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1 Metamathematical and metaphysical origin of oracles

for randomness

Jozef Gruska’s extensive reviews of the foundations of computing [28], and quan-
tum computing [29] documents his continued interest in the foundations of,
and the connections between, computation and physics. This encouraged me
to contribute to the physics of computation, in particular, by discussing non-
algorithmic oracles for randomness certified by physical principles.

The very existence of physical unknowables [51] and indeterminism is subject
to an ongoing debate that can be expected not to terminate at any time soon.
Thereby, like Odysseus trapped between Scylla and Charybdis, our perception
of how the universe is organized has been vacuously oscillating between, and
irritated by, claims of physical determinism on the one hand, as well as complete
indeterminism on the other hand.

Rather than arguing for one side or another, I would like to state upfront
that both positions are metaphysical; more precisely: from a physical perspec-
tive, these claims are non-operational. And, formally, by reduction to the halting
problem [28, Sec. 642], both of them are provable unprovable. Because, form a
purely phenomenological point of view, that is, in terms of the symbolic be-
haviour of physical systems, any proof of determinism would imply solvability
of the rule inference problem [5], as well as total predictability even beyond the
Busy Beaver bound [14]. Likewise, any claim of total indeterminism encounters
the problem of enumerating an infinity of “candidate theories of everything” [6],
let alone their future behaviour, as mentioned earlier.

Nevertheless, one way of corroborating physical indeterminism, which could
then be used for the construction of evidence-based oracles for randomness,
would be to “screw open” physical boxes which allegedly produce random bits.
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We may not be able to do so, because, say, relative to certain physical assump-
tions and formal theorems such as complementarity and value indefiniteness,
“nothing could be in” such boxes [46,3]. But even then we may, at least, put
forward some theoretical arguments which are based on what we are inclined
to believe [9, 866]. In what follows we shall do exactly this: we mention such
oracles for randomness; that is, some boxes containing allegedly indeterministic
physical resources, and why we believe (or not believe) that they act as physical
sources of random bits.

A necessary and sufficient condition for this is the existence of gaps in the
natural laws, as discussed by Frank [22,23, Chapter III, Sec. 12]. Such gaps allow,
or rather necessitate, “unlawful behaviour” which could be utilized for physical
oracles of randomness.

2 Spontaneous symmetry breakdown and deterministic

chaos

Already in 1873, Maxwell identified a certain kind of instability at singular points
as rendering a gap in the natural laws [13, 211-212]: “. . . when an infinitely small
variation in the present state may bring about a finite difference in the state of
the system in a finite time, the condition of the system is said to be unstable.
It is manifest that the existence of unstable conditions renders impossible the
prediction of future events, if our knowledge of the present state is only approxi-
mate, and not accurate. . . . the system has a quantity of potential energy, which
is capable of being transformed into motion, but which cannot begin to be so
transformed till the system has reached a certain configuration, to attain which
requires an expenditure of work, which in certain cases may be infinitesimally
small, and in general bears no definite proportion to the energy developed in
consequence thereof.”

Fig. 1 depicts a one dimensional gap configuration envisioned by Maxwell:
a “rock loosed by frost and balanced on a singular point of the mountain-side,
the little spark which kindles the great forest, . . .” On top, the rock is in perfect
balanced symmetry. A small perturbation or (pressure or thermal) fluctuation
causes this symmetry to be broken, thereby pushing the rock either to the left
or to the right hand side of the potential divide. This dichotomic alternative can
be coded by 0 and by 1, respectively.

One may object to this scenario of spontaneous symmetry breaking by main-
taining that, if indeed the symmetry is perfect, there is no movement, and the
particle or rock stays on top of the tip (potential). Any slightest movement
might either result from a microscopic asymmetry of the initial state of the par-
ticle, or from fluctuations of any form, either in the particle’s position, or by
the surrounding environment of the particle. For instance, any collision of gas
molecules with the rock may push the latter over the edge by thermal fluctu-
ations. Therefore, the randomness resides in the fluctuations, amplified by the
instability. Whether or not any such fluctuation may be considered as creating
a gap is a question related to debates in statistical physics mentioned later.
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Fig. 1. (Color online) A gap created by a black particle sitting on top of a potential
well. The two final states are indicated by grey circles. Their positions can be coded
by 0 and 1, respectively.

A somewhat related scenario is that of deterministic chaos, because, as
Poincaré pointed out [40, Chapter 4, Section 2, p.+56–57] “it can be the case
that small differences in the initial values produce great differences in the later
phenomena; a small error in the former may result in a large error in the latter.
The prediction becomes impossible and we have a “random phenomenon.”

3 Quantum beam splitter

A quantum mechanical gap can be realized by a beam splitter [26,56], such as a
half-silvered mirror, with a 50:50 chance of transmission and reflection [49,47,32],
as depicted in Fig. 2. A gap certified by quantum value indefiniteness necessarily
has to operate with more than two exclusive outcomes [4]. Ref. [2] presents such
a qutrit configuration.

✒✑
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1

Fig. 2. (Color online) A gap created by a quantum coin toss. A single quantum (symbol-
ized by a black circle from a source (left crossed circle) impinges on a semi-transparent
mirror (dashed line), where it is reflected and transmitted with a 50:50 chance. The
two final states are indicated by grey circles. The exit ports of the mirror can be coded
by 0 and 1, respectively.

One may object to this scenario of quantum indeterminism by pointing out
that it is merely based on a believe – actually, Born’s inclinations “to give up
determinism in the world of atoms” [9, p. 866] (English translation in [58, p. 54])
– with provable formal improvability [53]. We shall come back to related issues
later.
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One may also object that a lossless beam splitter has a quantum mechani-
cal representation as an invertible unitary operator [61,26,41] U, and therefore
is reversible. Indeed, this can be readily demonstrated operationally by seri-
ally composing a lossless Mach-Zehnder interferometer with two beam splitters,
thereby reconstructing the original quantum state (signal); that is, more for-
mally, U†

U = I, where “†” indicates the Hermitian adjoint, and I stands for
the identity operator. How this kind of unitarity conforms with the view that
a beam splitter can be considered an “active element” of quantum randomness
remains unresolved, and is actually highly questionable [20,59]. Often vacuum
fluctuations originating from the second, empty, input port are mentioned, but,
pointedly stated [25, p. 249], these “mysterious vacuum fluctuations . . . may be
regarded as sugar coating for the bitter pill of quantum theory.”

A lossless 50:50 beam splitter can be modelled by a normalized 2 × 2
Hadamard transformation U = 1√

2
H2 with rows ( 1√

2
, 1√

2
) and (− 1√

2
, 1√

2
), re-

spectively.

More generally, suppose we would like to construct a
1

n
:
1

n
: . . . :

1

n
︸ ︷︷ ︸

n times

beam

splitter represented by a normalized Hadamard matrix 1√
n
Hn; that is, an

Hadamard matrix Hn divided by the square of (the dimension) n. An n × n
Hadamard matrix Hn has entries in {−1, 1} such that any two distinct rows or
columns of Hn, interpreted as vectors in a Hilbert space, have scalar product
zero; that is, they are orthogonal (or, equivalently, by requiring that its transpose
H

T
n satisfies HnH

T
n = nIn).

A necessary condition for such a construction [54,31] is that n = 1, n = 2, or
n = 4k for any k ∈ N. Hadamard’s conjecture claims that this is also a sufficient
condition for the existence of an n-dimensional Hadamard transformation; and
thus, for a corresponding equi-decomposition of quantum states into coherent
superpositions. (Of course, a quantum state can be decomposed into any fraction
of unity by suitable unitary transformations; this just represents a permutation
of the original state, or, in a different interpretation, a base change [43].)

A quantum oracle to Hadamar’s conjecture would be one which would, for
any k ∈ N, output 4k orthogonal 1

4k -equi-weighted mixtures of orthogonal states
spanning the entire 4k-dimensional (real) Hilbert space. A beam splitter realizing
Hadamard’s conjecture would possess the remarkable property that it converts a
signal input in any one of the 4k input ports into a coherent equi-superposition
of all output ports; with relative phase differences equal to 0 (corresponding to
equal relative sign), and π (corresponding to relative sign “−”).

At the same time, in terms of quantum states forming bases (or, by other
namings, blocks, subalgebras or contexts [50]), Hadamard’s conjecture translates
into the existence of a particular kind of pure states equivalent to the projectors
corresponding to the row (column) vector of a normalized Hadamard matrix.
The set of row vectors of 1√

4k
H4k correspond to an orthogonal basis which is

(mutually) unbiased with respect to the Cartesian standard basis in R
4k.
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Schwinger’s construction [43] can be used for the rendition of mutually un-
biased bases in arbitrary dimensions n; alas the base vectors may have com-
plex coordinates. The construction starts with the Cartesian standard basis
{|e1〉, |e2〉, . . . , |en〉} and involves three steps: (i) a cyclic shift of the basis vectors
{|f1 = e2〉, . . . , |fn−1 = en〉, |fn = e1〉}, (ii) the construction of a unitary opera-
tor U by U =

∑n
i=1

|ei〉〈fi|; and finally (iii) the identification of the normalized
eigenvectors of U with the elements of a basis which is unbiased with respect
to the Cartesian standard basis. The associated normalized complex Hadamard
matrix [8,10,18] is just the row (column) matrix of the elements of this basis.
For the sake of an example, we can readily write an algorithm [52] yielding a
complex Hadamard matrix of dimension 8; that is,















1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
i −1 −i 1 i −1 −i 1
−i −1 i 1 −i −1 i 1

(−1)1/4 i (−1)3/4 −1 −(−1)1/4 −i −(−1)3/4 1
−(−1)3/4 −i −(−1)1/4 −1 (−1)3/4 i (−1)1/4 1

(−1)3/4 −i (−1)1/4 −1 −(−1)3/4 i −(−1)1/4 1

−(−1)1/4 i −(−1)3/4 −1 (−1)1/4 −i (−1)3/4 1















.

Whether the Schwinger construction, for n = 4k, k ∈ N, can be extended to
produce only the real entries in {−1, 1} instead of complex numbers of modulus
unity remains unknown. One may conjecture that in this case the Dita decom-
position [17] of unitary matrices into products of diagonal phase matrices (with
modulus one entries) and orthogonal matrices – which in turn can be written as
compositions of rotations in two-dimensional subspaces – yields the appropriate
real Hadamard matrices by substituting 0 or π for all for all phases in the phase
matrices (thereby rendering diagonal elements 1 and −1, respectively), as well
as by identifying all rotation angles with ±π/4 (thereby rendering factors whose
absolute value is 1/

√
2).

4 Quantum vacuum fluctuations

As stated by Milonni [36, p. xiii] and others [19,16], “. . . there is no vacuum
in the ordinary sense of tranquil nothingness. There is instead a fluctuating
quantum vacuum.” One of the observable vacuum effects is the spontaneous
emission of radiation [57]: “. . . the process of spontaneous emission of radiation
is one in which “particles” are actually created. Before the event, it consists of an
excited atom, whereas after the event, it consists of an atom in a state of lower
energy, plus a photon.” Recent experiment achieve single photon production
by spontaneous emission [33,34,11,48,42], for instance by electroluminescence.
Indeed, most of the visible light emitted by the sun or other sources of blackbody
radiation, including incandescent bulbs, is due to spontaneous emission [36, p. 78]
and thus subject to creatio ex nihilo.
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A gap based on vacuum fluctuations is schematically depicted in Fig. 3. It
consists of an atom in an excited state, which transits into a state of lower
energy, thereby producing a photon. The photon (non-)creation can be coded
by the symbols 0 and 1, respectively.

❄

❘
⑥1

Fig. 3. (Color online) A gap created by the spontaneous creation of a photon.

5 Analogies in statistical physics

In the following we shall briefly glance at two related physical issues – the pur-
ported (ir-)reversibility of quantum measurements [38,45,27,44,60,35,39,15,30],
as well the character of the second law of thermodynamics [37].

5.1 Wigner’s and Everett’s arguments against quantum

measurement

The extension of the observation context is not dissimilar to what Wigner [59]
and, in particular, Everett [20,21] had in mind when they argued against (ir-
reversible and, in principal, for reversible) measurement. Because quantum me-
chanics allows for two types of evolution: (i) the first type comprises irreversible
measurements, whereas (ii) the second mode is characterized by the unitary,
that is, reversible permutation, of quantum states in-between aforementioned
measurements.

Alas, this is true only for all practical purposes [38,45,27,7,44,60,35,39,15,30],
that is, relative to the physical means [37] available to resolve the huge number of
degrees of freedom involving a “macroscopic” measurement apparatus. And yet,
at least in principle, if the unitary quantum evolution is taken to be universally
valid, then any distinction or cut between the observer and the measurement
apparatus on the one side, and the quantized object on the other side, is not
absolute or ontic, but epistemic, means-relative, subjective and conventional [53].

5.2 Analogies to the second law of thermodynamics

There are good reasons to believe that also irreversibility in statistical physics
is means relative [37] and thus epistemic: if we cannot resolve individual con-
stituents of a group, and their degrees of freedom, then irreversibility is the
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epistemic expression of our incapacity to do so. In contradistinction, suppose
the molecules are taken individually. In this case the second law might “dis-
solve into thin air” because of reversibility on the micro-description level. In
Maxwell’s own words [24, Document 15, p. 422] “I carefully abstain from asking
the molecules which enter where they last started from. I only count them and
register their mean velocities, avoiding all personal enquiries which would only
get me into trouble.”

6 Caveats and afterthoughts

Stated pointedly, we have essentially been talking about the emergence of events
out of nothing (e.g. creatio ex nihilo) and without any cause. Thereby, and for the
sake of accepting classical and quantum oracles for randomness, we are denying
the principle of sufficient reason, as well as negating Parmenides’ nothing comes
from nothing, which so powerfully guided the ancient Greek and modern western
Enlightenments.

More technically, we note without further discussion that any “diluted” [12]
indeterminism, or gap mechanism, could be “concentrated” to Borel normality
by assuming independence of bits in binary sequences [55,1].

As a last speculation, it might not be too unreasonable to contemplate that all
gap scenarios, including spontaneous symmetry breakdown and quantum oracles,
are ultimately based on vacuum fluctuations.
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