Skip to main content

A Comparative Study of Ego-Motion Estimation Algorithms for Teleoperated Robotic Endoscopes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8899))

Abstract

Colorectal cancer is one of the leading causes of cancer-related mortality in the world, although it can be efficiently treated if detected early. Colonoscopy is the most-commonly adopted visual screening procedure of the colon by means of a flexible tiny endoscopic camera. In an effort to promote early screening and to facilitate mastering the endoscope motion by the physician, teleoperable robotic endoscopes and wireless capsules are being developed. In order to enable precise and fast closed-loop control for these devices, the accurate 3-D position and orientation of the camera must be known. Estimating the camera ego-motion by processing the endoscopic video provides a viable solution since it does not require the adoption of external magnetic trackers during the screening procedure that can occupy the scope’s operation channel. Furthermore, and compared to SLAM or registration approaches, ego-motion estimation algorithms do not require to deal with the highly deformable (and thus highly-uncertain) global 3D map of the colon.

This paper provides researchers in the medical imaging computing community with an in-depth comparison of several state-of-the-art ego-motion estimation methods that can localize the camera with respect to an initial video frame. Four optical-flow (OF) algorithms are analyzed and their performance is examined when used in two state-of-the-art (supervised and unsupervised) 6 degrees of freedom (DoF) ego-motion estimation algorithms. The ability for each of these methods to precisely localize the camera after a long trajectory have been examined. To the best of our knowledge, this is the first work that compares vision-based localization algorithms in a endoscopic scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ndigital.com/

  2. 2.

    http://www.blender.org/

  3. 3.

    http://astra.uta.edu/research/augmented-colonoscopy/

References

  1. World Health Organization (WHO): Fact sheet # 297: Cancer, February 2014

    Google Scholar 

  2. Valdastri, P., Simi, M., Webster III, R.J.: Advanced technologies for gastrointestinal endoscopy. Ann. Rev. Biomed. Eng. 14, 397–429 (2012)

    Article  Google Scholar 

  3. Centers for Disease Control and Prevention: Vital Signs Cancer screening, colorectal cancer, February 2014

    Google Scholar 

  4. Obstein, K.L., Valdastri, P.: Advanced endoscopic technologies for colorectal cancer screening. World J. Gastroenterol. 19(4), 431–439 (2013)

    Article  Google Scholar 

  5. Reilink, R., Stramigioli, S., Misra, S.: Three-dimensional pose reconstruction of flexible instruments from endoscopic images. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2076–2082 (2011)

    Google Scholar 

  6. Ruiter, J., Rozeboom, E., van der Voort, M., Bonnema, M., Broeders, I.: Design and evaluation of robotic steering of a flexible endoscope. In: 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 761–767 (2012)

    Google Scholar 

  7. Ye, M., Giannarou, S., Patel, N., Teare, J., Yang, G.-Z.: Pathological site retargeting under tissue deformation using geometrical association and tracking. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 67–74. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Atasoy, S., Mateus, D., Meining, A., Yang, G.-Z., Navab, N.: Endoscopic video manifolds for targeted optical biopsy. IEEE Trans. Med. Imaging 31(3), 637–653 (2012)

    Article  Google Scholar 

  9. Rey, J., Ogata, H., Hosoe, N., Ohtsuka, K., Ogata, N., Ikeda, K., Aihara, H., Pangtay, I., Hibi, T., Kudo, S., Tajiri, H.: Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointest. Endosc. 75(2), 373–381 (2012)

    Article  Google Scholar 

  10. Keller, J., Fibbe, C., Volke, F., Gerber, J., Mosse, A.C., Reimann-Zawadzki, M., Rabinovitz, E., Layer, P., Schmitt, D., Andresen, V., Rosien, U., Swain, P.: Inspection of the human stomach using remote-controlled capsule endoscopy:a feasibility study in healthy volunteers (with videos). Gastrointest. Endosc. 73(1), 22–28 (2011)

    Article  Google Scholar 

  11. Valdastri, P., Ciuti, G., Verbeni, A., Menciassi, A., Dario, P., Arezzo, A., Morino, M.: Magnetic air capsule robotic system: proof of concept of a novel approach for painless colonoscopy. Surg. Endosc. 26(5), 1238–1246 (2011)

    Article  Google Scholar 

  12. Burschka, D., Li, M., Ishii, M., Taylor, R., Hager, G.: Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Med. Image Anal. 9(5), 413–426 (2005)

    Article  Google Scholar 

  13. Scaramuzza, D., Fraundorfer, F.: Visual odometry - a tutorial. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  14. Bell, C.S., Obstein, K.L., Valdastri, P.: Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes. Artif. Intell. Med. 59(3), 185–196 (2013)

    Article  Google Scholar 

  15. Liu, J., Yoo, T., Sabramanian, K., Van Uitert, R.: A stable optic-flow based method for tracking colonoscopy images. In: Proceedings of Mathematical Methods in Biomedical Image Analysis, pp. 1–8, June 2008

    Google Scholar 

  16. Bell, C., Puerto, G., Mariottini, G.L., Valdastri, P.: 6 DOF motion estimation for teleoperated flexible endoscopes using optical flow: a comparative study. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5386–5392 (2014)

    Google Scholar 

  17. Liu, J., Subramanian, K.R., Yoo, T.S.: Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study. In: Proceedings of SPIE, pp. 67–74 (2013)

    Google Scholar 

  18. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)

    MATH  MathSciNet  Google Scholar 

  19. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. 26(6), 756–777 (2004)

    Article  Google Scholar 

  20. Engels, C., Stewenius, H., Nister, D.: Bundle adjustment rules. In: Photogrammetric Computer Vision (2006)

    Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2001)

    Book  Google Scholar 

  22. Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the pnp problem. In: ICCV, pp. 1–8, October 2007

    Google Scholar 

  23. Koppel, D., Chen, C., Wang, Y., Lee, H., Gu, J., Poirson, A., Wolters, R.: Toward automated model building from video in computer-assisted diagnoses in colonoscopy. In: Proceedings of SPIE, vol. 6509 (2007)

    Google Scholar 

  24. Luó, X., Feuerstein, M., Deguchi, D., Kitasaka, T., Takabatake, H., Mori, K.: Development and comparison of new hybrid motion tracking for bronchoscopic navigation. Med. Image Anal. 16(3), 577–596 (2012)

    Article  Google Scholar 

  25. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Uniersity Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. 5, 698–700 (1987)

    Article  Google Scholar 

  27. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  28. Puerto, G.A., Mariottini, G.L.: Fast and accurate feature-matching algorithm for minimally-invasive endoscopic images. IEEE Trans. Med. Imaging 32(7), 1201–1214 (2013)

    Article  Google Scholar 

  29. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. 33(3), 500–513 (2011)

    Article  Google Scholar 

  30. Puerto-Souza, G.A., Mariottini, G.-L.: Wide-baseline dense feature matching for endoscopic images. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 48–59. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Puerto-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Puerto-Souza, G.A., Staranowicz, A.N., Bell, C.S., Valdastri, P., Mariottini, GL. (2014). A Comparative Study of Ego-Motion Estimation Algorithms for Teleoperated Robotic Endoscopes. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2014. Lecture Notes in Computer Science(), vol 8899. Springer, Cham. https://doi.org/10.1007/978-3-319-13410-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13410-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13409-3

  • Online ISBN: 978-3-319-13410-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics