin supports a notion of event local-
ity, by merely indicating for each event on which variables it depends.
However, one could distinguish four separate dependencies: read, may-
write, must-write and copy. In this paper, we introduce these notions in
a language-independent manner. In particular, models with arrays need
to distinguish overwriting and copying of values.

We also adapt the symbolic model checking algorithms to exploit the
refined dependency information. We have implemented refined depen-
dency matrices for Promela, Dve and mcrl2, in order to compare our
new algorithms to the original version of LTSmin. The results show that
the amount of successor computations and memory footprint are greatly
reduced. Finally, the optimal variable ordering is also affected by the
refined dependencies: We determined experimentally that variables with
a read dependency should occur at a higher BDD level than variables
with a write dependency.

1 Introduction

Model checking [11] is a technique to verify the correctness of systems. Often
these systems are made up of several processes running in parallel. Examining all
possible execution paths of the system is hard, because of the well known state
space explosion problem: because of the interleaving of the processes, the possible
number of states is exponential in the number of processes. Symbolic model
checking [6, 13] has proven to be very effective in dealing with that problem.
Symbolic here means storing sets of vectors and relations between vectors as
decision diagrams, such as Binary Decision Diagrams (BDDs) or Multi-Value
Decision Diagrams (MDDs). A well known symbolic model checker is nusmv [9],
where systems are specified in the SMV language, directly describing transition
relations.

We use the LTSmin toolset [4], which also provides a symbolic model checker,
but is different from nusmv in several ways. LTSmin provides a language inde-
pendent interface, called Pins, to communicate states and transitions, and learns
the partitioned transition relation on-the-fly, as in, e.g., [2,7]. New transitions are
learned through an explicit Next-state function, which is the language specific
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part of LTSmin. Currently the languages that have been implemented on top of
Pins include Promela [1], divine, mcrl2, and Uppaal. In [2] and [3], the Pins
interface and underlying symbolic core algorithms of LTSmin are described. An
overview of the architecture is in Figure 1.

In Pins, states are represented as fixed-length vectors of values. Transitions
are distinguished in separate disjunctive transition groups. A generalized defi-
nition of systems that is compatible with Pins is given in Section 2. Between
slots of the state vector and the transition groups there can be dependencies,
i.e., a transition group can be dependent on the value of a state variable for a
condition to be true, or a transition may change the value of a state variable.
The dependencies between transition groups and state slots are captured in a
dependency matrix, which can be determined by static analysis of the model.
Often it is the case that a transition group depends on a limited number of
slots, which is known as event locality. This is the basis of many optimisations in
symbolic model checking, as presented in, e.g., [5,8,10]. For symbolic state space
generation it is best when the dependency matrix is sparse, i.e., when transition
groups have a relatively local footprint, for the following reasons. First, a sparse
matrix means that the transition relations for the transition groups depend on
few variables and can be quite small. Also, because of the on-the-fly nature of
LTSmin, there will be fewer redundant calls to Next-state.

To further benefit from dependencies in the input models, in this paper we
refine the notion of dependency and distinguish three types of dependencies: read
dependence and two types of write dependence, must-write and may-write. To
illustrate read and write dependence, we use a simple system with three variables
〈x, y, z〉 and two transitions:

1 : x = 1 ∨ z = 0 → y := 1, x := 0

2 : y = 1 → z := 0, x := 1

a. Transitions

[ x y z

1 1 1 1

2 1 1 1

]

b. Dep. matrix

[x y z

1 1 0 1

2 0 1 0

]

c. Read matrix

[x y z

1 1 1 0

2 1 0 1

]

d. Write matrix

In b), the dependency matrix indicates no event locality, but if read and write
dependencies are considered separately, as in c) and d), then we see the transition
groups depend on most variables only for reading or only for writing. Separating
reads and writes helps in reducing the number of Next-state calls, the size of
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the transition relation, and the size of its symbolic representation. For instance,
when a transition group is not read dependent on variable y, then the previous
value of y can be discarded in computing the successors of a state.

However, it is not trivial to statically determine whether a transition group
writes to a state slot. In the case of dynamic addressing of variables, e.g., writing
a position in an array, it may be needed to mark an entire array as write de-
pendent, even if only one position is changed. This problem is resolved by using
two types of write dependence: may-write, which allows copying of values, and
must-write, which does not.

In [8], a similar distinction is made between types of dependence. The main
difference with this work is that we deal with dynamic variable addressing, both
in the definitions of dependency and in the symbolic algorithms, where we use a
special symbol in transition relations to mark that a variable should be copied.

The dependencies and the associated matrices are described in detail in
Section 3. There also the row subsumption in dependency matrices and vari-
able reordering are discussed. These two techniques improve the effect of the
read-write distinction. In Section 4, we provide an adapted symbolic reachabil-
ity algorithm that exploits the read and write dependencies.

We have benchmarked our work with the whole Beem database and many
Promela and mcrl2 models. There are many models that benefit from the
distinction between read and write dependencies, but also several that do not.
In Section 5, we highlight the results for six models. For mcrl2, performance
is improved, because many calls to Next-state can be avoided. The Next-
state function for mcrl2 is relatively slow, due to the term rewriter that was
introduced to provide very expressive datatypes. For Beem and Promela mod-
els, we find an improvement when a good variable ordering (a good reordering
strategy) is chosen.

This work is based on Meijer’s MSc thesis [14] and extends it with an extension
to the transition relation to support copying values, and an analysis of the effect
of variable ordering in the context of distinct read and write dependencies.

2 The Partioned Next-State Interface (Pins)

The starting point of our approach is a generalised model of systems, called
Partioned Next-State Interface (Pins), which allows supporting several modeling
languages within a single framework, without exposing language details to the
underlying algorithms.

In Pins, states are vectors of N values. We write 〈x1, . . . , xN 〉, or simply
x, for vector variables. Each slot of the vector has a unique identifier, which
is used in the language front ends to specify conditions and updates. Every
language module, furthermore, has a Next-state function, which computes the
successor of a state. This function is partitioned in K transition groups, such
that Next-state(x) =

⋃
1≤i≤K Next-statei(x). A model, available through

Pins, gives rise to a partitioned transition system, defined as follows.

Definition 1. A Partitioned Transition System (PTS) [3] is a structure P =
〈〈S1, . . . , SN 〉, 〈→1, . . . ,→K〉, 〈s01, . . . , s0N 〉〉. The tuple 〈S1, . . . , SN 〉 defines the
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set of states SP = S1 × . . . × SN , i.e., we assume that the set of states is
a Cartesian product. The transition groups →i⊆ SP × SP (for 1 ≤ i ≤ K)

define the transition relation →P=
⋃K

i=1 →i. The initial state is s0 = 〈s01, . . . ,
s0N 〉 ∈ SP . We write s →i t when (s, t) ∈→i for some 1 ≤ i ≤ K. Also we write
s →P t when (s, t) ∈→P .

The partitioning of the state vector into slots and of the transition relations
into transition groups, enables to specify the dependencies between the two, i.e.,
which transition groups touch which slots of the vector. The definition of these
dependencies will be given in Section 3. Here we give an abstract description
of how the variables in the state vector are read from and written to by the
transition groups.

For every language module this is different, but there is a common pattern.
In all of the supported languages, the specification of a transition is in the shape
Next-statei(x) = cond i → actioni . updatei(x) .

The expression cond i is the condition that guards an action and may read
variables from x. The symbol ‘actioni’ specifies the name of the action that
is performed, i.e., the transition label. The expression updatei(x) defines the
state after the action. The update is a parallel assignment to the variables in
the vector. However, these variables may be defined dynamically, e.g., they may
be references to a location in an array.

Example 1. Given a state vector with variables 〈c, a0, a1, i〉, valid assignments
would be, e.g., c := c+ 1, ai := a1−i and i := c.

We define the state updates more formally, abstracting away from the specific
input languages of LTSmin.

Definition 2 (State Update Specification). The syntax of a state update
of transition group i is as follows: σi ::= ci → ai . 〈vi,1 := ti,1, . . . , vi,Li

:= ti,Li〉,
where Li ≤ N and ci, vi,j, and ti,j are expressions over x1, . . . , xN . The condi-
tions ci are Boolean expressions and the left hand sides vi,j evaluate to variables
in {x1, . . . , xN}. The semantics of this state update is defined as the successor
states after applying the update:

s →i t ⇐⇒ �ci�s ∧ t = s[�vi,1�s := �ti,1�s, . . . , �vi,Li�s := �ti,Li�s] .

A State Update Specification (SUS) is a triple U =
〈〈x1, . . . , xN 〉 , {σ1, . . . , σK} ,

s0
〉
, containing a vector of state variables xj for 1 ≤ j ≤ N , a set of state up-

dates σi with 1 ≤ i ≤ K, and an initial state s0.

Example 2 (1-safe Petri net). An example model is the Petri net in Figure 2,
of which a specification is given in Listing 1.1. The behavior of this 1-safe Petri
net is as follows. Initially, there is only one token in p0. If transition t0 fires
then the token is moved from place p0 to both p1 and p3. Transitions t1..4
move the tokens between places p1..4 independently. If the token is in both p2
and p4 then transition t5 can fire to move the token to p0. There are 5 reach-
able states for this Petri net. With booleans represented as 0, 1, the states are:
{〈1, 0, 0, 0, 0〉 , 〈0, 1, 0, 1, 0〉 , 〈0, 0, 1, 1, 0〉 , 〈0, 1, 0, 0, 1〉 , 〈0, 0, 1, 0, 1〉}.
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Fig. 2. Example 1-safe Petri net

Listing 1.1. State Update Specification

(sus) for a 1-safe Petri net

1 init 〈true, false, false, false, false〉
2 sus 〈p0, p1, p2, p3, p4 ∈ B〉 =

〈

3 p0 →
4 t0. 〈p0 := false, p1 := true, p3 := true〉,
5 p1 →
6 t1. 〈p1 := false, p2 := true〉,
7 p2 →
8 t2. 〈p1 := true, p2 := false〉,
9 p3 →

10 t3. 〈p3 := false, p4 := true〉,
11 p4 →
12 t4. 〈p3 := true, p4 := false〉,
13 (p2 ∧ p4) →
14 t5. 〈p0 := true, p2 := false, p4 := false〉〉

3 State Slot Dependencies

We exploit the notion of event locality by statically (a priori, before exploring any
states) approximating dependencies between transition groups and state slots.
We distinguish three types of dependencies: read dependence (whether the value
of a state slot influences transitions),must-write dependence (whether a state slot
is written to), andmay-write dependence (whether a state slot may be written to,
depending on the value of some other state slot). We provide formal definitions
for the dependencies and dependency matrices for state update specifications.

Definition 3 (Read Independence). Given a Partitioned Transition System
(pts) P =

〈
SP ,→P , s0

〉
, transition group i is read independent on state slot

j if: for all s, t ∈ SP : whenever 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN〉, it
holds that

– either always (sj = tj)∧∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i 〈t1, . . . , rj , . . . , tN 〉;
– or ∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉,

i.e., the values tk for k 
= j do not depend on the value of slot j and either the value
of state slot j is always copied, or always the value tj is written, regardless of the
value of sj. In both cases the specific value of sj is not relevant in transition group i.

Definition 4 (Read Dependency Matrix). For a pts P, the Read Depen-

dency Matrix (RDM) is a K × N matrix RDM (P) = RMP
K×N ∈ {0, 1}K×N

such that (RM i,j = 0)⇒ transition group i is read independent on state slot j.
For a State Update Specification ( sus) U , the read dependency matrix RDM (U)
is defined as RM U

K×N with:

RM U
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if (xj occurs in ci); or

if ∃1≤k≤Li : (xj occurs in ti,k) ∧ (vi,k 
= xj ∨ ti,j 
= xj); or

if ∃1≤k≤Li : (xj occurs in vi,k) ∧ (vi,k 
= xj);

0 otherwise.

(a)

(b)

(c)

(d)
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In case (a), the condition ci depends on xj . In case (b), the right hand side of
the update depends on xj , but the assignment is not merely a copy. In case (c),
variable xj is used to dynamically determine a state slot for an assignment, but
xj is not directly used as left hand side, as in, e.g., the assignment axj := 1. In
that case, xj is marked as read dependent, because it influences how the state
vector is updated. In all other cases, xj is read independent.

We say that a transition group is must-write dependent for variable x, if it
modifies x definitely, i.e. by a static assignment. For instance, the assignment
x := 2y is must-write dependent for variable x, because the right-hand side does
not depend on x. The assignment x := 2x is must-write dependent on variable
x because, independent of any other variables, it can modify the value of x.
However, the assignment xi := 3 is not must-write dependent on variable x0,
because for i = 1, the value of x0 is never modified.

Definition 5 (Must-Write Dependency Matrix). For a pts P, the Must-
write Dependency Matrix (WDM) is a K ×N matrix WDM (P) = WMP

K×N ∈
{0, 1}K×N

such that (WM i,j = 1)⇒ transition group i is must-write dependent
on state slot j.
For a sus U , the must-write dependency matrix WDM (U) is defined as WM U

K×N

with:

WM U
i,j =

{
1 if ∃1≤k≤Li : (vi,k = xj) ∧ (vi,k 
= ti,k)

0 otherwise.

(a)

(b)

In case (a), xj is the left hand side of an assignment vi,k := ti,k. If the right
hand side ti,k is the same, there is no must-write dependency, but instead the
value is copied. If they are different, xj is marked as must-write dependent. E.g.,
the assignment x := x + 1, x is marked both as must-write dependent and as
read dependent.

Consider the case of an array assignment ai := c. Then a0 cannot be marked
as must-write dependent. Still, we know that a0 is either copied, or replaced by
a constant. To exploit this knowledge for dynamic assignments, we introduce a
third notion of independence.

3.1 The May-Write Dependency

In the case of assignment to a dynamically defined variable, using only read and
must-write dependencies is not optimal, as is explained in the following example.

Example 3. Suppose we extend the specification of the 1-safe Petri net specifica-
tion in Listing 1.1 by adding some data. We extend the state vector with variables
b0, b1 ∈ B, i ∈ {0, 1}. The initial state is extended with the values 〈false, false, 0〉.
We add two state updates: “p1→w . 〈i := 1〉” and “true→W . 〈bi := true〉”. For
the second assignment it cannot be statically determined if b0 or b1 is written to.
This depends on the value of i. Therefore, b0 and b1 are marked as must-write
independent. However, one of both may be changed, so our definition is not
sufficient in this case. Changing it in a way that marks both b0 and b1 is safe,
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but requires that both are also marked as read dependent: one of the variables
is copied and requires a read, but it cannot a priori be determined which one.
Ideally, both variables are marked as write dependent, while allowing to indicate
which variables are copied. Then they do not need to be read dependent.

To address the problem of dynamic resolution of variables, we introduce a
weaker notion of write dependence: may-write independence.

Definition 6 (May-Write Independence). Given a pts P =
〈
SP ,→P , s0

〉
,

transition group i is may-write independent on state slot j if: ∀s, t ∈ SP ,
〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj, . . . , tN 〉 ⇒ (sj = tj), i.e., state slot j is never
modified in transition group i.

Thus, if transition group i is may-write-dependent on state slot j, then there
are some states s, t and a transition s →i t, where the value in state slot j is
changed: sj 
= tj .

Definition 7 (May-Write Dependency Matrix). For a pts P, the May-
write Dependency Matrix (MDM) is a K ×N matrix MDM (P) = MMP

K×N ∈
{0, 1}K×N

such that (MM i,j = 0)⇒ transition group i is may-write independent
on state slot j.
For a sus U , the may-write dependency matrix MDM (U) is defined as MM U

K×N

with:

MM U
i,j =

{
0 if ∀1 ≤ k ≤ Li : ∀s : (�vi,k�s = xj)⇒ (vi,k = ti,k)

1 otherwise.

(a)

(b)

In case (a), if vi,k evaluates to xj for some state s, i.e., an assignment to xj is
possible, then the assignment is a direct copy, i.e., the left hand side and right
hand side are syntactically the same: vi,k = ti,k. This is determined statically by
the language front-end before generation.

Example 4. In the extended Petri net example (Example 3), transition W is
may-write dependent on both variables b0 and b1, because there exists both a
state in which i = 0 and a state in which i = 1. Hence, both variables can be
written to by the assignment bi := true.

Definition 8 (Combined Dependency Matrix). For a pts P, the depen-

dency matrix (DM) is a K×N matrix DMP
K×N ∈ {0, 1}K×N

with the elements

DMP
i,j as specified in Table 1. Note that WM i,j ⇒MM i,j.

Example 5. The combined dependency matrix for the extended 1-safe Petri net
(Example 3) is shown in Table 2.

Note that here we say a transition group has a may-write dependency on
a state slot if it is not must-write dependent. This differs from the definition
of may-write independence. The definition of must-write dependence may seem
superfluous, but it is necessary for language front-ends and symbolic back-ends
which do not support copying values. So we have to take must-write depen-
dence into account when applying transformations on the combined dependency
matrix.



Read, Write and Copy Dependencies for Symbolic Model Checking 211

Table 1. Combined dm DMP

DMP
i,j RMP

i,j WMP
i,j MMP

i,j

− (copy) 0 0 0

r (read) 1 0 0

W (may-write) 0 0 1

w (must-write) 0 1 1

+ (read/write) 1 {0, 1} 1

Table 2. dm for the Petri net

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 p1 p2 p3 p4 i b0 b1

t0 + w − w − − − −
t1 − + w − − − − −
t2 − w + − − − − −
t3 − − − + w − − −
t4 − − − w + − − −
w − r − − − w − −
W − − − − − r W W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2 Optimisation Operations on the Dependency Matrix

Combining transition groups and reordering variables are two techniques to en-
hance symbolic state space exploration. We adapted these techniques to benefit
from read and write dependencies.

Definition 9 (Row Subsumption). For matrix rows m,m′ ∈ MN of length
N , the row subsumption operator � : MN ×MN → B is defined as follows:

m � m′ ⇐⇒ ∀1≤j≤N : mj ≤ m′
j .

+

r W

w−
Fig. 3. Partial order on
dependencies ≤

If a row mi is subsumed by row mk, (mi �
mk), the corresponding transition groups i and k can
be merged and the combined matrix row becomes
the larger one, mk. In general, any two rows could
be merged by taking their pointwise least upperbound.
The result is that there are fewer transition groups
and less applications of a transition relation, but the
transition relations will be larger. For this to work, we
need a correct definition of ≤, i.e., a partial order on dependencies, which is given
in Figure 3. Note that may-write dependency (W) may subsume a copy depen-
dency (− ), but must-write dependency (w) does not, because only W supports
copying values.

Variable reordering is widely used to reduce the size of decision diagrams
[16]. When using separate read and write dependencies, the order of read and
write variables needs to be taken into account. In general it is a good idea to
move variables that are read before variables that are written. Algorithm 1 uses
the heuristic that every read which occurs after a write is increasingly expensive.
Algorithm 2 shows a naive way to compute the cost of every column permutation
of the Dependency Matrix (dm). The algorithm will choose the matrix with the
lowest cost. Naturally, trying every permutation is exponentially expensive in
terms of number of columns. LTSmin implements more advanced column swap
algorithms, for instance based on simulated annealing from [17]).

The dependency matrices have been implemented for the mcrl2, Dve and
Promela input languages. For mcrl2, may-write dependencies are not needed,
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Algorithm 1. cost
Input: DM

1 cost ← 0;
2 for 0 ≤ i < K do
3 writes ← 0;
4 for 0 ≤ j < N do
5 if DMi,j ∈ {W, w} then

writes ← writes + 1;
6 if DMi,j = r then

cost ← cost + writes;

7 end

8 end
9 return cost;

Algorithm 2. dm-optimize
Input: DM

1 best ← DM;
2 for 0 ≤ i < N do
3 for i < j < N do
4 test ← swap-columns(DM, i, j);
5 if cost(test) < cost(best) then

best ← test;

6 end

7 end
8 return best;

because assignment to dynamic variables is not supported in the language. Still,
may-write dependencies can arise by row subsumption.

4 Symbolic Reachability Analysis

To allow symbolic reachability analysis with read, write and copy dependencies
we provide three definitions. The first contains projections on dependency matri-
ces. Secondly, we provide a definition of the restrictedNext-state function from
read-projected states to their write-projected successors according to transition
group→i, as it is used in Pins for on-the-fly reachability analysis. This technique
is language independent, but depends essentially on the Pins-architecture, based
on state vectors, disjunctive transition partitioning and read and write depen-
dency matrices. Lastly, we provide a symbolic definition of Next that formalizes
the transition relation and the application of the transition relation on a set of
states.

Notation. For convenience, we introduce the function ind , the column indices of
the cells that contain a ‘1’ in row Mi: ind(Mi) = {j | 1 ≤ j ≤ |Mi| ∧Mi,j = 1}.
Given a vector s and a set of indices I, the notation (sj)j∈I is used to represent
the subvector (sĪ1 , . . . , sĪ�) of length � = |I|, where Ī is the sorted list of elements
from I.

Definition 10 (Projections). For any vector set S =
∏

1≤j≤N Sj, transition

group 1 ≤ i ≤ K and K × N matrix M , we define the projection πM
i : S →∏

j∈ind(Mi)
Sj as πM

i (x) = (xj)j∈ind(Mi), i.e., the subvector of x that contains

the elements at indices in ind(Mi), the indices that are marked in row i of matrix
M . The projection function is extended to apply to sets in a straightforward way:
πM
i (S) =

{
πM
i (x) | x ∈ S

}
. We also write πr

i for πRM
i and πW

i for πMM
i .

Using these read and write projections, we can define how the read and write
dependency matrices can be used to compute the successor states for a transition
group, using only the dependent variables. We define the function Next-statep

i

that takes as input a read projected vector, and computes for transition group i
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the set of may-write projected successor vectors. The input read projected vector
may match a set of input states, and each of the output projected successor
vectors may represent a set of successor states. In the case a variable is may-
write dependent, but not changed, the symbol � is used to mark that the variable
should be copied from the input vector. This can occur, e.g., in the case an entire
array a1..10 is marked may-write dependent, because of an assignment az := e.
If z = 5, the position a5 is written to and all positions aj with j 
= 5 are marked
with �. We use S�

j for Sj ∪ {�} and S�
P for the set S�

1 × · · · × S�
N .

Definition 11 (Partitioned Next-State Function). Next-statep
i : π

r
i (SP)

→ ℘(πW
i (S

�
P )). Given a read projected state (sj)j∈ind(RM i),

Next-statep
i ((sj)j∈ind(RM i)) =

{
πW
i (t) |

∃s′, t′, t ∈ SP : πr
i (s

′) = (sj)j∈ind(RM i) ∧ s′ →i t
′ ∧

∀1≤j≤N : tj =

⎧⎨
⎩� if (j /∈ ind(MM i) ∨ sj = tj),

t′j otherwise

}
.

The result vectors (tj)j∈ind(MM i), combined with the input vectors (sj)j∈ind(RM i)

are stored in a symbolic transition relation ↪→p
i .

Definition 12 (Next). Wedefine the functionNext : ℘(SP)×(πr(SP)×πW(S�
P)

→ B) × MN × MN → ℘(SP), which applies a partial transition relation to a set
of states, as follows. Given a set S, a partial transition relation ↪→p, a read matrix
row r and a may-write matrix row w,

Next(S, ↪→p, r,w) =
{

y ∈ SP | ∃x ∈ S, z ∈ S�
P : ↪→p(πr(x), πw(z)) ∧

∧
j∈ind(w)

(
yj =

⎧⎨
⎩xj if zj = �,
zj otherwise

)
∧

∧
j /∈ind(w)

(yj = zj)
}

.

The symbolic reachability algorithm that uses the functions Next-state and
Next is in Algorithm 3. The algorithm is an extension of the symbolic reacha-
bility algorithm in [2, Table 6].

Variable R maintains the set of reachable states so far, while L stores the
current level. After initialisation (lines 1–6), the next level N will be continu-
ously computed and added, until the current level is empty (lines 7–15). In each
iteration, first the new transitions must be learned (Algorithm 4). The next level
is computed by calling Next for each transition group (line 11).

Our extension includes three subtle modifications compared to [2, Table 6],
when growing the transition relations on-the-fly (Algorithm 4). First, the state
is read-projected in line 2. The benefit being that fewer calls to Next-state
are needed. Secondly, the tuples added to the partial transition relation in line 4
may contain the special value �. This allows dynamic assignments to be resolved
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Algorithm 3. Reach-BFS-Prev

Input : s0 ∈ SP ,K ∈ N,RM ,MM
Output: The set of reachable states R

1 R ← {s0};
2 L ← R;
3 for 1 ≤ i ≤ K do
4 Rp

i ← ∅;
5 ↪→p

i ← ∅;

6 end
7 while L 
= ∅ do
8 Learn-Trans();
9 N ← ∅;

10 for 1 ≤ i ≤ K do
11 N ← N ∪ Next(L, ↪→p

i ,RM i,MM i);
12 end
13 L ← N \ R;
14 R ← R ∪ N
15 end
16 return R

Algorithm 4. Learn-Trans

Output: Extends ↪→p
i with new

transitions on-the-fly
1 for 1 ≤ i ≤ K do
2 Lp ← πr

i (L);
3 for sp ∈ Lp \ Rp

i do
4 ↪→p

i ← ↪→p
i ∪ {〈sp, dp〉 |

5 dp ∈ Next-statei(s
p)};

6 end
7 Rp

i ← Rp
i ∪ Lp;

8 end

0 1

0 1 0

0
1 0

1 0

p0

p1

p3

0 1

p0

πt0(S) πr
t0(S)

Fig. 4. Projection without and
with read-separation for Ex. 2

efficiently at a lower (symbolic) level. Thirdly,
the transition relation is applied using both
the read and the may-write dependency ma-
trices (line 11). That way, fewer levels of the
underlying decision diagrams are affected.

Figure 4 clearly shows the difference be-
tween using the previously used projections
(to the left) and using read-projections (to
the right). Both can be used to compute successors for the states in Example 2,
but when using read-projections, the function →i is applied to only one of the
four states with p0 = 0, instead of to all.

4.1 Implementation

To investigate the effects of separating dependencies, we have implemented the
transition relation and its application from Definition 12 in LTSmin’s native
List Decision Diagram (ldd) library. An ldd is a form of Multi-way Decision
Diagram mdd which was initially described in [2, Sect. 5]. The definition is as
follows.

Definition 13 (List Decision Diagram). A List Decision Diagram (LDD) is
a Directed A-cyclic Graph (DAG) with three types of nodes:

– {ε}, which encodes true and has no successors,
– ∅, which encodes false and has no successors,
– 〈v, down , right〉, a tuple with label v and two successors: down and right .

The semantics �s� of an ldd node s is a set of vectors, as follows:

�{ε}� = {ε} , �∅� = ∅, �〈v, down , right〉� = {vw | w ∈ �down�} ∪ �right�.
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Algorithm 5. LDD-Next
Input: ldd nodes s, ↪→p, r,w and level l ∈ N

1 if s = ∅ ∨ ↪→p = ∅ then return ∅ ;
2 if |r| = 0 ∧ |w| = 0 then return s ;
3 if s = {ε} ∨ ↪→p = {ε} then error ;
4 if r0 = l ∧ w0 = l then // Read and write dependent
5 if ↪→p

v < sv then return LDD-Next(s, ↪→p
r , r,w, l) ;

6 else if ↪→p
v > sv then return LDD-Next(sr, ↪→p, r,w, l) ;

7 else return LDD-Write(s, ↪→p
d, rd,w, l) ∪ LDD-Next(sr, ↪→p

r , r,w, l) ;

8 else if r0 = l then // Only read dependent
9 if ↪→p

v < sv then return LDD-Next(s, ↪→p
r , r,w, l) ;

10 else if ↪→p
v > sv then return LDD-Next(sr, ↪→p, r,w, l) ;

11 else return
〈
sv,LDD-Next(sd, ↪→p

d
, rd,w, l + 1),LDD-Next(sr, ↪→p

r , r,w, l)
〉
;

12 else if w0 = l then // Must-write or may-write dependent
13 if ↪→p

v = � then return LDD-Copy(s, ↪→p
d, r,wd, l) ∪ LDD-Write(s, ↪→p

r , r,w, l) ;

14 else return LDD-Write(s, ↪→p, r,w, l) ∪ LDD-Write(sr, ↪→p, r,w, l) ;

15 else return LDD-Copy(s, ↪→p, r,w, l) ; // Copy

Algorithm 6. LDD-Write
Input: ldd nodes s, ↪→p, r,w and l ∈ N

1 if ↪→p = ∅ then return ∅ ;

2 return
〈
↪→p

v,

LDD-Next(sd, ↪→p
d, r,wd, l + 1),∅

〉

∪ LDD-Write(s, ↪→p
r , r,w, l)

Algorithm 7. LDD-Copy
Input: ldd nodes s, ↪→p, r,w and l ∈ N

1 if s = ∅ then return ∅ ;

2 return
〈
sv,

LDD-Next(sd, ↪→p, r,w, l + 1),
LDD-Copy(sr, ↪→p, r,w, l)

〉

For some node n = 〈v, down , right〉, we use nv, nd and nr to denote its elements
v, down and right , respectively.

We assume (and enforce) in the implementation that the sequence of values in a
level is ordered from small to large. E.g., 〈0, . . . , 〈1, . . . ,∅〉〉 is a valid node, but
〈1, . . . , 〈0, . . . ,∅〉〉 is not. We define � to always be smallest.

x0 :

x1 :

0

0

{ε}

1

1

∅

Fig. 5. {〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 ,
〈1, 1〉} as ldd

A single vector x = 〈x1, . . . , xN 〉 (or singleton
set {x}) can be represented as an ldd node as
〈x1, 〈x2, . . . ,∅〉,∅〉. Note that for vector x, en-
coded as ldd node x, the ldd node of the sub-
vector x1<j≤|x|, i.e., the vector x with the first
element removed, equals xd. An example ldd
is given in Figure 5. This ldd encodes the set
{〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 , 〈1, 1〉} (= {0, 1}×{0, 1}) with
two variables x0 and x1.

In the implemention of the application of the
transition relation Next in Def. 12, we use ldd’s
to encode the set SP , the relation ↪→p and the ma-
trix rows r and w. Here, SP is encoded as an ldd of depth N and ↪→p as an
ldd of depth |r| + |w|. The rows r and w are actually encoded as ldd repre-
sentations of the sorted vectors with the indices of dependent variables ind(r)
and ind(w), respectively. The algorithm using ldd’s, given in Algorithm 5, re-
cursively traverses the ldd’s level by level, maintaining a counter l to keep track
of the current level, initially 0.
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Lines 1–3 handle a few base cases. In the case the current level l (variable xl)
is both read and may-write dependent (lines 4–7), first a (read) value is matched
(sv and ↪→p

v) and then each value from the next level of the relation is written
using LDD-Write. The resulting node is united with all other values we may
need to write. If the level is read dependent only (lines 8–11), then we first find a
matching value and then create a new node with two recursive elements: down-
ward matching the other levels, and, to the right, other nodes on the current level
that may match the relation. If the level is must-write or may-write dependent
only (lines 12–14), then for each value in the set we create a new node, where we
either copy the value sv or write the value from the relation. If the level has no
read or write dependency (line 15), then a new node is created with the down
and right nodes computed recursively with LDD-Copy. LDD-Write writes
all values from the relation reachable on the current level. However, it needs to
unite all the nodes with these values because they may occur in the wrong order.
The unions are computed in the standard way for decision diagrams.

5 Results

To evaluate our work we have benchmarked with 266 Dve models from the
Beem database [15], 38 mcrl2 models, mostly from mcrl2’s distribution, and
60 Promela models from different sources1. To compare our results to both the
current version of LTSmin and the effect of variable orderings we implemented
the options w2W and W2+. These two options over-approximatemust-write to may-
write, and may-write to read and write, thus simulating the situation without
read-write separation. Every experiment is run three times in both setups to
determine the effect of our work. The machine we used has an Intel Xeon E5520
CPU, with 24 GB of memory. We have restricted the runtime of each experiment
to 30 minutes.

Overall, we see that the mcrl2 models benefit from read-write separation,
because of the reduced amount of Next-state calls. This is due to the fact
that a Next-state call for mcrl2 is rather time consuming because of the
term rewriting involved. The Dve and Promela front-ends run optimized C
code. For these languages, the overhead of many unnecessary Next-state calls
in the current version of LTSmin is less noticeable. We see however that the
runtime of Dve models is improved when we use a good variable ordering, which
reduces the number of symbolic operations. We have highlighted six interesting
experiments with relevant information in Table 4, of which a legend can be found
in Table 3. Of all experiments which have a run time longer than one second,
101 out of 167 are faster. With optimized dependency matrices, 125 out of 160
experiments are faster.

With Dve models we see speedups mainly when the amount of symbolic
(LDD) operations is reduced, such as in telephony.7. We were less successful
in this for anderson.6. However, the runtime for blocks.3 is greatly reduced.

1 Instructions to reproduce or obtain a copy of all models/results can be found at
http://pm.jmeijer.nl/32ae74f74e

http://pm.jmeijer.nl/32ae74f74e
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Table 3. Symbols used in Table 4

model name of the model
dm dependency matrix operations
rt average reachability time in seconds
mem average peak memory usage in kilo-

bytes
#NS number of Next-state calls
#LDD number of calls to LDD-Next (Alg. 5)
|R| number of nodes of the set of reachable

states
|π(R)| approx. number of nodes in the projec-

tions
|↪→| approx. number of nodes of the whole

transition relation

cs Column Sort, sorts columns
such that writes are put on a
diagonal

rs Row Sort, sorts rows such
that writes are put on a di-
agonal

cw Column sWap, minimizes
distance between columns
and puts reads before writes
heuristically (Algs. 1 and 2)

The anderson.6model has 18,206,917 states, 36 groups and 19 state slots. In this
model we see no speedup, because it is hard to find a good variable ordering.
The bad ordering results in more recursive LDD-Next calls which slows down
the reachability analysis. blocks.3 is a model where we obtained very good
results. The state space of this contains 695,418 states, there are 26 groups and
18 state slots. Because blocks.3 contains many may-write dependencies we are
able to greatly reduce the amount of Next-state calls. Furthermore the amount
of nodes in the node table is reduced significantly. Telephony.7.dve is a model
with 21,960,308 states, 24 state slots and 120 groups. Similar to anderson.6

we see a slow down when we use separated dependencies. This slow down is
the result of many more symbolic operations. However, opposed to anderson.6

we are able to slightly speed up the reachability analysis by transforming the
dependency matrix. We can reduce the amount of Next-state calls while only
slightly increasing the amount of recursive LDD-Next calls.

In the first two mcrl2 models (1394-fin and lift3-final) we can see that
the amount of reduced Next-state calls corresponds closely to the speedup
attained. The model 1394-fin has 188,596 states, 34 state slots and 1,069 tran-
sition groups. The second, lift3-final, has 4,312 states, 30 state slots and
60 transition groups. We obtained the most interesting result with the vasy

model, a 1-safe Petri net submitted to the Petri net mailing list in 2003 [12] by
Hubert Garavel. The model has 9.79 × 1021 states, 776 transition groups and
485 state slots. With our work we have managed to make reachability analysis
for this model tractable for LTSmin. Special about this model is the first transi-
tion, which removes the token from the initial place to several other places (like
in Figure 2). Without read-write separations, this required exponentially many
Next-state calls for this transition: ≤ 261 calls, because there are 61 dependent
state slots of boolean type. With our improvements it is identified that only one
state slot is read, resulting in only 21 Next-state calls.
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Table 4. Highlighted experiment results

model dm rt mem #NS #LDD |R| |π(R)| |↪→|
anderson.6.dve 25.4 439,076 7,464 64,034,383 50,120 2,442 2,064

anderson.6.dve 34.6 439,076 4,080 127,725,604 50,120 1,470 1,386

anderson.6.dve cs;rs;cw;rs 27.6 144,216 7,464 84,028,747 41,079 2,568 1,884

anderson.6.dve cs;rs;cw;rs 29.9 144,216 4,080 109,711,771 41,079 1,533 1,386

blocks.3.dve 31.0 239,293 6,559,927 69,695,086 39,522 375,603 269,996

blocks.3.dve 10.9 144,064 262,543 62,467,909 39,522 12,314 1,604

blocks.3.dve cs;rs;cw;rs 25.7 280,344 6,559,927 25,021,658 49,685 464,916 325,763

blocks.3.dve cs;rs;cw;rs 4.6 144,196 262,543 12,281,723 49,685 12,076 1,478

telephony.7.dve 107.6 1,111,840 918,817 231,808,995 284,449 36,951 6,038

telephony.7.dve 123.7 696,188 730,841 393,099,843 284,449 31,473 5,337

telephony.7.dve cs;rs;cw;rs 26.8 144,656 918,817 62,889,960 18,479 39,410 6,263

telephony.7.dve cs;rs;cw;rs 25.4 144,656 730,841 63,110,689 18,479 33,144 5,478

1394-fin.mcrl2 22.6 208,084 3,372,554 1,995,202 7,384 870,142 12,505

1394-fin.mcrl2 3.4 188,944 443,813 1,800,912 7,384 229,251 8,399

lift3-final.mcrl2 5.3 184,624 190,347 313,868 5,452 162,956 7,023

lift3-final.mcrl2 2.5 181,372 79,941 378,179 5,452 54,249 5,496

vasy.mcrl2 - - - - - - -

vasy.mcrl2 152.6 1,149,592 2,694 241,432,226 9,387 4,340 5,444

6 Conclusion

Separating dependencies into read and write dependencies can speed-up symbolic
model checking considerably. To do so, we had to solve two key problems. The
first problem is that a copy dependency can in general not be over-approximated
to a must-write dependency. Therefore we introduced the definition of may-write
independence. This notion is used when it can not be statically determined
whether a value needs to be written or copied. Separating dependencies intro-
duced a second problem. Reachability algorithms that exploit our notions for
read and write dependencies only work well with a good variable ordering. We
have provided heuristics that try to put read dependencies before write depen-
dencies.

Models for the Promela and Dve language front-ends for Pins are both
highly optimized C programs. Thus a Next-state call is relatively fast com-
pared to symbolic operations of the back-end. On the contrary, computing the
state space of mcrl2 models involves the term rewriter of mcrl2. The increased
expressiveness has a prize: term rewriting is a lot slower than the optimized C
programs for Promela and Dve. So symbolic operations are relatively fast
compared to a Next-state call to the mcrl2 language front-end.

Overall, we conclude that separating dependencies in the transition relation
by default in LTSmin is a good idea. We have observed only a few cases with
a slow-down, and this slow-down was minimal. The observed speed-ups on the
other hand were considerable, and in some cases necessary to make problems
tractable for LTSmin, e.g., for the vasy model.
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Future work will split conditions into single guards, and consider their depen-
dencies separately. Also, the distinction between read and write variables can be
included in more advanced heuristics for static variable ordering strategies in the
dependency matrix. We also recommend to implement our new definitions and al-
gorithms for othermodeling languages and connect themtoLTSmin throughPins.
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15. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
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