
On the Computational Complexity of Policy
Routing

Márton Zubor1,3, Attila Kőrösi1,2,4, and András Gulyás1,2,4 and
Gábor Rétvári1,2,5

1 Budapest University of Technology and Economics, Hungary
2 Department of Telecommunication and Mediainformatics

3 Department of Algebra
4 Hungarian Academy of Science (MTA) Information system research group

5 MTA-BME Future Internet Research Group
{zubor, korosi, gulyas, retvari}@tmit.bme.hu

Abstract. With the advent of new network architectures, like Software
Defined Networks, the rules governing the way traffic is routed through
the network are becoming increasingly complex. In this paper, we re-
visit the theoretic underpinnings of policy routing in the light of the new
requirements. We show that certain simple but plausible algebraic prop-
erties already induce intractable path selection instances, and we extend
the algebraic description of policies for which the related path selection
problem is guaranteed to be tractable with a new class, called polynomial
finite algebras, which captures many real-life application domains.
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1 Introduction
Policy routing is the art and science of determining optimal forwarding paths
under complex operational constraints. Originally in shortest path routing the
rule was simply to pick the least cost path with respect to some additive link
weights, but network operators have increasingly turned towards more sophisti-
cated policies like path reliability and resilience [17], bandwidth and perceived
congestion [8,16], business relations and service level agreements [2], etc. These
routing policies, and the computational complexity of the path selection prob-
lem thereof, are well-understood today, thanks to the theory of routing alge-
bras [4, 5, 14,15].

Recently, however, new routing architectures have surfaced for which today’s
algebraic routing theory does not provide adequate complexity characterization.
Data centers, for instance, operate over starkly optimized topologies and services,
defined by rules significantly more customized than allowed by classical routing
policies. With the emergence of Software Defined Networks (SDN), furthermore,
operators now enjoy complete freedom to shape their routing preferences [9]. A
perfect example of how the seemingly simple problem of calculating the preferred
path between two nodes can become surprisingly complicated is the upcoming
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1. INTRODUCTION

Fig. 1: A classification of routing algebras
based on the algebraic properties of the cor-
responding path selection problem. ND denotes
non-decreasing, SND strongly non-decreasing, M
monotone, PF polinomial fininte and C commu-
tative algebras. Algebras in the gray area can be
solved by the Dijkstra algorithm, and algebras
S, W, WS, SW, R, U , VF , X , SC, SAT , CS,
and Fk, marked with X (or ×), give examples
for tractable (intractable, resp.) routing policies
(see Section 6).

SNDMCNDXSX UXWSXRX WX VFX XXSW×SAT×CS×LX SCX Fk• : • ∈ PF

Service Chaining paradigm [10]. Here, service functions, like intrusion detection,
network address translation, or video transcoding, are realized as standalone
or virtualized middleboxes scattered throughout the network, and packets must
pass through these functions in specific order. In more recent deployments the
particular service realized by a middlebox has become dynamically configurable,
and the policy routing task involves jointly optimizing both the placement of
the services and the forwarding paths themselves [9].

In these routing paradigms packet loops are a fairly natural consequence
of the routing policy itself, something that falls completely outside the model
of classical algebraic policy routing. Even our very capability to compute the
preferred path is under scrutiny now, as it is no longer obvious whether what we
are looking for is in fact a path or a walk. Or, in a similarly troubling scenario,
a network operator might accidentally pose a service chaining rule that, even
though extremely desirable from an operational perspective, happens to induce
an intractable path selection problem, making that policy essentially unrealizable
in practice6. Regrettably, conventional routing theory does not provide sufficient
guidelines to identify such pathologic cases.

The goal of this paper is to take the first steps to extend the theory of policy
routing into this brave new era of networking. Our main goal is to separate
routing policies over which computing the preferred path/walk is “easy” from
those that admit intractable path/walk selection instances. However, instead of
giving piecemeal complexity characterizations for each routing policy we rather
provide a general treatment. In particular,

(i) we describe the algebraic properties that are sufficient and necessary in order
for the optimal walk to coincide with the optimal path;

(ii) we extend the “safe algebraic regime” under which path selection is guaran-
teed to be polynomially tractable; and

(iii) we identify the ensembles of simple algebraic properties that can induce
NP-complete path selection instances.

As a main contribution of the paper, we provide the first ever comprehensive
classification of routing algebras based on the tractability of the related path
selection problem (see Fig. 1 and the discussion in Section 6).

The rest of the paper is organized as follows. First, we introduce the algebraic
model used throughout the paper in Section 2. Then, in Section 3 we reveal the
relation between the preferred walk and preferred path selection problems, in
6 Later in Section 6 we shall show real-life routing policies that exhibit this problem.
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2. AN ALGEBRAIC MODEL FOR POLICY ROUTING

Section 4 we define a new algebraic property, polynomial finite algebras, that
warrants a fast path selection algorithm, in Section 5 we discuss the reverse
case, that is, algebras inducing intractable path selection instances, in Section 6
we highlight important practical consequences of our findings, and finally in
Section 7 we conclude the paper.

2 An algebraic model for policy routing
The network is modeled by a finite, connected graph G(V,E), |V | = n and
|E| = m. An s − t walk is a sequence of nodes q = (s = v1, v2, . . . , vk = t),
where k is the length of the walk and (vi, vi+1) ∈ E : ∀i = 1, . . . , k − 1. A cycle
is a walk with s = t, a path p is a walk that visits a node at most once, and a
preferred walk q∗ is the one that is favored from the set of available s− t walks
Qst according to some predefined policy routing rules.

A concise model for this setting is that of routing algebras [4, 5, 14, 15]. In
this paper, a routing algebra A is defined as a totally ordered monoid with a
compatible infinity element. Formally, A = (W,⊕,�), where W is the set of
(abstract) weights that can be assigned to edges with a special infinity weight
φ ∈W meaning that an edge/walk is not traversable,⊕ is a composition operator
for weights, and � is weight comparison.

Formally, the following properties are presumed.

1. (W,⊕) is a monoid (semigroup with identity) with zero element:
– Closure: w1 ⊕ w2 ∈W for all w1, w2 ∈W .
– Associativity: (w1 ⊕ w2)⊕ w3 = w1 ⊕ (w2 ⊕ w3) for all w1, w2, w3 ∈W .
– Identity element: ∃0 ∈W such 0⊕ w = w ⊕ 0 = w for every w ∈W .
– Zero element: ∃φ ∈W such φ⊕ w = w ⊕ φ = φ for every w ∈W .

2. � is a total order on W with a maximal element:
– Reflexivity: w � w for any w ∈W .
– Anti-symmetry: if w1 � w2 and w2 � w1, then w2 = w1 for any w1, w2 ∈
W .

– Transitivity: if w1 � w2 and w2 � w3, then w1 � w3 for any w1, w2, w3 ∈
W .

– Totality: for all w1, w2 ∈W either w1 � w2 or w2 � w1.
– Maximal element: ∃∞ ∈W such w � ∞ for all w ∈W .

3. � and ⊕ are consistent:
– The zero element for ⊕ is the maximal element for �: φ =∞.

We sometimes use the shorthand notation ab instead of a⊕ b.
Given a walk q = (v1, v2, . . . , vk), we obtain the weight w(q) of q by combining

the weights of its constituent edges:

w(q) =

k−1⊕
i=1

w(vi, vi+1) .

With this notation at hand, the preferred walk q∗ in A between nodes s and
t is simply the one with the smallest weight from the set of all s − t walks Qst
over the relation �. The path selection problem over A can take two alternative
forms, based on whether we allow the output to be a walk or we require it to be
strictly a path.
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3. WHEN PREFERRED PATHS AND WALKS COINCIDE

Definition 1 QA(G, s, t) (Preferred walk computation problem): given a graph
G(V,E) with weight function w : E → W and a node pair s, t ∈ V , return an
s− t walk q∗ so that

w(q∗) � w(q) for all q ∈ Qst . (1)

We further define the preferred-path computation problem PA(G, s, t) simi-
larly as above, whereas we also require the output to be a path. In addition,
with a slight abuse of notation we define the “decision-form” of the problems
QA(G, s, t, b) (PA(G, s, t, b)), where the task is to decide whether a walk q∗ (path
p∗) exists with weight w(q∗) � b (resp. w(p∗) � b) for some given bound b ∈W .
Trivialy, PA(G, s, t, b) is in NP but QA(G, s, t, b) is not necessarily, as the size of
a preferred path is always polynomial as the function of the input but the size
of the preferred walk is not.

The lexicographic product operator is a useful tool to compose complex rout-
ing algebras from simple ones [5]. Given two routing algebras A = (WA,⊕A,�A)
and B = (WB,⊕B,�B), the lexicographic product of A and B is a routing alge-
bra A × B = (W,⊕,�), where the weight composition operator is defined as
(w1, v1)⊕ (w2, v2) = (w1 ⊕A w2, v1 ⊕B v2) for all w1, w2 ∈WA and v1, v2 ∈WB,
and

(w1, v1) � (w2, v2) =

{
v1 �B v2 if w1 =A w2

w1 �A w2 otherwise

One easily checks that shortest path routing corresponds to the algebra S =
(N,∞,+,≤), while widest path routing, where preferred paths are those with
the largest bottleneck capacity, is W = (N, 0,min,≥) [14]. The lexicographic
products of S and W also correspond to practically relevant routing policies:
widest-shortest path routingWS = S×W prefers from the set of shortest paths
the one with the highest free capacity [1], and shortest-widest path SW =W×S,
just contrarily, prefers the shortest from the set of widest paths [8, 16].

3 When preferred paths and walks coincide
Our aim in this paper is to study the computational complexity of the preferred-
walk computation problem QA and the preferred-path computation problem
PA, in order to extend the traditional algebraic characterization to new routing
architectures and policies. For this, first we have to make clear under which
conditions we can at least hope for a solution. This is the goal in this section.

There are the following three cases: (i) there is no solution for QA but for
PA there is (e.g., if A is the shortest path algebra with negative cycles); (ii)
both QA and PA are solvable but the solutions differ (see Fig. 2); and (iii) both
problems are solvable with equal result. Clearly, from a practical standpoint case
(iii) is favorable, as in this case a simple preferred walk computation algorithm
will readily deliver the preferred path as well (after removing cycles). Thus, in
this section we give a sufficient and necessary condition for (iii) to hold.

Consider the following definitions:

– Non-Decreasing (ND): w1 � w1⊕w2 and w1 � w2⊕w1 for every w1, w2 ∈W .
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3. WHEN PREFERRED PATHS AND WALKS COINCIDE

– Strongly Non-Decreasing (SND): non-decreasing with w1⊕w3 � w1⊕w2⊕w3

for every w1, w2, w3 ∈W .
– Monotone (M): w1 � w2 implies w1⊕w3 � w2⊕w3 and w3⊕w1 � w3⊕w2

for every w1, w2, w3 ∈W .
– Commutative (C): w1 ⊕ w2 = w2 ⊕ w1 for every w1, w2 ∈W .
– Polynomial Finite (PF): fA(n) = O(p(n)) where p() is a polynomial and

fA(n) = sup{|B| : B is a subalgebra of A generated by n elements} .

The properties C, ND, and M are familiar from the literature [4, 14]. In
addition, we introduce two new properties.

First, PF formalizes the idea that the subalgebras generated by any small set
of elements of an algebra are not “too large”. In particular, let A = (W,⊕,�) and
let WG ⊂W denote the set from which the links of a graph G take their weights
from (easily, |WG| = O(n)). Then, the number of weights that can be assigned
to any walk of length n is at most fA(n), and the PF property simply requires
that this quantity is polynomial in the size of the network (i.e., n). For example,
in the case of the widest path routing algebra W the weight of a walk will be
one of its constituting link weights, and if there are n different link weights then
the size of their generated algebra is n, hence fW(n) = n. Later, we shall see
that this property is particularly useful to define fast path selection algorithms.

Second, our SND property extends ND to non-commutative algebras. The
ND property in fact guarantees that, at least for commutative algebras, (i) every
preferred path is a preferred walk and (ii) a preferred path can be obtained from
a preferred walk by dropping all cycles7. For non-commutative algebras, however,
we need SND for (i) and (ii) to hold, as shown below. (Note that SND ⇔ ND
over commutative algebras.)

Lemma 1. For any graph G(V,E) with weight function w, if A is SND then
QA(G, s, t) is solvable for any s, t ∈ V .

Proof. First, we introduce some notation. Let Σ be a finite alphabet, let SΣ
denote the set of finite words on Σ, and let (SΣ , /) be a partially ordered set
(poset) where x / y for some x, y ∈ SΣ if x can be obtained from y by deleting
symbols. In addition, we define an antichain of (SΣ , /) as a set R ⊆ SΣ so that
neither x / y nor y / x holds for any x, y ∈ R, x 6= y. We use the following claim
from [7, page 106-107]:

Proposition 1 All antichains of (SΣ , /) are finite.

Now, suppose indirectly that there exists a SND algebra A, a graph G(V,E)
with weight function w, and s, t ∈ V , such that there is no preferred walk from
s to t. Hence, there is an infinite sequence of walks si : i ∈ N in G with w(si) �
w(si+1) and obviously this has an infinite subsequence such that the length of si
is strictly less than that of si+1 for any i ∈ N. By choosing Σ = {w(e) : e ∈ E}
7 Note that the known path selection algorithms (e.g. Dijkstra, Bellmann-Ford [12])
in fact search for a walk, but this walk is guaranteed to also be a path whenever the
underlying routing algebra is SND, like e.g., the shortest-path algebra S.
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4. POLYNOMIAL TIME ALGORITHMS

and applying Proposition 1 to the poset (sn : n ∈ N, /), we find at least one pair
of walks si and sj with i < j and si / sj . Observe that, by i < j and transitivity
of �, we have si � sj . On the other hand, by applying SND repeatedly we have
si � sj , which contradicts si � sj .

Theorem 1 For any graph G(V,E) with weight function w and any s, t ∈ V ,
(i) solution q∗ to QA(G, s, t) and solution p∗ to PA(G, s, t) both exist and (ii)
w(q∗) = w(p∗), if and only if A ∈ SND.

Proof. According to Lemma 1 if A is SND then a solution q∗ to QA always exists.
(PA always has a solution, as the set of s− t paths is finite and � is total.) From
this the statement w(q∗) = w(p∗) will follow, since SND guarantees that deleting
a cycle from q∗ to obtain p∗ cannot increase the weight (see Fig. 2).

To see the reverse direction, observe that if A is not SND then there are
a, b, c ∈ A with abc ≺ ac and then one easily constructs a graph on which
q∗ 6= p∗ (see again Fig. 2).

Corollary 1. If A algebra is PF, then QA(G, s, t, b) is in NP.

Fig. 2: Illustration of the SND property: SND
guarantees that if we remove the cycle(s)
from a preferred A − C walk of weight abc
then what we obtain is a preferred path since
ac � abc. On the other hand, if A is not SND
then abc ≺ ac for some a, b, c ∈ A and on the
above graph the preferred A − C walk abc
does not coincide with the preferred A − C
path ac.

ABCbac

We close this discussion by noting that C∧ND⇒ SND and ND∧M⇒ SND.
The proofs are trivial and omitted here.

4 Polynomial time algorithms
Now, we are in the position to draw the algebraic silhoutette of routing policies
that admit a polynomial time path selection algorithm. This work was spear-
headed by Sobrinho with the following claim [14]:

Proposition 2 If A ∈ ND ∩M, then QA and PA can be solved in polynomial
time by the generalized Dijksta algorithm.

Note that Sobrinho’s algebraic framework differs somewhat from ours, in that
we do not require M neither minimality of 0. However, it is easy to see that ND
implies the minimality of 0, and M and the minimality of 0 imply ND. Also note
that the result holds only if the primitive operations ⊕ and � are O(1). We shall
use this assumption in the rest of the paper.

Sobrinho’s result is important in that it guarantees a polynomial algorithm
for many practically important policies (see Section 6). Unfortunately, it does
not cover some crucial non-monotone cases (like the valley-free routing algebra
of BGP [4]) and many exotic routing policies in SDN and service chaining (again,
see Section 6). Our next result extends the family of routing policies for which
polynomial time algorithm is warranted to the set of polynomial finite algebras.
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4. POLYNOMIAL TIME ALGORITHMS

Theorem 2 If A ∈ PF then for any G(V,E) with weight function w and s, t ∈
V , QA(G, s, t) can be solved in time polynomial in |V |.

Proof. Let B denote the sub-algebra ofA generated by {w(e) : e ∈ E}. Construct
a new unweighted digraph GB(VB, EB) with VB = V ×A and

EB = {((v, a), (u, b)) : a⊕ w(v, u) = b} .

Clearly, there is a walk in GB from (s, 0) to (t, r) if and only if there is a walk
in G from s to t with weight r. Algorithm 1 below uses this observation to solve
QA(G, s, t).
Algorithm 1 Preferred walk computation for PF algebras
1: Determine algebra B.
2: Build graph GB.
3: Run a BFS traversal on GB from (s, 0) to every node in {(t, a) : a ∈ B}.
4: Use binary search over � to find the least element of

{a ∈ B : there is a walk from (s, 0) to (t, a) in GB} .

The complexity of the algorithm is as follows. Let n = |V | and let m = |E|.
Since A is PF and B is generated by m elements, there is a polynomial p(m) so
that |B| = O(p(m)). Easily, line 1 takes |VB| = O(p(m)n) time, line 2 and line 3
run in O(EB) = O((p(m)n)2) time, and finally line 4 terminates in O(log(|B|))
time, so the total running time is a polynomial in n as m = O(n2).

Observe that the PF property guarantees only that we can compute the
preferred walk in polynomial time using Algorithm 1. To actually obtain the
preferred path, we also need the SND property in addition to PF, which, by
Theorem 1, states that the latter can be obtained from the former in polynomial
time by deleting cycles.

The question remains how to actually check whether a particular routing
algebra is PF. Easily, the naive approach will not work as the number of subal-
gebras of a routing algebra can be very large. As we shall see, the below algebraic
properties are particularly useful to detect whether or not an algebra is PF:

– Selective: w1 ⊕ w2 ∈ {w1, w2} for each w1, w2 ∈W .
– Left-condensed: w1 ⊕ w2 = w1 ⊕ w3 for each w1, w2, w3 ∈W .

Lemma 2. If A is a selective then A is PF.

Proof. If A is selective then every subset B ⊆ A is closed under ⊕ and so B is
a subalgebra. Thus, if |B| = n then the subalgebra generated by B is exactly B,
so it also holds n elements and hence fA(n) = n.

Lemma 3. If A is a left-condensed then A is PF.

Proof. Suppose that A is left-condensed and let B ⊆ A such that |B| = n. Then,
the subalgebra generated by B is {0,∞}∪B∪B2, it has at most 2n+2 elements,
and thus fA(n) = 2n+ 2 is again polynomial.

From Lemma 2 it immediately follows that widest path algebraW is PF, due
to it being selective [11].
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Table 1: Algebraic properties and computational complexity (of the preferred
path selection problem) for some routing policies.

Algebra Notation/Definition Properties fA(n) Complexity
Shortest path S = (N,∞,+,≤) ND, M, C, SND – Polynomial
Widest path W = (N, 0,min,≥) ND, M, C, PF, SND n Polynomial
Most reliable path R = ((0, 1], 0, ∗,≥) ND, M, C, SND – Polynomial
Usable path U = ({0, 1}, 0, ∗,≥) ND, M, C, PF, SND 2 Polynomial
Widest-shortest path WS = S ×W ND, M, C, SND – Polynomial
Shortest-widest path SW =W × S ND, C, SND – Polynomial
SAT SAT ND,C, SND 23n + 1 NP-complete
Constrained shortest path CS C – NP-complete
Longest path L = (N,∞,+,≥) M, C – NP-complete
Valley-free routing VF ND, PF, SND 6 Polynomial
Proxy X ND,PF – Polynomial
Static Service-chaining SC PF n(n− 1)/2 Polynomial
Fixed Service-chaining Fk PF, C k + 2 Polynomial

5 NP-hardness results

It seems that the family of routing policies for which a polynomial time path
selection algorithm is available is reassuringly broad. Currently, it is an open
question whether the algebraic characterization provided by Proposition 2 and
Algorithm 1 can be broadened further (see Fig. 1). Below, we argue that this is
non-trivial, because even as simple as commutative and non-decreasing algebras
can already induce intractable path selection instances. Again, our characteriza-
tion is algebraic, which allows us to sidestep piecemeal treatment for each new
policy arising in practice. Instead, we identify entire “unsafe” algebraic regions
where protocol designers may accidentally hit an NP-hard instance.

Theorem 3 There is an algebra A ∈ M ∩ C, so that PA(G, s, t, b) is NP-
complete.

Proof. The well-known NP hard longest path problem [12] can be trivialy for-
malized in this language. L = (N,∞,+,≥).

Theorem 4 There is an algebra A ∈ SND∩C, so that QA(G, s, t, b) and PA(G, s, t, b)
are NP-complete.

Proof. We show an algebra, SAT , and corresponding Karp-reductions 3-SAT ∝
QSAT and 3-SAT ∝ PSAT . Let a ϕ be a 3-CNF formula on some set of boolean
variables X. Note that if x ∈ X then ¬x ∈ X and ∀x ∈ X : ¬(¬x) = x. Let
ϕ be a conjunction on n clauses ϕ1, ..., ϕn and ϕi = ϕi,a ∨ ϕi,b ∨ ϕi,c, where
ϕi,a, ϕi,b, ϕi,c ∈ X for every i = 1, ..., n.

We define SAT as follows. Let S be the power set of X endowed with an
infinity element: S = 2X ∪ {∞}, and let ⊕ be binary operation on S so that

∀a, b ∈ S \ {∞} : a⊕ b =

{
∞ if ∃v ∈ a : ¬(v) ∈ b
a ∪ b otherwise

∀a ∈ S :∞⊕ a = a⊕∞ =∞ .

Since SAT is SND, it is enough to proove that PA(G, s, t, b) is NP -hard.
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We define a multi-graph G(V,E) so that solving QSAT on G solves 3-SAT.
Let V = {0, ..., n}, let E = {e1,a, e1,b, ..., en,b, en,c}, where ei,j is a directed edge
from vi−1 to vi and j ∈ {a, b, c}, and let w : E → SAT be a weight function
so that w(ei,j) = ϕi,j for all i ∈ {1, ..., n} and j ∈ {a, b, c}. Clearly, G can be
built in time polynomial in n. Now, one easily proves the following statement:
the weight of the preferred 0 → n path in G is less then ∞ if and only if ϕ is
satisfiable. This completes the proof.

For convenience, we used a multigraph with parallel arcs in the proof, but it
is trivial to rewrite it in terms of simple graphs by adding an artificial identity
element to SAT and substituting every parallel arc with a two-hop path with
one of the arcs having the identity element as weight. Note also that the NP-hard
constrained shortest path problem (CS), which is also in C ∩ SND, [6] can also
be posed as a path selection problem over a special algebra.

Our results indicate that each of the algebraic regimes ND (and SND), C,
and M contain algebras with intractable path selection instances. Even the re-
strictions SND ∩ C and M ∩ C are unsafe from a practical standpoint, in that
the related path selection problem might easily end up being prohibitive to solve
in practice. This means that designing future routing policies requires extreme
care [13].

As a corollary, we state the following.

Corollary 2. If for a routing policy the preferred path computation problem over
cannot be solved by the Dijkstra algorithm, then the existence of a polynomial
time algorithm is not guaranteed.

6 Discussion

The implications of our results are summarized in Table 1, and Fig. 1 provides
a comprehensive computational complexity classification. Here, SAT is defined
as above, and S, WS, R, U , and W are from the literature [14]. As the latter
five are ND and M, the corresponding path-selection problems are polynomially
tractable by Proposition 2.

An important example for a policy for which the generalized Dijkstra al-
gorithm is not correct is valley-free routing, used extensively in the Internet
inter-domain routing system [4]. Here, links are labeled according to the busi-
ness relationship they represent as either provider (p), customer (c), or peer (r),
and a preferred “valley-free” path is one that does not contain “economically
unreasonable” portions (i.e., cp, cr, rp, or rr sub-paths). This is described by
the algebra VF = (W,⊕,�) (adopted from [4]), where W = {0, c, r, p, prc,∞}
(prc is introduced to maintain associativity), ⊕ is defined by the Cayley table
below, and the precedence is 0 � c � r � p � prc � ∞. Note that VF is not M
nor C, but it is PF so Algorithm 1 warrants the availability of a tractable path
selection algorithm.

We wish to point out that the difference between ND and SND is, although
subtle, not arbitrary. It is often the case in inter-domain routing, for instance,
that some entity c rejects any packet received directly from a unless it has
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also been proxied through a third-party, say, b. In practice, such policy con-
siderations are realized in the control plane, encoded by sophisticated BGP
route filtering rules and BGP communities. The corresponding proxy algebra
is X = ({a, b, c},⊕,�), where ⊕ is the usual concatenation operator with the
restriction that a ⊕ c = ∞ and � is essentially arbitrary8. Then, X is ND but
not SND, as a ⊕ b ⊕ c ≺ ∞ = a ⊕ c, and hence solving PX is far from trivial.
However, it easy to convert X to PF, so again Algorithm 1 warrants polynomial
tractability.

To demonstrate how new architectures bring up exotic new routing algebras,
consider a simple service chaining example [10]. Here there are three functions,
network address translation (n), deep packet inspection (d) and an virus scanning
(v), and each flow must pass through each function exactly once and exactly in
the order n, d, v. The corresponding algebra is SC = ({0, n, d, v, nd, dv, ndv,∞},⊕,�
), where ⊕ is as

⊕ 0 c r p prc ∞
0 0 c r p prc ∞
c c c ∞ ∞ ∞ ∞
r r prc ∞ ∞ ∞ ∞
p p prc prc p prc ∞
prc prc prc ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞

⊕ 0 n d v nd dv ndv ∞
0 0 n d v nd dv ndv ∞
n n ∞ nd ∞ ∞ ndv ∞ ∞
d d ∞ ∞ dv ∞ ∞ ∞ ∞
v v ∞ ∞ ∞ ∞ ∞ ∞ ∞
nd nd ∞ ∞ ndv ∞ ∞ ∞ ∞
dv dv ∞ ∞ ∞ ∞ ∞ ∞ ∞
ndv ndv ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

SC is not ND as n⊕ d⊕ v ≺ n⊕ d, but it is PF so Algorithm 1 again gives a
polynomial time complexity characterization.

In many upcoming service chaining deployments, the exact function realized
by a particular middlebox is not fixed but instead freely configurable by the
network operator or an SDN controller [9]. For instance, a service point may
realize network address translation or deep packet inspection (but not both) at
different points in time, and switching between the two can be done by down-
loading the adequate rules to the middlebox. In this dynamic service chaining
architecture, the preferred-path computation problem PA(G, s, t) involves both
deciding which particular functionality to realize at a particular service point in
G and to actually compute the preferred path itself between s and t. Thinking
of the previous service chaining example, middleboxes are now wild cards, ca-
pable to realize network address translation (n), deep packet inspection (d), or
virus scanning (v), and our task is to find route, from s to t, through exactly 3
middleboxes. Once we have the route, we can switch the traversed middleboxes
to the required functionality.

This scenario perhaps best demonstrates how careful one must be when defin-
ing new routing policies. First, assume that the number of service points k a
packet must traverse is not restricted. In this case, in an n node network we can
easily require the packet to pass through exactly n− 2 service points, and hence
our path selection problem boils down to a Hamiltonian path problem, a famous
8 Note that in our model link weights are assigned to links and not to nodes as would
be needed in this and the subsequent scenarios, but it is easy to convert between the
two cases.
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NP-hard problem. Or, if we require the packet to visit at least k middleboxes we
arrive to the longest path problem L. If, in addition, it is also a requirement to
minimize the cost (or maximize the bandwidth) of the path, then the resultant
algebra is equivalent to L × S (L × W, resp.), problems that seem even more
difficult.

Based on these considerations, it is plausible to impose a strict upper bound
on the number of services a packet is required to visit. Let this bound be k.
The difference from the above setting is that now k is a fixed constant and it
is not allowed to vary with the input, and hence the above simple reductions to
NP-hard problems, where k is part of the input, do not apply. Suppose now that
the task is to route a packet through at most k middleboxes9. Then, we arrive
to the algebra Fk = (W,⊕,�), where W = [0, k] ∪∞ and

a⊕ b =

{
a+ b if a+ b ≤ k
∞ otherwise

∞⊕ a = a⊕∞ =∞ .

The ordering is k � k− 1 � . . . 1 � 0. Easily, Fk is C, and since it is also PF the
path selection problem in this case can be solved with Algorithm 1. Moreover,
the related lexicographic products Fk × S and Fk × W can also be solved in
polynomial time.

Finally, we note that there are some practically important routing policies
which fall outside our characterization. For instance, SW is not M therefore the
Dijkstra algorithm does not work, neither it is PF so Algorithm 1 does apply
either. For this particular case a special algorithm guarantees polynomial time
path selection [16], but further extending the algebraic classification presented
in this paper to the general case (if at all possible) is currently an open problem.

7 Conclusion

Routing theory is often counted as a “cold” research area [3], suggesting that
we can sit back and relax knowing that the major questions that can be raised
in connection with routing are more or less well answered. However, it turns
our that the latest developments concerning the core philisophy of networking
(data centers, SDN, service chaining, etc.) pose considerable challenge for today’s
routing theory. We have shown that new routing policies are emerging at the
near horizon, which may for instance embrace routing loops to facilitate meeting
strict policy considerations, whereas in today’s routing theory loops count as
heresy.

The main message of this paper is to point out that there is still much to
do out there and it is time to rehash routing theory to cope with the upcom-
ing challenges. We have taken the first steps towards realizing this ambitious
goal. We have extended the algebraic policy routing theory with a sufficient
9 The settings when we require the packet to meat at least k middleboxes or exactly
k middleboxes are handled similarly.
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and necessary characterization for the preferred-walk and preferred-path selec-
tion problems to be both solvable with the same output and we have provided
a comprehensive classification of routing policies based on the computational
complexity of the corresponding path selection problem. Our findings indicate
that defining routing policies in these upcoming routing architectures requires
extreme forethought [13], as seemingly simple routing policies, even as simple
as commutative, non-decreasing, and monotone ones, can easily give rise to in-
tractable routing problems.
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