Skip to main content

Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project

  • Conference paper
  • First Online:
Symbiotic Interaction (Symbiotic 2015)

Abstract

Wearable robots (WR) are person-oriented devices, usually in the form of exoskeletons. These devices are worn by human operators to enhance or support a daily function, such as walking. Most advanced WRs for human locomotion still fail to provide the real-time adaptability and flexibility presented by humans when confronted with natural perturbations, due to voluntary control or environmental constraints. Current WRs are extra body structures inducing fixed motion patterns on its user. The main objective of the European Project BioMot is to improve existing wearable robotic exoskeletons exploiting dynamic sensory-motor interactions and developing cognitive capabilities that may lead to symbiotic gait behavior in the interaction of a human with a wearable robot. BioMot proposes a cognitive architecture for WRs exploiting neuronal control and learning mechanisms the main goal of which is to enable positive co-adaptation and seamless interaction with humans. In this paper we present the research that is conducted to enable positive co-adaptation and more seamless interaction of humans and WRs.

This work is partially supported by the Commission of the European Union. FP7-ICT-2013.2.1-611695.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Chichester (2008)

    Book  Google Scholar 

  2. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. J. Mol. Biol. IEEE Trans. Robot. 24(1), 144–158 (2008)

    Article  Google Scholar 

  3. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion - I. Emergence of basic gait. Biol. Cybern. 73(2), 97–111 (1995)

    Article  MATH  Google Scholar 

  4. Lewis, C.L., Ferris, D.P.: Invariant hip moment pattern while walking with a robotic hip exoskeleton. J. Biomech. 44(5), 789–793 (2011)

    Article  Google Scholar 

  5. Stephen, C., Keith, G., Daniel, F.: Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J. NeuroEng. Rehabil. 4, 48 (2007)

    Article  Google Scholar 

  6. Aguirre-Ollinger, G., Colgate, J.E., Peshkin, M.A., Goswami, A.: Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. Int. J. Robot. Res. 30(4), 486–499 (2011)

    Google Scholar 

  7. Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil./Assoc. Acad. Physiatrists 91(11), 911–921 (2012)

    Article  Google Scholar 

  8. Ramachandran, P.: From science fiction to reality: exoskeletons. Life in Action 1(3), 20–21 (2011)

    Google Scholar 

  9. Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor control programs and walking. Neuroscientist 12(4), 339–348 (2006)

    Article  Google Scholar 

  10. McGowan, C.P., Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: adaptations to altered mechanical demands. J. Biomech. 43(3), 412–419 (2010)

    Article  Google Scholar 

  11. Ivanenko, Y.P., Grasso, R., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F.: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol. 90(5), 3555–3565 (2003)

    Article  Google Scholar 

  12. Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–3437 (2006)

    Article  Google Scholar 

  13. Ivanenko, Y.P., Cappellini, G., Poppele, R.E., Lacquaniti, F.: Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur. J. Neurosci. 27(12), 3351–3368 (2008)

    Article  Google Scholar 

  14. Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5), 751–766 (2006)

    Article  Google Scholar 

  15. Fitzsimmons, N.A., Lebedev, M.A., Peikon, I.D., Nicolelis, M.A.L.: Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front. Integr. Neurosci. 3(3), 1–19 (2009)

    Google Scholar 

  16. Castermans, T., Duvinage, M.: Corticomuscular coherence revealed during treadmill walking: further evidence of supraspinal control in human locomotion. J. Physiol. 591, 1407–1408 (2013)

    Article  Google Scholar 

  17. Petersen, T.H., Willerslev-Olsen, M., Conway, B.A., Nielsen, J.B.: The motor cortex drives the muscles during walking in human subjects. J. Physiol. 590, 2443–2452 (2012)

    Article  Google Scholar 

  18. Severens, M., Nienhuis, B., Desain, P., Duysens, J.: Feasibility of measuring event related desyncronization with electroencephalography during walking. In: International Conference of the IEEE EMBS, pp. 2764–2767 (2012)

    Google Scholar 

  19. Presacco, A., Goodman, R., Forrester, L., Contreras-Vidal, J.L.: Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 160(4), 1875–1887 (2011)

    Article  Google Scholar 

  20. Collins, S.H., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 18(307), 1082–1085 (2005)

    Article  Google Scholar 

  21. Alexander, R.: Three uses of springs in legged locomotion. Int. J. Robot. Res. (Special Issue on Legged Locomotion) 9(2), 53–61 (1990)

    Article  Google Scholar 

  22. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE International Workshop on Intelligent Robots and Systems (IROS 1995), Pittsburg, USA, pp. 399–406 (1995)

    Google Scholar 

  23. Van Ham, R., Sugar, T.G., Vanderborght, B., et al.: Compliant actuator designs review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  24. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  25. Farina, D., Negro, F.: Accessing the neural drive to muscle and translation to neurorehabilitation technologies. IEEE Rev. Biomed. Eng. 5, 3–14 (2012)

    Article  Google Scholar 

  26. Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7, 12 (2012)

    Article  Google Scholar 

  27. Higginson, J.S., Ramsay, J.W., Buchanan, T.S.: Hybrid models of the neuromusculoskeletal system improve subject-specificity. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 226(2), 113–119 (2011)

    Article  Google Scholar 

  28. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)

    Article  Google Scholar 

  29. Kuniyoshi, Y., Sangawa, S.: Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model. Biol. Cybern. 95, 589–605 (2006)

    Article  MATH  Google Scholar 

  30. Shimoda, S., Kimura, H.: Bio-mimetic approach to tacit learning based on compound control. IEEE Trans. Syst. Man Cybern.-Part B. 40, 77–90 (2010)

    Article  Google Scholar 

  31. Matsubara, K., Morimoto, J., Nakanishi, J., Sato, M., Doya, K.: Learning CPG-based biped locomotion with a policy gradient method. Robot. Auton. Syst. 54(11), 911–920 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moreno, J.C. et al. (2014). Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds) Symbiotic Interaction. Symbiotic 2015. Lecture Notes in Computer Science(), vol 8820. Springer, Cham. https://doi.org/10.1007/978-3-319-13500-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13500-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13499-4

  • Online ISBN: 978-3-319-13500-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics