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Abstract. Gait exhibits several advantages with respect to other bio-
metrics features: acquisition can be performed through cheap technology,
at a distance and without people collaboration. In this paper we perform
gait analysis using skeletal data provided by the Microsoft Kinect sen-
sor. We defined a rich set of physical and behavioral features aiming
at identifying the more relevant parameters for gait description. Using
SVM we showed that a limited set of behavioral features related to the
movements of head, elbows and knees is a very effective tool for gait
characterization and people recognition. In particular, our experimental
results shows that it is possible to achieve 96% classification accuracy
when discriminating a group of 20 people.

Keywords: Gait characterization, Gait analysis, Kinect, Support Vec-
tor Machine

1 Introduction and Related Work

Biometrics is the science that studies the human characteristics for anthropom-
etry research, people identification, access control and many more. Biometric
features are measurable data classified as physical or behavioral [1]. The former
are related to the body and its shape. Some examples are face, hand, iris, retina
and fingerprint. Behavioral characteristics are associated to particular human
action, for instance handwriting and walking. Automatic recognition systems
are often expensive, intrusive and require the cooperation of the subject during
the acquisition. The latter cannot be always guaranteed, for instance in a video
surveillance context. In this case, it is useful to recognize people through biomet-
ric parameters that can be captured at a distance and without the collaboration
of the person, such as gait [2].

Gait analysis finds interest in video surveillance systems [3, 4] and forensics
science [5, 6]. Furthermore, many applications analyze the gait in order to dis-
cover pathologies of the body movement [7], rehabilitation therapy [8], identify
the fall risk in elderly population in order to assess the frailty syndrome [9,
10]. All these applications are based on the analysis of video and 2D images.
Images and videos are processed in order to collect gait parameters applying
both model-based approaches, using the definition of a 3D model of the body in
movement [11–13], or by model-free approaches, that process the silhouette of a
walking person [14].
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In this paper we implemented a model-based approach using the Microsoft
Kinect sensor. Kinect is more that a simple RGB camera, since it is equipped
with a depth sensor providing 3D information related to the movements of body
joints. The 3D data are more precise compared to the 2D information extracted
from images but, on the contrary, the depth sensor, based on the infrared rays,
does not work in outside environment and the depth range is quite limited. In
literature exists some applications that exploit Kinect 3D data for people recog-
nition and classification. Preis et al. [15] used only anthropometric features, such
as height, length of limbs, stride length and speed, for gait characterization. They
tested few combination of features using three different classifiers: 1R, a C4.5
decision tree and a Naive Bayes classier. Borras et al. [16] extracted 2D and
3D gait features based on the body silhouettes, to achieve gender identication
using a Kernel SVM. Satta et al. [17] combined the body silhouette, colors cloth-
ing and 3D skeleton data (torso and legs length) aiming at tracking people for
video-surveillance application. Ball et al. [18] proposed several angular features
related to the leg articulations and used K-means algorithm, with an Euclidean
distance metric, for classification.

A preliminary work has been already presented in [19], where we only shown
that dynamic gait features extracted from Kinect allow one to discriminate be-
tween two subjects with similar biometric features, a much simpler scenario as
opposed to the classification task studied in this paper.

The major contributions of this paper are:

– exploitation of cheap and widespread Kinect sensor for joint acquisition of
static biometric features, e.g. height, leg length, etc.., and dynamic param-
eters related to gait, e.g. knees movement, head oscillation;

– analysis and selection of the biometric and gait features that are the most
effective for people identification;

– experimental campaign worked out on a set of 20 subjects showing that the
proposed set of features can be profitably exploited to classify people using
SVM.

The paper is organized as follows. In Sect. 2 is explained our method to
extract gait features while the clustering approach is presented in Sect. 3. The
experiments done are shown in Sect. 4 together with the discussion of achieved
results. Conclusion and future work are outlined in Sect. 5.

2 Proposed Method

In this work we propose a model-based approach for gait characterization using
dynamic skeleton acquisition. In particular, we have used the widespread diffuse
Microsoft Kinect sensor for acquisition of gait parameters. Kinect is a popular
gaming device, that is able to capture body motion and gestures based on camera
and depth sensor. Kinect is able to track in real-time a skeleton model, composed
of 20 body joints Ji shown in Fig. 1. The skeleton can be used to describe body
movements in real-time and in 3D space [20].
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Fig. 1. Kinect skeleton model.

The skeleton data provided by Kinect consist in the coordinates of the 20
joints in its local reference system as shown in Fig. 2-(a) where (X,Y, Z) are
the horizontal, vertical and depth direction, respectively. Joint coordinates are
provided at a rate of 30 Hz along with the estimated floor clipping plane, that
is the plane where the user is walking. The floor plane equation is derived as
AX +BY +CZ +D = 0, where (A,B,C) is the normal vector to the plane and
D is the height of the camera center with respect to the floor. As opposed to
the Kinect reference system, human biometric parameters are usually measured
with respect to the body planes shown in Fig. 2-(b), where coronal, sagittal and
transverse plane are represented. The latter is clearly parallel to the floor clipping
plane provide by Kinect, whereas the sagittal plane can be determined if we infer
the walking direction. Since the Kinect depth range is between 80 centimeters
and 4 meters, we can easily assume that the observed subject follows a straight
path within a single gait acquisition. As a consequence, we have estimated the
walking direction as the line connecting the initial and final coordinates of the
center of mass (Joint 0). To make the estimation more robust, the initial and
final coordinates of the center of mass are averaged at the beginning and at the
end of the acquisition. Finally, the novel reference system (x, y, z) is constructed
as shown in Fig. 2-(b), considering the floor clipping plane, its normal and the
walking direction as the novel z axis. In the following all the joints coordinates
will be expressed according to (x, y, z).

Since Kinect depth sensor exhibits limited resolution and precision, all joint
estimates can be considered as noisy acquisitions. To limit this effect we pro-
pose to use median filter on all acquired data before performing any further
processing. Such refined estimates are then exploited to define our gaits feature
vector that comprises both physical and behavioral parameters, as detailed in
the following. All the collected features are summarized in Table 1.
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(a) The Kinect 3D coordinate system. (b) Body planes.

Fig. 2. Kinect reference system and coordinate system according to the walking direc-
tion.

2.1 Physical features

Using joint coordinates we have estimated some physical biometric features that
are almost constant during the walk, namely the height and the length of arms
and legs, respectively. The height is defined as:

γ =
∑
i∈τ

√
(Ji,x − Ji+1,x)2 + (Ji,y − Ji+1,y)2 + (Ji,z − Ji+1,z)2

where τ = [3, 2, 1, 0, 12, 13, 14, 15] or τ = [3, 2, 1, 0, 16, 17, 18, 19], i.e. the joints
going from the head to the right (or left) foot. All the estimates of γ acquired
during a given gait acquisition are averaged to get a single average value. Simi-
larly, we compute the length of the left (and right) arm as the overall length of
the skeleton segments from the shoulder to the hand. A single parameter α is
obtained by averaging both left and right arm lengths along all the acquisition
period. The same approach is used to get a single feature β by averaging the
lengths of the skeleton segments from the hip to the feet.

2.2 Behavioral features

A clear advantage of using Kinect is the possibility to devise a rich set of be-
havioral gait features derived by the continuous monitoring of joint positions.
Usually gait behavior is characterized in terms of stride length and walking
speed. The former is the distance between two stationary position of the same
foot while walking. The stride is detected using the same technique we already
presented in [19]. The latter is the ratio between the distance covered by the
center of mass and its duration in a single stride. In this study we estimate
such features in real time and all their measurements are averaged to get the
gait parameters δ and υ shown in Table 1. We complement these standard gait
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Table 1. Gait features list.

Label Features

α arms length

β legs length

γ height

δ stride length

υ walking speed

ε elbows distance

κ knees distance

η hands distance

λ ankles distance

µJ3,x — σ2
J3,x mean/variance of head (along x)

µJ3,y — σ2
J3,y mean/variance of head (along y)

µJ4,x — σ2
J4,x mean/variance of left shoulder (along x)

µJ8,x — σ2
J8,x mean/variance of right shoulder (along x)

µJ13,y — σ2
J13,y mean/variance of left knee (along y)

µJ17,y — σ2
J17,y mean/variance of right knee (along y)

parameters with other behavioral features that are related to the gait dynamic,
in particular the movement of head, shoulders, elbows, hands, knees and ankles.
To this end, we track the movement of the corresponding joints along the x and
y axes, i.e. we measure the vertical and lateral oscillations of the corresponding
skeleton joints. Then the dynamic of their trajectory during the acquisition is
represented in terms of mean value µ and variance σ2. These features are de-
noted as µJi,x , µJi,y , σ2

Ji,x
, σ2

Ji,y
where i indexes the relevant joint and x (or y)

refers to the considered coordinate component (see Table 1).
Finally, our experiments showed that other important gait features are the

distance between the left and right elbows ε, hands η, knees κ and ankles λ. Also
in this case we average all the estimates during the acquired walking period. All
the collected features are summarized in Table 1.

3 Classification

In this paper we used Support Vector Machine (SVM), a widely-used and robust
clustering algorithm, to classify people based on both physical and behavioral
gait biometric feature. SVM is a supervised learning method for data classifi-
cation. The main idea is to find the pair of parallel hyperplane that separates
between a set of features having different class memberships. Each pair of par-
allel hyperplanes is characterized by specific sets of feature points, the so-called
support vector. In a 2D feature space the planes are fully defined by three sup-
port vectors, so in ND the support vector examples should have N + 1 points,
in order to avoid overfitting. Since SVM is a supervised algorithm, the classifica-
tion task involves separating data into training and testing sets. Each instance
in the training set contains one “target value” (i.e. the class labels) and several
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“attributes” (i.e. the features or observed variables). The goal of SVM is to pro-
duce a model (based on the training data) which predicts the target values of
the test data.

The hyperplane algorithm proposed by Vapnik in 1963 was a linear classifier.
The nonlinear classification, proposed in 1992 [21], is possible by applying the so-
called kernel trick, originally proposed by Aizerman et al. [22]: the dimensional
space of the function is mapped into an higher (maybe infinite) dimensional
space, so that it is possible to find a linear separating hyperplane with the
maximal margin in that higher dimensional space. The advantage of the kernel
function is that it does not require explicit calculation of the data coordinates
in the new space. It is done by simply computing the inner products between
the images of all pairs of data in the feature space: this is a computationally
cheaper operation respect to the explicit computation of the coordinates. To
construct an optimal hyperplane, SVM employs an iterative training algorithm,
which is used to minimize an error function. According to the form of the error
function, in multi-class classification, SVM models can be classified into two
distinct groups: classification SVM Type 1 (also known as C-SVM classification)
and classification SVM Type 2 (also known as ν-SVM classification).

The C-SVM training involves the minimization of the error function:

1

2
wTw + C

N∑
i=1

ξi, C > 0

subject to the constraints:

yi(w
Tφ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, . . . , N

where C is the capacity constant, w is the vector of coefficients and ξ rep-
resents parameters for handling nonseparable data (input). xi is the training
vector, so the index i labels the N training samples, that are mapped into an
higher dimensional space by the function φ. b is a constant. C should be chosen
with care to avoid overfitting.

The ν-SVM model minimizes the error function:

1

2
wTw − νρ+

1

N

N∑
i=1

ξi, 0 ≤ ν ≤ 1

subject to the constraints:

yi(w
Tφ(xi) + b) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , N and ρ ≥ 0

The kernel functions that can be used in SVM are:

– Linear: K(xi, xj) = xTi xj .

– Polynomial: K(xi, xj) = (γxTi xj + r)d, γ > 0.

– Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0.

– Sigmoid: K(xi, xj) = tanh(γxTi xJ + r).
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where γ, r and d are kernel parameters.
The effectiveness of SVM depends on the selection of kernel and the kernel’s

parameters.

4 Experimental Results

The goal of our experimentation is, first to find out which features collected
in Sect. 2 are more relevant for gait characterization, and then to evaluate the
achievable classification accuracy.

Since a standard gait dataset acquired with the Kinect sensor is not available,
we have collected a set of gait samples. To this end we acquired gait samples
with Kinect for Windows, recording 20 subjects that were asked to walk natu-
rally along a corridor; each subject is acquired 10 times for a total of 200 gait
samples. The software model to estimate the features proposed in Sect. 2 has
been developed using SDK 1.7.

Finally, for classification, we resort to the LIBSVM tool [23], an SVM free
library. We used both the C-SVM type and the ν-SVM type, with linear and RBF
kernel function. The dataset is divided in two subset: 60% of samples are used
for training and the remaining for testing. Before applying SVM we normalized
our features matrix to the range [0, 1]. Scaling data is very important in order to
avoid attributes in greater numeric ranges dominating those in smaller numeric
ranges. Another advantage is to simplify the calculations of the kernel function.
As said in Sect. 3 the parameters C and ν should be chosen with care. The
C parameter is computed using the K-fold cross-validation procedure [23]. The
training set is divided into K subsets of equal size. A single subset is tested using
the classifier trained on the remaining K − 1 subsets. The process is repeated
K times for each of the K subset. The K results are then averaged to produce
a single estimation. The ν parameter is calculated as suggested in [24]:

ν = 2 ∗min(|SVs+|, |SVs−|)/|SVs|

where SVs is the vector containing the support vector elements (the feature
points of each hyperplane), while SVs+ and SVs− are the vectors containing the
positive and negative support vectors, respectively.

As an objective metric for performance evaluation we used the classification
accuracy, defined as:

accuracy =
ψ

Ω
∗ 100%

where ψ is the number of correctly classified samples and Ω is the total number
of samples.

4.1 Discussion

To investigate the effectiveness of the different features that we proposed, we
analyze the classification accuracy obtained with several sets of gait parameters.
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Table 2. Classification accuracy of different features sets.

Set Features
C-SVM ν-SVM

Linear RBF Linear RBF

S1 α, β, γ 37.50 25.00 62.50 58.75

S2 δ, υ 23.75 23.75 13.75 17.50

S3 α, β, γ, δ, υ 46.25 41.25 48.75 37.50

S4 ε, κ, 37.50 38.75 52.50 46.25

S5 ε, κ, λ 42.50 37.50 55.00 53.75

S6 ε, κ, η 41.25 38.75 32.50 35.00

S7 ε, κ, λ, η 45.00 43.75 56.25 55.00

S8 λ, η 18.75 17.50 15.00 10.00

S9 α, β, γ, ε, κ 72.50 55.00 75.00 76.25

S10 S1, S4, σ
2
J3,x, σ

2
J3,y 70.00 56.25 61.25 46.25

S11 S1, S4, µJ3,x, µJ3,y 86.25 85.00 86.25 85.00

S12 S1, S4, σ
2
J13,y , σ

2
J17,y 75.00 52.50 63.75 51.25

S13 S1, S4, µJ13,y , µJ17,y 81.25 65.00 81.25 81.25

S14 S1, S4, σ
2
J4,x, σ

2
J8,x 66.25 55.00 55.00 45.00

S15 S1, S4, µJ4,x, µJ8,x 77.50 71.25 77.50 77.50

S16 S1, S4, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x 65.00 57.50 57.50 41.25

S17 S1, S4, µJ3,x, µJ3,y , µJ4,x, µJ8,x 83.75 82.50 86.25 83.75

S18 S1, S4, σ
2
J3,x, σ

2
J3,y , σ

2
J13,y , σ

2
J17,y 70.00 53.75 55.00 46.25

S19 S1, S4, µJ3,x, µJ3,y, µJ13,y, µJ17,y 88.75 82.50 90.00 90.00

S20 S1, S4, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x, σ

2
J13,y , σ

2
J17,y 66.25 55.00 58.75 42.50

S21 S1, S4, µJ3,x, µJ3,y , µJ4,x, µJ8,x, µJ13,y , µJ17,y 87.50 82.50 90.00 88.75

S22 S4, σ
2
J3,x, σ

2
J3,y 48.75 41.25 46.25 43.75

S23 S4, µJ3,x, µJ3,y 90.00 80.00 92.50 91.25

S24 S4, σ
2
J13,y , σ

2
J17,y 36.25 35.00 46.25 48.75

S25 S4, µJ13,y , µJ17,y 58.75 57.50 57.50 45.00

S26 S4, σ
2
J4,x, σ

2
J8,x 47.50 38.75 55.00 51.25

S27 S4, µJ4,x, µJ8,x 61.25 50.00 57.50 57.50

S28 S4, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x 48.75 37.50 45.00 35.00

S29 S4, µJ3,x, µJ3,y , µJ4,x, µJ8,x 86.25 76.25 87.50 88.75

S30 S4, σ
2
J3,x, σ

2
J3,y , σ

2
J13,y , σ

2
J17,y 45.00 32.50 32.50 32.50

S31 S4, µJ3,x, µJ3,y, µJ13,y, µJ17,y 92.50 81.25 96.25 96.25

S32 S4, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x, σ

2
J13,y , σ

2
J17,y 48.75 32.50 41.25 30.00

S33 S4, µJ3,x, µJ3,y , µJ4,x, µJ8,x, µJ13,y , µJ17,y 92.50 78.75 76.25 65.00

S34 S1, σ
2
J3,x, σ

2
J3,y 45.00 42.50 43.75 37.50

S35 S1, µJ3,x, µJ3,y 71.25 65.00 73.75 73.75

S36 S1, σ
2
J13,y , σ

2
J17,y 40.00 27.50 46.25 33.75

S37 S1, µJ13,y , µJ17,y 61.25 45.00 67.50 70.00

S38 S1, σ
2
J4,x, σ

2
J8,x 45.00 43.75 37.50 31.25

S39 S1, µJ4,x, µJ8,x 55.00 43.75 62.50 62.50

S40 S1, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x 48.75 51.25 47.50 36.25

S41 S1, µJ3,x, µJ3,y , µJ4,x, µJ8,x 68.75 58.75 75.00 76.25

S42 S1, σ
2
J3,x, σ

2
J3,y , σ

2
J13,y , σ

2
J17,y 46.25 46.25 41.25 33.75

S43 S1, µJ3,x, µJ3,y, µJ13,y, µJ17,y 77.50 60.00 75.00 78.75

S44 S1, σ
2
J3,x, σ

2
J3,y , σ

2
J4,x, σ

2
J8,x, σ

2
J13,y , σ

2
J17,y 50.00 51.25 42.50 35.00

S45 S1, µJ3,x, µJ3,y , µJ4,x, µJ8,x, µJ13,y , µJ17,y 78.75 58.75 77.50 80.00
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As a benchmark for classification accuracy, we run a first experiment where
we discriminate subjects considering only physical features, in particular their
height (γ) and arms (α) and legs (β) lengths; this is representative of usual
classification based only on simple anthropometric parameters. The classification
results using this set of features (S1) are shown in Table 2, where it can be noted
that ν-SVM yields an accuracy of about 60%. As a second trial we used the set
S2 that includes two standard gait parameters, namely stride length (δ) and
walking speed (υ) but, as shown in Table 2, the achieved classification accuracy
turns to be rather poor. Also, jointly using sets S1 and S2 (set S3 in Table 2)
we cannot improve performance, significantly. The limited performance obtained
using gait parameters in S2 can be explained by considering the limited depth
range of the Kinect, that allows one to acquire only three/four strides, leading
to poor estimates of δ and υ.

As a consequence, we move our investigation towards other gait features
that can be estimated more reliably by Kinect, i.e. the inter-distance between
corresponding left and right body joints. A subset of the obtained classification
results is reported in Table 2 (see sets S4-S9). Inspecting these results one can
notice that, using physical features and the distance between elbows and knees
(set S9) we achieve about 75% accuracy, with an improvement of about 15%
with respect to the S1 benchmark.

Then, we try to further improve the classification accuracy including in the
features vector the remaining dynamic parameters defined in Sect. 2, namely the
mean and variance of the position of head, shoulders, elbow and knees. In sets
S10-S21 these latter are used along with S1 and S4. It can be noted that a few
parameter sets yield accuracy larger than 80%. In particular, the best classifica-
tion is obtained by S19 that yields 90% accuracy with ν-SVM. In sets S22-S33 we
perform the same experiments removing S1 from the feature vector, i.e. without
using the standard physical features. In this case a few combinations reach an
accuracy around 90%. In particular, the features set S31 exhibits an accuracy of
96%, that represents the best result we obtained. Finally, the remaining experi-
ments S34-S45 use S1 along with the proposed dynamic gait parameters, but the
obtained accuracy does not achieves 80%.

To better appreciate all our experimental results in Fig. 3 we plot the accu-
racy as a function of the features sets for C-SVM (a) and ν-SVM (b), respectively.
To improve the readability of the graph the last three groups of parameters sets,
are highlighted by boxes labeled by A, B and C respectively.

In conclusion, our experiments show that gait parameters extracted using
Kinect, can be used as a powerful biometric feature. In particular, we can argue
that simple statistics estimated from a set of skeletal joints are very effective for
people classification based on SVM.

5 Conclusions and Future Work

Relying on the information provided by the Kinect sensor, an analysis system
able to classify people based on their gait has been proposed. We have especially
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(a)

(b)

Fig. 3. Classification accuracy of C-SVM (a) and ν-SVM (b) for different combinations
of gait features.

pointed out that the movement of elbows, knees and head are of great importance
for diversifying gait. The achieved results obtained by using the robust SVM
clustering algorithm show an accuracy classification equal to 96.25% when a
suitable parameter set is chosen. Future works include the exploitation of other
statistical procedures, such as the principal component analysis, to better rank
the importance of gait parameters in terms of classification accuracy. Moreover,
we are planning an extensive gait acquisition campaign to better validate the
classification results from a statistical viewpoint. From the applicative point of
view we will consider other scenarios that go beyond classification, e.g. forensic
and health/well-being contexts.
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