Towards Type-Based Optimizations
in Distributed Applications Using ABS
and JAVA 8

Vlad Serbanescu®), Chetan Nagarajagowda, Keyvan Azadbakht,
Frank de Boer, and Behrooz Nobakht

Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
{vlad. serbanescu,nagaraja,k.azadbakht,frb,behrooz .nobakht}@cwi .nl

Abstract. In this paper we present an API to support modeling appli-
cations with Actors based on the paradigm of the Abstract Behavioural
Specification (ABS) language. With the introduction of JAVA 8, we
expose this API through a JAVA library to allow for a high-level actor-
based methodology for programming distributed systems which sup-
ports the programming to interfaces discipline. We validate this solution
through a case study where we obtain significant performance improve-
ments as well as illustrating the ease with which simple high and low-level
optimizations can be obtained by examining topologies and communica-
tion within an application. Using this API we show it is much easier to
observe drawbacks of shared data-structures and communications meth-
ods in the design phase of a distributed application and apply the nec-
essary corrections in order to obtain better results.

Keywords: Cloud computing - Programming models - Distributed
applications - Formal methods - Optimization

1 Introduction

The Java language is one of the mainstream object oriented programming lan-
guages that supports a programming to interfaces discipline. It has evolved into a
platform to design and implement standards in several domains of both research
and industry, along with supporting its community with new language features
and standards. With application reaching exascale dimensions in terms of data
volumes and requiring a lot of computing power, focus has increased in research-
ing numerous libraries and frameworks with an attempt to provide distribution
and concurrency at the level of Java language. However, it is widely recognized
that the thread-based model of concurrency in Java that is a well-known app-
roach is not appropriate for realizing distributed systems because of its inher-
ent synchronous communication model. A powerful concept on the other hand
is the event-driven actor model of concurrency introduced in [9] which allows
many applications to extend these actors to suit their behaviour. Examples of
these domains include designing embedded systems [5], wireless sensor networks

© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 103-112, 2014.
DOI: 10.1007/978-3-319-13464-2_8



104 V. Serbanescu et al.

[4], distributed web-services [19], multi-core programming [12,18] and delivering
cloud services through SaaS or PaaS [14,17]. Furthermore, it provides the basis
for increasingly popular languages in parallel and distributed computing like
Scala [8]. However, such a language uses an explicit mechanism at application
level to support message passing and handling, which diminishes the general
object-oriented approach of method look-ups that forms the basis of program-
ming to interfaces.

We introduce Java 8 API [15] to program distributed systems and to formalize
actor-based programming which implies asynchronous message passing together
with the evergrowing object-oriented software engineering approach. Using asyn-
chronous message passing and a corresponding actor programming methodology
which abstracts invocation from execution (e.g. thread-based deployment), we
want to fully support and emphasize the programming to interfaces discipline.
The main research question of this paper is to demonstrate that using this API,
several type-based optimizations can be achieved at the design phase as well
as detecting possible bottlenecks in distributed applications using the simple
example of The Sieve of Eratosthenes [3,16]. This is the first step in researching
how to use type-systems to automate optimizations in parallel and distributed
applications.

2 The ABS Language

Our starting point for the actor programming model assumed in this paper is
the Abstract Behavioral Specification language (ABS) introduced in [11]. ABS
offers programmers several features such as asynchronous method calls, futures
to control these calls, interfaces for encapsulation and cooperative scheduling of
method invocations inside concurrent (active) objects. Specifically any object
created in ABS represents an actor with encapsulated data. Similar to JAVA,
their behaviour and state is defined by implementing interfaces with their cor-
responding methods. Thus they interact by making asynchronous calls to these
methods which generate messages that are pushed into a queue specific to each
actor. An actor progresses by taking a message out of its queue and process-
ing it by executing its corresponding method. This feature combination results
in a concurrent object-oriented model which is inherently compositional. The
simplicity of ABS results from the fact that each actor is viewed as a separate
processor making it very suitable for modeling distributed applications similar to
MPI [6], with the added benefit of specifying a distinct behaviour for each actor
without the connectivity issue. Finally asynchronous method calls use futures as
dynamically generated references to return values.

3 The ABS-API Library

In this section we focus on the features in Java 8 that allow us to have an efficient
and easy to use implementation of the actor model in ABS. First, methods in
an interface are declared as Defender Methods using the default keyword. This



Towards Type-Based Optimizations in Distributed Applications 105

allows actors to have a default behaviour and optionally override this behaviour
to suit a specific function. For instance, in Java 8 java.util. Comparator provides
a default method named reversed() that creates a reversed-order comparator of
the original one. Such default method eliminates the need for any implementing
class to provide such behavior by inheritance. Second, the introduction of Java
Functional Interfaces and lambda expressions is a fundamental change in Java
8. All interfaces that contain only one abstract method are now functional inter-
faces that at runtime can be turned into lambda expressions. This means that the
same lambda expression can be statically cast to a different matching functional
interface based on the context. This is a fundamental new feature in Java 8 that
facilitates application of functional programming paradigm in an object-oriented
language. This API makes use of these new features available in JAVA 8 because
many of the interfaces found in the Java libraries are now marked as functional
interfaces, most important of which in this context are java.lang.Runnable and
java.util.concurrent.Callable. This means that a lambda expression can replace
an instance of Runnable or Callable at runtime by JVM. Therefore a lambda
expression equivalent of a Runnable or a Callable can be treated as a queued mes-
sage of an actor and executed. Finally, Java Dynamic Invocation and execution
with method handles enables JVM to support efficient and flexible execution
of method invocations in the absence of static type information. This feature
introduces a new API, available through java.lang.invoke.MethodHandles that
allows translation of a lambda expression in Java 8 at runtime to be executed
by JVM. Furthermore, this feature has been validated performance-wise over
anonymous inner classes and the Java Reflection API. Thus, lambda expressions
are compiled and translated into method handle invocations rather reflective
code or anonymous inner classes.

The ABS-API library has a fundamental interface namely the Actor Inter-
face. Using an interface for an actor allows an object to preserve its own inter-
faces, and also it allows for multiple interfaces to be implemented and composed.
A Java API for the implementation of ABS models should have the following
main features. First, one actor should be able to asynchronously send an arbi-
trary message in terms of a method invocation to a receiver actor. Second, send-
ing a message can optionally generate the equivalent of an ABS future that
the sending actor can use to refer to the return value. Finally, an object dur-
ing the processing of a message should have a context reference to the sender
of a message in order to reply to the message via another message. All these
characteristics must co-exist without requiring any modification of the intended
interface, for an object to act like an actor. The Actor interface provides a set of
default methods, namely the run and send methods, as well as a queue that sup-
ports concurrent features of Java API 5. On one hand, the default run method
takes a message from the queue, checks its type and executes the message cor-
respondingly. On the other hand, the default (overloaded) send method stores
the sent message in the corresponding queue. As mentioned before, in ABS we
use futures to control synchronization. In the ABS-API we model messages that
are expected to return a result as instances of Callable and a future is created



106 V. Serbanescu et al.

by the send method which is returned to the caller, while those messages that
need to run in parallel without a future reference to the outcome are modeled
as instances of Runnable.

4 Case Study

Using our solution, we present in this section a parallelized implementation of
the Sieve of Eratosthenes [3,16]. We aim to illustrate the benefit of using the Java
language to program in an actor-based model while at the same time showing
the performance improvement compared to other actor models, the benefit of
observing certain behaviours in the programming phase, as well as showing that
the actor-based model still performs well when compared to implementations
that apply low-level optimizations. Generating prime numbers is a key factor
in authentication algorithms. With distributed applications running on several
cloud environments, the need to authenticate securely and transparently without
a sizable overhead is constantly increasing. At the same time our case study is
perfect for modeling partitions as actors as well as making it easy to simulate an
application that can work on a multi-core platform using a shared memory or a
distributed platform where communication between actors is key. The Sieve of
Eratosthenes also allows us to illustrate several optimizations that result from
the actor based model, as well as how certain well known optimizations are easy
to apply in this model without significantly increasing the code size and therefore
the design phase of a distributed application.

To model the algorithm using actors we use the well-known partitioning
parallel algorithm and represent each partition as an actor. In this algorithm,
the numbers are partitioned into smaller sequences of numbers with the same
size. Based on this algorithm, the size of each partition must be equal or greater
than(except probably for the last partition) |\/n], and the number of partitions
must be equal or less than [n/|+/n]], where n is the target number. Following the
above-mentioned constraints, the first partition contains all the prime numbers
required to sieve, therefore the first actor in the model will be responsible for
sending asynchronous messages to the others that will invoke the sieving process.
With asynchronous messages written as regular method calls in Java, there is
a significant improvement in the ease of programming compared to a similar
solution that uses specialized directives like in MPI.

We decided to implement a data structure optimization, and therefore use a
BitSet data structure and also half the amount of processing work by eliminating
even numbers. These two optimizations clearly improve results and therefore
needed to be applied before testing our model to other implementations which
have at least these optimizations. We tested our solution on the SurfSara [13]
cluster using a 16 CPU machine with 128 GB of memory. A small example of a
sieve invocation and using a future to synchronize on the result for checking the
correctness of the prime numbers found at the end of the program is given in
the following.



Towards Type-Based Optimizations in Distributed Applications 107

for (Actor s : actors) {

//sieving process invocation for a new prime number
Future<Object> r = this.send(()->{s.sieve(prime)});
futures.add(r);

}

Our main result in this paper is that with just the two standard optimiza-
tions, we obtained instant results for candidates up to 10% and 2.6 s when testing
with 10° candidates. We decided to compare our results to the fastest sieving
algorithm that further has cache-friendly memory management, wheel factoriza-
tion and segmented sieve [20]. Our model is only 10 times slower with the record
program finishing for a target of 10? in 0.26s. What we want to emphasize how-
ever is that the source code size for this record implementation is 505 K compared
to 30 K, the size of the Actor-based model. This significantly improves the ease
of programming even in a simple distributed application. Further comparisons
with other Actor-based models will be discussed in the following section.

4.1 Type-Based Optimization

As discussed before, we aim to use this API to observe certain drawbacks or bot-
tlenecks from the programming phase of the application. In this simple example
it is easy to observe that the number of asynchronous messages sent between
actors is very high. With the API exposed in the Java language we can easily
use a shared data structure to eliminate the messages sent corresponding to each
prime number used to sieve the partitions. While this is something very trivial,
what we actually aim to extract from this ABS-API is the possibility to detect
and automate such optimizations depending on the application that is modeled.
We want to be able to analyze several applications which can be CPU-intensive,
IO-intensive or with multiple memory accesses and be able to detect performance
penalties just like the one above.

5 Experimental Methodologies and Results

The development of multicore CPUs rapidly provides a bigger need for par-
allel and concurrent programming. Currently there are multiple open source
frameworks such as Akka, Erlang, Scala, Finagle, Storm, Hadoop, Ruby, Go
Language, Hive and Pig available for distributed parallel and concurrent pro-
gramming. Further Akka, Finagle, Storm and MapReduce are different elegant
solutions for distributed computing and are based on functional programming
languages. Pig programs are more complex, and can be compiled into an execu-
tion plan consisting of several stages of MapReduce jobs, some of which can run
concurrently. Further Pig and Hive are script based data flow languages and thus
more volatile and harder to debug during programming and provides a higher
level of abstraction for MapReduce programming that is similar to SQL, but it
is procedural code, not declarative. They can be extended with User Defined



108 V. Serbanescu et al.

Functions (UDFs) written in Java, Python, JavaScript, Ruby, or Groovy and
includes tools for data execution but was not ideal for implementing the Sieve
of Eratosthenes case demonstrated in the proposed paper.

Also there are various actor oriented libraries and languages in the existing
techniques for implementing some variant of actor semantics and are based on
object oriented programming languages. The actor oriented languages includes
but are not limited to Erlang, SALSA, E language and AXUM that are based on
message passing. Further one of the important programming models based on
message passing is the Actor model. The Actor model is an inherently concurrent
model based on asynchronous message passing. Moreover the Actor based model
includes many important features such as encapsulation, fair scheduling, loca-
tion transparency, locality of references which makes the actor model a suitable
programming model for distributed parallel and concurrent programming. ABS
is a concurrent, object-oriented modeling language that features functional data
types. The ABS model uses asynchronous method calls, interfaces for encap-
sulation, and cooperative scheduling of method activations inside concurrent
objects. In specific the ABS language is a class-based object-oriented language
that features algebraic data types and side effect-free functions. Also Actors [22]
implement a shared-nothing model for concurrency. A model represents a frag-
ment of the state of sieve, specifically some subset of the primes discovered cur-
rently in the existing techniques. Further the existing open source frameworks
are compared with the ABS model proposed in the paper for performance by
implementing the Sieve of Eratosthenes case using the ABS API.

Currently there is a plurality of concurrent programming languages that
use the Actor-based model approach for computing the primes using Sieve of
Eratosthenes Algorithm. The results obtained from the existing concurrent pro-
gramming languages such as Scala, Erlang and Go Programming Language are
compared with the Actor based model approach implemented for Sieve of Eratos-
thenes Algorithm in the proposed paper. As discussed in the previous section,
the Actor-based model approach proposed in the paper generates primes at 2.6s
until 10° on 16 CPU machines using Sieve of Eratosthenes Algorithm.

In the existing implementation for Sieve of Eratosthenes Algorithm in Ruby
using JRuby and Akka [23], both the controller and model actors are defined
as distinct classes. The message sent between the actors is a list with a leading
symbol and a payload contained in the remainder of the list. The model only
considers a value prime if it does not equal or divide evenly into any previously
observed primes. The Sieve of Eratosthenes algorithm implemented in Ruby
using JRuby and Akka computes primes until 10* in 77.114s. This method was
not effective and the performance was really slow once we got past an upper
bound of about 10,000 numbers.

This follows a similar implementation [21] for the Sieve of Eratosthenes Algo-
rithm in Erlang where tuples are used for sending messages instead of lists. The
Sieve of Eratosthenes algorithm implemented using Erlang calculates primes until
10° in 3.6s. This method was effective for calculating primes until 10, but the
performance was really slow for higher numbers between the range of 107 to 10°.



Towards Type-Based Optimizations in Distributed Applications 109

Further there are other actor-based languages, like Scala which closely follows the
object-oriented model of programming though it has many functional program-
ming features included to support message passing and handling but this method
diminishes the general object-oriented approach of method look-ups that forms
the basis of programming to interfaces.

Further in the existing technique, the Sieve of Eratosthenes Algorithm is
implemented using the Go programming language. Go programming language
[2] is a compiled language that combines some of the syntax of C with some
more dynamic aspects to form a next generation systems programming lan-
guage. One interesting feature of the Go language is the built-in multithreading
feature which is based on channels and goprocesses. For the Sieve of Eratosthenes
implementation using GoLangauge, each time a candidate makes it through the
sieve and is returned as a new prime number. Further a new goroutine is cre-
ated to check future candidates and reject them if they divide evenly by the
new prime. The implementation is not useful as a standalone application since it
includes no termination condition and also there are other disadvantages in the
model as each goroutine knows only about the prime it contains and the channel
where candidates should be sent if they pass. Once the goroutine is created its
state does not change and also new state is added by creating a new goroutine
for a newly-discovered prime and the state is never deleted. Moreover once a
prime is discovered, removing it from consideration is non-sensical due to all
states being completely distributed and no entity in the system knows about all
discovered primes. The Sieve of Eratosthenes algorithm implemented using Go
programming language calculates primes until 107 in 1m 33.62s. This method
was effective for calculating primes until 107 and could be further optimized
using the Wheel Factorization optimization technique which in turn provided
better time performance and calculated primes in 12s for primes until 107.

Using the approach of the Go Programming Language, we tried the same
modeling in ABS. We created an object which generated candidate numbers and
created new objects with new found primes. The numbers were then sent through
asynchronous messages to objects containing primes up until the last object
which spawned a separate object with the newly found prime. Each object oper-
ated as a separate thread which verified candidate numbers and discarded them.
In this manner we discovered that the JAVA backend of ABS was extremely
costly performance-wise when sending asynchronous messages and creating new
objects. Even after buffering several prime numbers into the same object and
balancing the verification load we still obtained very slow results compared even
to a naive sequential approach. These results are what prompted us to develop
the ABS-API as a layer of translation between ABS and the JAVA backend to
both reduce code size and improve performance.

We also looked at some optimizations possible from the API perspective.
One interesting optimization was using instruction level parallelism by sieving
with more than one prime number at a time. While this is a very trivial task for
this application, we want to investigate the possibility of adjusting the overall
work of an actor as a load balancing technique implemented directly in the



110 V. Serbanescu et al.

coding phase using the ABS-API. Furthermore we want to introduce a notion
of location-awareness to our ABS-API such that actors know when they can
communicate using just reads and writes from a shared data structure and when
actual asynchronous messages need to be passed in between them depending on
the machine that the actors run on. This memory-management optimization is
be a significant benefit to Cloud-distributed applications.

6 Related Work

Our Java ABS-API solution was constructed after looking at several works of
research and development in the domain of actor modeling and implementation
in different languages [10]. We discuss a few languages at the level of modeling
and implementation with more focus on Java and JVM-based efforts. Erlang [1]
is a programming language used to build massively scalable soft real-time sys-
tems with requirements on high availability. It is a functional language, which
extends to its native actors support. Its runtime system has built-in support
for concurrency, distribution and fault tolerance. Erlang provides language-level
features for creating and managing processes with the aim of simplifying concur-
rent programming. The processes in Erlang communicate using message passing
instead of shared variables, which removes the need for locks, but makes all syn-
chronization explicit. Scala [8] is both a functional and object-oriented language
that unifies thread-based and event-based programming model to fill the gap for
concurrency programming. Like Java it provides the same features for handling
concurrency, but it is not possible to manage and schedule priorities on messages
sent to other actors. We also compared our results to Akka [7] implementation
of the actor model. This toolkit allows to build highly concurrent, distributed,
and fault tolerant event-driven applications on the JVM based on actor model.

7 Conclusions

In this paper, we discussed an implementation of the actor-based ABS modeling
language in Java 8 which uses the basic object-oriented mechanisms, principles
of method look-up and programming to interfaces. We have used the API to
model a simple distributed application that remains performant without apply-
ing specific optimization and fares much better than other actor-based models.
We also showed the functionality of using Java to program distributed applica-
tions as well as making it possible to detect possible optimizations at the design
phase.

The underlying modeling language has an executable semantics and supports
a variety of formal analysis techniques, including deadlock and schedulability
analysis. Further it supports a formal behavioral specification of interfaces to
be used as contracts. As discussed in Sect.4.1 our research will focus on using
type systems to automate optimization, extend our solution to identify resource
usage of programs and communication topologies and apply a corresponding
optimization table from which to eliminate drawbacks and bottlenecks during



Towards Type-Based Optimizations in Distributed Applications 111

code generation. Our future work will also focus on modeling more difficult
distributed applications at testing important cloud features such as reliability,
resource-provisioning, multitenancy and scalability. We also aim to automatically
generate ABS models from Java code which follows the ABS design methodol-
ogy. Model extraction allows industry level applications be abstracted into mod-
els and analyzed for different goals such as deadlock analysis and concurrency
optimization.

References

10.

11.

12.

13.
14.

15.

Armstrong, J., Virding, R., Wikstrém, C., Williams, M.: Concurrent Programming
in Erlang. Morgan Kaufmann, San Francisco (1993)

Balbaert, I.: The Way to Go: A Thorough Introduction to the Go Programming
Language. IUniverse, Bloomington (2012)

Bokhari, S.H.: Multiprocessing the sieve of Eratosthenes. Computer 20(4), 50-58
(1987)

Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation
environment for TinyOS-based wireless sensor networks. In: SenSys, vol. 5, pp.
302-302 (2005)

Geoffray, N., Thomas, G., Folliot, B., Clément, C.: Towards a new isolation abstrac-
tion for OSGI. In: Proceedings of the 1st Workshop on Isolation and Integration
in Embedded Systems, pp. 41-45. ACM (2008)

Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface, vol. 1. MIT press, Cambridge (1999)

Haller, P.: On the integration of the actor model in mainstream technologies: the
scala perspective. In: Proceedings of the 2nd edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, pp. 1-6. ACM (2012)

Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2), 202-220 (2009)

Hewitt, C.: Procedural embedding of knowledge in planner. In: IJCAI, pp. 167-184
(1971)

Imam, S.M., Sarkar, V.: Integrating task parallelism with actors. In: ACM SIG-
PLAN Notices, vol. 47, pp. 753-772. ACM (2012)

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142-164. Springer, Heidelberg (2011)

Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:
a comparative analysis. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, pp. 11-20. ACM (2009)
https://surfsara.nl/

Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: Blobseer: next-
generation data management for large scale infrastructures. J. Parallel Distrib.
Comput. 71, 169-184 (2011). http://dx.doi.org/10.1016/j.jpdc.2010.08.004
Nobakht, B., de Boer, F.S.: Programming with actors in Java 8. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 37-53. Springer,
Heidelberg (2014)


https://surfsara.nl/
http://dx.doi.org/10.1016/j.jpdc.2010.08.004

112

16.

17.

18.

19.

20.
21.

22.

23.

V. Serbanescu et al.

O’Neill, M.E.: The genuine sieve of Eratosthenes. J. Funct. Program. 19(01), 95—
106 (2009)

Pierre, G., Stratan, C.: ConPaaS: a platform for hosting elastic cloud applications.
IEEE Internet Comput. 16(5), 88-92 (2012)

Pop, F., Dobre, C., Cristea, V.: Evaluation of multi-objective decentralized schedul-
ing for applications in grid environment. In: Proceedings of 2008 IEEE 4th Inter-
national Conference on Intelligent Computer Communication and Processing, pp.
231-238. IEEE Computer Society, Cluj-Napoca, Romania (2008). ISBN: 978-1-
4244-2673-7

Serbanescu, V.N., Pop, F., Cristea, V., Achim, O.M.: Web services allocation
guided by reputation in distributed SOA-based environments. In: 2012 11th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC), pp. 127—
134. IEEE (2012)

Sieve, F.: http://primesieve.org

Tasharofi, S.: Efficient testing of actor programs with non-deterministic behaviors.
Ph.D. thesis, University of Illinois at Urbana-Champaign (2014)
http://heuristic-fencepost.blogspot.nl/2012/02 /ruby-and-concurrency- maintaining-
purity.html

http://absurdfarce.github.io/blog/2012/01 /05 /ruby-and-concurrency-design-with-
actorsandakka/


http://primesieve.org
http://heuristic-fencepost.blogspot.nl/2012/02/ruby-and-concurrency-maintaining-purity.html
http://heuristic-fencepost.blogspot.nl/2012/02/ruby-and-concurrency-maintaining-purity.html
http://absurdfarce.github.io/blog/2012/01/05/ruby-and-concurrency-design-with-actorsandakka/
http://absurdfarce.github.io/blog/2012/01/05/ruby-and-concurrency-design-with-actorsandakka/

	Towards Type-Based Optimizations in Distributed Applications Using ABS and JAVA 8
	1 Introduction
	2 The ABS Language
	3 The ABS-API Library
	4 Case Study
	4.1 Type-Based Optimization

	5 Experimental Methodologies and Results
	6 Related Work
	7 Conclusions
	References


