Skip to main content

Computing Inferences for Relational Bayesian Networks Based on \(\mathcal {ALC}\) Constructs

  • Conference paper
  • First Online:
Uncertainty Reasoning for the Semantic Web III (URSW 2012, URSW 2011, URSW 2013)

Abstract

Credal \(\mathcal {ALC}\) combines the constructs of the well-known \(\mathcal {ALC}\) logic with probabilistic assessments, so as to let terminologies convey uncertainty about concepts and roles. We present a restricted version of Credal \(\mathcal {ALC}\) that can be viewed as a description language for a class of relational Bayesian networks. The resulting “\(\textsc {cr}\mathcal {ALC}\) networks” offer a simplified and illuminating route both to Credal \(\mathcal {ALC}\) and to relational Bayesian networks. We then describe the implementation, in freely available packages, of approximate variational and lifted exact inference algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Kangaroo ontology is distributed with the CEL System at the site http://lat.inf.tu-dresden.de/systems/cel/.

  2. 2.

    We use the following concept of independence: an event \(E\) is independent of a set of events \(\{F_i\}_i\) given a set of events \(\{G_j\}_j\) if \(\mathbb {P}\left( E \cap H'|H'' \right) = \mathbb {P}\left( E|H'' \right) \mathbb {P}\left( H'|H'' \right) \) for any \(H' = \cap _{i \in I} F_i\) and any nonempty \(H'' = (\cap _{j \in J} G_j) \cap (\cap _{k \in K} G_k^c)\), for any subsets of indexes \(I\), \(J\), \(K\).

  3. 3.

    The package is freely available, in compressed form, at the site http://sites.poli.usp.br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip.

  4. 4.

    The standard specification of KRSS can be found at http://dl.kr.org/krss-spec.ps.

  5. 5.

    The package is freely available at https://github.com/ftakiyama/AC-FOVE, where source code and examples can be found.

References

  1. Augustin, T., Coolen, F.P.A., de Cooman, G., Troffaes, M.C.M.: Introduction to Imprecise Probabilities. Wiley, Chichester (2014)

    Book  MATH  Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: Description Logic Handbook. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Boole, G.: The Laws of Thought. Dover edition, New York (1958)

    Google Scholar 

  4. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82(1–2), 353–367 (1996)

    Article  MathSciNet  Google Scholar 

  5. Costa, P.C.G., Laskey, K.B.: Of Klingons and starships: Bayesian logic for the 23rd century. In: Conference on Uncertainty in Artificial Intelligence (2005)

    Google Scholar 

  6. Costa, P.C.G., Laskey, K.B.: PR-OWL: a framework for probabilistic ontologies. In: Conference on Formal Ontology in Information Systems (2006)

    Google Scholar 

  7. Cozman, F.G., Polastro, R.B.: Complexity analysis and variational inference for interpretation-based probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence, pp. 117–125. AUAI Press (2009)

    Google Scholar 

  8. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. de Finetti, B.: Theory of Probability, vol. 1–2. Wiley, New York (1974)

    MATH  Google Scholar 

  10. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: International Joint Conference in Artificial Intelligence (2006)

    Google Scholar 

  11. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational Learning, pp. 433–451. MIT Press, Cambridge (2007)

    Google Scholar 

  12. de Salvo Braz, R., Amir, E., Roth, D.: A survey of first-order probabilistic models. In: Holmes, D.E., Jain, L.C. (eds.) Innovations in Bayesian Networks. Studies in Computational Intelligence, pp. 289–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Ding, Z., Peng, Y., Pan, R.: BayesOWL: uncertainty modeling in semantic web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web, pp. 3–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Dürig, M., Studer, T.: Probabilistic ABox reasoning: preliminary results. In: Description Logics, pp. 104–111 (2005)

    Google Scholar 

  15. Fenelon, V., Hummel, B., Santos, P.E., Cozman, F.G.: Encoding spatial domains with relational Bayesian networks. In: Spatio-temporal Dynamics Workshop, pp. 49–54 (2010)

    Google Scholar 

  16. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: International Joint Conference on Artificial Intelligence, pp. 1300–1309 (1999)

    Google Scholar 

  17. Galindo, C., Fernandez-Madrigal, J.-A., Gonzalez, J., Saffiotti, A.: Robot task planning using semantic maps. Robot. Auton. Syst. 11, 955–966 (2008)

    Article  Google Scholar 

  18. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of relational structure. In: International Conference on Machine Learning, pp. 170–177 (2001)

    Google Scholar 

  19. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  20. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): a probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Lanni, G. (eds.) European Conference on Logics in Artificial Intelligence, pp. 86–97 (2002)

    Google Scholar 

  21. Gutierrez-Basulto, V., Jung, J.C., Lutz, C., Schröder, L.: A closer look at the probabilistic description logic prob-\({\cal EL}\). In: Burgard, W., Roth, D. (eds.) Conference on Artificial Intelligence, pp. 197–202 (2011)

    Google Scholar 

  22. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)

    Article  MATH  Google Scholar 

  23. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  24. Heinsohn, J.: Probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence, pp. 311–318 (1994)

    Google Scholar 

  25. Hertzberg, J., Saffiotti, A.: Using semantic knowledge in robotics. Robot. Auton. Syst. 56, 875–877 (2008)

    Article  Google Scholar 

  26. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic interval XML. ACM Trans. Comput. Logic 8(4), 1–38 (2007)

    Article  MathSciNet  Google Scholar 

  27. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Principles of Knowledge Representation, pp. 461–472 (1994)

    Google Scholar 

  28. Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Conference on Uncertainty in Artificial Intelligence, pp. 266–273. Morgan Kaufmann (1997)

    Google Scholar 

  29. Jaeger, M.: Complex probabilistic modeling with recursive relational Bayesian networks. Ann. Math. Artif. Intell. 32, 179–220 (2001)

    Article  MathSciNet  Google Scholar 

  30. Jaeger, M.: Relational Bayesian networks: a survey. Linkoping Electronic Articles in Computer and Information Science, 6 (2002)

    Google Scholar 

  31. Kersting, K.: Lifted probabilistic inference. In: De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.) European Conference on Artificial Intelligence. IOS Press (2012)

    Google Scholar 

  32. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Conference on Uncertainty in Artificial Intelligence. AUAI Press (2009)

    Google Scholar 

  33. Kisynski, J.J., Poole, D.: Lifted aggregation in directed first-order probabilistic models. In: International Joint Conference on Artificial Intelligence, pp. 1922–1929 (2009)

    Google Scholar 

  34. Kisynski, J.J.: Aggregation and constraint processing in lifted probabilistic inference. Ph.D. thesis, Computer Science, University of British Columbia (2010)

    Google Scholar 

  35. Klinov, P., Parsia, B.: A hybrid method for probabilistic satisfiability. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 354–368. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  37. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Conference on Uncertainty in Artificial Intelligence, pp. 302–313 (1997)

    Google Scholar 

  38. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: AAAI, pp. 580–587 (1998)

    Google Scholar 

  39. Laskey, K.B.: MEBN: a language for first-order Bayesian knowledge bases. Artif. Intell. 172(2–3), 140–178 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 7(58), 1019–1031 (2007)

    Article  Google Scholar 

  41. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason. 45(2), 288–307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7), 852–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. Ann. Math. Artif. Intell. 63(3/4), 385–425 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6, 291–308 (2008)

    Article  Google Scholar 

  45. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Principles of Knowledge Representation and Reasoning, pp. 393–403. AAAI Press (2010)

    Google Scholar 

  46. Mahoney, S., Laskey, K.B.: Network engineering for complex belief networks. In: Conference on Uncertainty in Artificial Intelligence (1996)

    Google Scholar 

  47. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI, pp. 1062–1068 (2008)

    Google Scholar 

  48. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theor. Comput. Sci. 171(1–2), 147–177 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In: International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  50. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  51. Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL lite subsets based on probabilistic datalog. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 14(1), 17–42 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ochoa-Luna, J.E., Revoredo, K.C., Cozman, F.G.: An experimental evaluation of a scalable probabilistic description logics approach for semantic link prediction. In: International Workshop on Uncertainty Reasoning for the Semantic Web, Shangai, China, pp. 63–74 (2012). http://ceur-ws.org

  53. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  54. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)

    Google Scholar 

  55. Polastro, R., Corrêa, F., Cozman, F., Okamoto Jr., J.: Semantic mapping with a probabilistic description logic. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010. LNCS (LNAI), vol. 6404, pp. 62–71. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  56. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64, 81–129 (1993)

    Article  MATH  Google Scholar 

  57. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1/2), 7–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  58. Poole, D.: First-order probabilistic inference. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 985–991 (2003)

    Google Scholar 

  59. Predoiu, L., Stuckenschmidt, H.: Probabilistic models for the semantic web. In: Ma, Z., Wang, H. (eds.) The Semantic Web for Knowledge and Data Management: Technologies and Practices, pp. 74–105. IGI Global, Hershey (2009)

    Chapter  Google Scholar 

  60. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  61. Rettinger, A., Losch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web - statistical learning for next generation knowledge bases. Data Min. Knowl. Disc. 24, 613–662 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  62. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  63. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic ontologies. In: International Workshop on Uncertainty Reasoning for the Semantic Web, pp. 1–12 (2012)

    Google Scholar 

  64. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391–454 (2001)

    MATH  MathSciNet  Google Scholar 

  65. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: International Joint Conference on Artificial Intelligence, pp. 466–471 (1991)

    Google Scholar 

  66. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48, 1–26 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  67. Sebastiani, F.: A probabilistic terminological logic for modelling information retrieval. In: Croft, W.B., van Rijsbergen, C.J. (eds.) International ACM Conference on Research and Development in Information Retrieval (SIGIR), Dublin, Ireland, pp. 122–130. Springer, London (1994)

    Google Scholar 

  68. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: AAAI, pp. 1094–1099 (2008)

    Google Scholar 

  69. Staker, R.: Reasoning in expressive description logics using belief networks. In: International Conference on Information and Knowledge Engineering, pp. 489–495 (2002)

    Google Scholar 

  70. Taghipour, N., Fierens, D., Van den Broeck, G., Davis, J., Blockeel, H.: Completeness results for lifted variable elimination. In: International Conference on Artificial Intelligence and Statistics, pp. 572–580 (2013)

    Google Scholar 

  71. Thomas, A., Spiegelhalter, D., Gilks, W.: BUGS: a program to perform Bayesian inference using Gibbs sampling. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics, vol. 4. Oxford University Press, Oxford (1992)

    Google Scholar 

  72. van den Broeck, G.: On the completeness of first-order knowledge compilation for lifted probabilistic inference. In: Neural Processing Information Systems (2011)

    Google Scholar 

  73. van den Broeck, G., Choi, A., Darwiche, A.: Lifted relax, compensate and then recover: from approximate to exact lifted probabilistic inference. In: Conference on Uncertainty in Artificial Intelligence (2012)

    Google Scholar 

  74. Wellman, M.P., Breese, J.S., Goldman, R.P.: From knowledge bases to decision models. Knowl. Eng. Rev. 7(1), 35–53 (1992)

    Article  Google Scholar 

  75. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51, 2282–2312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. Yelland, P.M.: Market analysis using a combination of Bayesian networks and description logics. Technical Report SMLI TR-99-78, Sun Microsystems Laboratories (1999)

    Google Scholar 

Download references

Acknowledgements

The first author was partially supported by CNPq. The second author was supported by FAPESP. The work reported here has received substantial support by FAPESP grant 2008/03995-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio G. Cozman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cozman, F.G., Polastro, R.B., Takiyama, F.I., Revoredo, K.C. (2014). Computing Inferences for Relational Bayesian Networks Based on \(\mathcal {ALC}\) Constructs. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web III. URSW URSW URSW 2012 2011 2013. Lecture Notes in Computer Science(), vol 8816. Springer, Cham. https://doi.org/10.1007/978-3-319-13413-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13413-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13412-3

  • Online ISBN: 978-3-319-13413-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics