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Abstract. In the first part of this work we study the following question:
Given two k-colorings α and β of a graph G on n vertices and an integer
�, can α be modified into β by recoloring vertices one at a time, while
maintaining a k-coloring throughout and using at most � such recoloring
steps? This problem is weakly PSPACE-hard for every constant k ≥ 4.
We show that the problem is also strongly NP-hard for every constant
k ≥ 4 and W[1]-hard (but in XP) when parameterized only by �. On the
positive side, we show that the problem is fixed-parameter tractable when
parameterized by k + �. In fact, we show that the more general problem
of �-length bounded reconfiguration of constraint satisfaction problems
(CSPs) is fixed-parameter tractable parameterized by k + � + r, where
r is the maximum constraint arity and k is the maximum domain size.
We show that for parameter �, the latter problem is W[2]-hard, even for
k = 2. Finally, if p denotes the number of variables with different values
in the two given assignments, we show that the problem is W[2]-hard
when parameterized by � − p, even for k = 2 and r = 3.

1 Introduction

For any graph G and integer k, the k-Color Graph Ck(G) has as vertex set all
(proper) k-colorings of G, where two colorings are adjacent if and only if they
differ on exactly one vertex. Given an integer k and two k-colorings α and β of
G, the Coloring Reachability problem asks if there exists a path in Ck(G) from α
to β. This is a well-studied problem, which is known to be solvable in polynomial
time for k ≤ 3 [7], and PSPACE-complete for every constant k ≥ 4, even for
bipartite graphs [3]. For any k ≥ 4, examples have been explicitly constructed
where any path from α to β has exponential length [3]. On the other hand, for
k ≤ 3, the diameter of components of Ck(G) is known to be polynomial [7].
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Similar questions can be formulated for almost any search problem: After
defining a symmetric adjacency relation between solutions, the reconfiguration
graph for a problem instance has as vertex set all solutions, with undirected
edges defined by the adjacency relation. Such reconfiguration questions have
received considerable attention in recent literature; see e.g. the survey by Van
den Heuvel [13]. The most well-studied questions are related to the complexity
of the reachability problem: Given two solutions α and β, does there exist a path
from α to β in the reconfiguration graph? In most cases, the reachability problem
is PSPACE-hard in general, although polynomial-time solvable restricted cases
can be identified. For PSPACE-hard cases, it is not surprising that shortest
paths between solutions can have exponential length. More surprisingly, for most
known polynomial-time solvable cases, shortest paths between solutions have
been shown to have polynomial length. Results of this kind have for instance been
obtained e.g. for the reachability of independent sets [4,17], vertex covers [19],
shortest paths [1,2,16], or Boolean satisfiability (SAT) assignments [12].

There are various motivations for studying reconfiguration problems [13], and
for studying Coloring Reachability in particular (see [6,13,14]). For example,
reconfiguration problems model dynamic situations in which we seek to trans-
form a solution into a more desirable one, maintaining feasibility during the
process (see [14] for such an application of Coloring Reachability). However, in
many applications of reconfiguration problems, the existence of a path between
two solutions is irrelevant if every such path has exponential length. So the more
important question is in fact: Does there exist a path between two solutions
of length at most �, for some integer �? Results on such length-bounded reach-
ability questions have been obtained in [2,12,16,19,20]. In some cases where
the existence of paths between solutions can be decided efficiently, one can in
fact find shortest paths efficiently [2,12]. On the other hand, NP-hard cases
have also been identified [16,19]. If we wish to obtain a more detailed picture
of the complexity of length-bounded reachability, the framework of parameter-
ized complexity [9,10] is very useful, where we choose � as parameter. We refer
to [9,10] for an introduction to parameterized complexity and fixed parameter
tractable (FPT) algorithms. A systematic study of the parameterized complex-
ity of reachability problems was initiated by Mouawad et al. [20]. However,
in [20], only negative results were obtained for length-bounded reachability: var-
ious problems were identified where the problem was not only NP-hard, but
also W[1]-hard, when parameterized by � (or even when parameterized by k + �,
where k is another problem parameter). In this paper, we give a first example
of a length-bounded reachability problem that is NP-hard, but admits an FPT
algorithm. Another example, namely Length-Bounded Vertex Cover Reachabil-
ity on graphs of bounded degree, was very recently obtained by Mouawad et al.
in [19].

Our Results. We first study the Length-Bounded Coloring Reachability
(LBCR) problem: Given is a graph G on n vertices, nonnegative integers k and
�, and two k-colorings α and β of G. The question is whether Ck(G) contains a
path from α to β of length at most �. We fully explore how the complexity of
the above problem depends on the problem parameters k and � (when viewed
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as input variables or constants/parameters). Using a reduction from Coloring
Reachability [3], LBCR is easily observed to be PSPACE-hard in general, for
any constant k ≥ 4: Since there are at most kn different k-colorings of a graph
on n vertices, a path from α to β exists if and only if there exists one of length
at most kn. Nevertheless, this only establishes weak PSPACE-hardness, since
the chosen value of � = kn is exponential in the instance size. In other words, if
we require that all integers are encoded in unary, then this is not a polynomial
reduction. And indeed, the complexity status of the problem changes under that
requirement; in that case, LBCR is easily observed to be in NP. In Sect. 3, we
show that LBCR is in fact NP-complete when � is encoded in unary, or in other
words, it is strongly NP-hard. On the positive side, in Sect. 4, we show that the
problem can be solved in time O(2k(�+1) · �� · poly(n)). This establishes that
LBCR is fixed parameter tractable (FPT) when parameterized by k + �. (We
remark that this result was also obtained independently by Johnson et al. [15].
The algorithm in [15] is very different however.) One may ask whether the prob-
lem is still FPT when only parameterized by �. In Sect. 3 we show that this
is not the case (unless W[1]=FPT), by showing that LBCR is W[1]-hard when
only parameterized by �. We observe however that a straightforward branching
algorithm can solve the problem in time nO(�), hence in polynomial time for any
constant �. In other words, LBCR is in XP, parameterized by �.

Our algorithmic results hold in fact for a much larger class of problems: In a
constraint satisfaction problem (CSP), we are given a set X of n variables, which
all can take on at most k different values. In addition, a set C of constraints is
given, all of arity at most r. Every constraint consists of a subset T ⊆ X of vari-
ables with |T | ≤ r, and a set of allowed value combinations for these variables. A
k-coloring can be seen as a CSP solution, where the edges correspond to binary
constraints, stating that the two incident vertices/variables cannot have the same
color/value. The Length-Bounded CSP Reachability (LBCSPR) problem asks,
given two satisfying variable assignments α and β for a CSP instance (X, k, C),
whether there exists a path from α to β of length at most �. (Two solutions
are adjacent if they differ in one variable. See Sect. 4 for precise definitions.) In
Sect. 4, we give our main result: an FPT algorithm for LBCSPR, parameterized
by �+k+r. This result has many implications, besides the aforementioned result
for LBCR: For instance, it follows that Length-Bounded Boolean SAT Reachabil-
ity is FPT, parameterized by � + r. In addition, it implies that Length-Bounded
Shortest Path Reachability is FPT, parameterized by �+ k, where k is an upper
bound on the number of vertices in one distance layer (See [12] resp. [1,2,16]
for more details on these problems). This result prompts two further questions:
Firstly, is it possible to also obtain an FPT algorithm for LBCSPR for para-
meter � + k? Secondly, clearly any reconfiguration sequence from α to β has
length at least p, where p = |{x ∈ X | α(x) �= β(x)}. Is it also possible to
obtain an FPT algorithm for LBCSPR for parameter (�−p)+k + r? (This is an
above-guarantee parameterization). In Sect. 5, we give two W[2]-hardness results
that show that the answer to these questions is negative (unless FPT= W[2]).
These W[2]-hardness results hold in fact for the restricted case of Boolean SAT
instances with only Horn clauses. Together, these hardness results show that
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Table 1. Complexity of LBCSPR for different parameterizations

Parameter: Complexity:

k + � + r FPT

k + r para-NP-complete (� unary) / para-PSPACE-complete (� binary)

(already for k = 4, r = 2; Coloring instances)

k + � W[2]-hard (already for k = 2; Horn SAT instances), in XP

r + � W[1]-hard (already for r = 2; Coloring instances), in XP

k + r + � − p W[2]-hard (already for k = 2, r = 3; Horn 3SAT instances)

our FPT result for LBCSPR is tight (assuming FPT �= W [1]): to obtain an
FPT algorithm, all three variables �, k, and r need to be part of the parameter.
See also Table 1, which summarizes our results, and the complexity status of
LBCSPR for all different parameterizations in terms of �, k, r and p. (Omitted
parameter combinations follow directly from the given rows.)

2 Preliminaries

For general graph theoretic definitions, we refer the reader to the book of
Diestel [8]. Let u and v be vertices in a graph G. A pseudowalk from u to
v of length � is a sequence w0, . . . , w� of vertices in G with w0 = u, w� = v,
such that for every i ∈ {0, . . . , � − 1}, either wi = wi+1 or wiwi+1 ∈ E(G).
A k-coloring for a graph G is a function α : V (G) → {1, . . . , k} that assigns
colors to the vertices of G, such that for all uv ∈ E(G), α(u) �= α(v). A graph
that admits a k-coloring is called k-colorable. Pseudowalks in Ck(G) from α to
β are also called k-recoloring sequences from α to β. If there exists an integer k
such that α0, . . . , αm is a k-recoloring sequence, then this is called a recoloring
sequence from α0 to αm.

A k-color list assignment for a graph G is a mapping L that assigns a color list
L(v) ⊆ {1, . . . , k} to each vertex v ∈ V (G). A k-coloring α of G is an L-coloring if
α(v) ∈ L(v) for all v. By C(G,L) we denote the subgraph of Ck(G) induced by all
L-colorings of G, and pseudowalks in C(G,L) are called L-recoloring sequences.
The Length-Bounded L-Coloring Reachability (LB L-CR) problem asks, given
G, L, α, β, and �, where α and β are L-colorings of G, whether there exists an
L-recoloring sequence from α to β of length at most �.

For a positive integer k ≥ 1, we let [k] = {1, . . . , k}. For a function f : D → I
and subset D′ ⊆ D, we denote by f |D′ the restriction of f to the domain D′.
The (unique) trivial function with empty domain is denoted by f∅. Note that
for any function g, g|∅ = f∅. We use poly(x1, . . . , xp) to denote a polynomial
function on variables x1, . . . , xp.

3 Hardness Results for Coloring Reachability

To prove W[1]-hardness for LBCR parameterized by �, we give a reduction from
the t-Independent Set (t-IS) problem. Given a graph G and a positive integer t,
t-IS asks whether G has an independent set of size at least t.
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The t-IS problem is known to be W[1]-hard [9,10] when parameterized by t.
We will also use the following result, which was shown independently by Cere-
ceda [5], Marcotte and Hansen [18] and Jacob [14]: For every pair of k-colorings
α and β of a graph G, there exists a path from α to β in C2k−1(G), and there
are examples where at least 2k − 1 colors are necessary. The graphs constructed
in [5,14,18] to prove the latter result are in fact very similar. We will use these
graphs for our reduction. For any integer k ≥ 1, the graph Bk has vertex set
V (Bk) = {bi

j | i, j ∈ {1, . . . , k}}, and two vertices bi
j and bi′

j′ are adjacent if and
only if i �= i′ and j �= j′. Define two k-colorings αk and βk for Bk by setting
αk(bi

j) = i and βk(bi
j) = j for all vertices bi

j .

Theorem 1 ([5],*)1. Let Bk, αk and βk be as defined above (for k ≥ 1). Then
(i) every recoloring sequence from αk to βk contains a coloring that uses at least
2k − 1 different colors, and (ii) there is a (2k − 1)-recoloring sequence of length
at most 2k2 from αk to βk.

Theorem 2 (*). LBCR is W[1]-hard when parameterized by �.

Proof sketch: For ease of presentation, we give a reduction from the (t − 1)-
IS problem, which remains W[1]-hard. Given an instance (G, t − 1) of (t − 1)-
IS, where G = (V,E) and V = {v1, . . . , vn}, we construct a graph G′ in time
polynomial in |V (G)| as follows. (We will use n + t + 1 colors.)

G′ contains a copy of G and a copy of Bt with all edges between them.
In addition, G′ contains n + t + 1 independent sets C1, . . ., Cn+t+1, each of
size 2t + 2t2 and disjoint from the copies of G and Bt. We say that Ci (for
1 ≤ i ≤ n+ t+1) is a color-guard set, as it will be used to enforce some coloring
constraints; in the colorings we define, and all colorings reachable from them
using at most |Ci| − 1 recolorings, Ci will contain at least one vertex of color i.
We let VG = {g1, . . . , gn}, VB = {bi

j | i, j ∈ {1, . . . , t}}, VC = C1 ∪ . . . ∪ Cn+t+1,
and hence V (G′) = VG ∪VB ∪VC . The total number of vertices in G′ is therefore
n+ t2 +(n+ t+1)(2t+2t2). For every vertex gi ∈ VG, we add all edges between
gi and the vertices in VC \ (Ci ∪ Cn+t+1). Similarly, for every vertex b ∈ VB, we
add all edges between b and the vertices in Cn+t+1. We define α as follows. For
every vertex gi ∈ VG, 1 ≤ i ≤ n, we set α(gi) = i. For every i ∈ {1, . . . , n+ t+1}
and every vertex c ∈ Ci, we set α(c) = i. For every vertex bi

j ∈ VB , we choose
α(bi

j) = n+i. Considering α and the color guard sets, which all have size 2t+2t2,
we conclude that for all recoloring sequences γ0, . . . , γp with p ≤ 2t + 2t2 and
γ0 = α, for every i and j it holds that γj(gi) ∈ {i, n + t + 1}, and for all b ∈ VB

and j it holds that γj(b) �= n+ t+1. Finally, we define the target coloring β. For
every vertex v ∈ VG ∪ VC we set β(v) = α(v). For every vertex bi

j ∈ VB (with
i, j ∈ {1, . . . , t}), we choose β(bi

j) = n + j. So the goal is to change from a ‘row
coloring’ to a ‘column coloring’ for VB , while maintaining the same coloring for
vertices in VG ∪ VC .
1 A star indicates that (additional) proof details will be given in the full version of the

paper.
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It can be shown that Ck(G′) contains a path from α to β of length at most
� = 2t + t2 if and only if G has an independent set S at size at least t − 1: If
there exists such a set S, then these vertices can be recolored to color n + t + 1,
which makes t−1 colors available to recolor VB from a row coloring to a column
coloring. That is, the (2t − 1)-recoloring sequence of length at most 2t2 from
Theorem 1 can be applied. Next, the vertices in G are recolored to their original
color again. This procedure yields β and uses at most 2t + 2t2 recoloring steps
in total. If there exists a recoloring sequence from α to β, then this contains a
coloring γ that assigns at least 2t − 1 different colors to VB (Theorem 1). This
includes at least t − 1 colors that originally appeared in VG, on a vertex set S.
As observed above, these vertices are then all colored with color n + t + 1 in γ,
so they form an independent set with |S| ≥ t − 1. �

Next, we show that the LBCR problem is strongly NP-hard for every fixed
constant k ≥ 4. We give a reduction from the Planar Graph 3-Colorability (P3C)
problem, which is known to be NP-complete [11]. Given a planar graph G, P3C
asks whether G is 3-colorable. In fact we construct an instance of the LB L-CR
problem. It was observed in [3] that an instance (G,L, α, β, �) of the LB L-CR
problem with L(v) ⊆ {1, . . . , 4} for all v is easily transformed to an instance
(G′, α, β, �) of LBCR, for any k ≥ 4, by adding one complete graph on k vertices
xi with i ∈ {1, . . . , k} and α(xi) = β(xi) = i, and edges vxi for every vertex
v ∈ V (G) and i �∈ L(v).

The proof of Lemma 3 makes heavy use of the notion of (a, b)-forbidding
paths and their properties, which were introduced in [3]. Informally, these are
paths that can be added between any pair of vertices u and v (provided that
L(u), L(v) �= {1, . . . , 4}), that function as a special type of edge, which only
excludes the color combination (a, b) for u and v respectively, but allows (recolor-
ing to) any other color combination. For any combination of a, b and L(u), L(v) �=
{1, . . . , 4}, there exists such a path, of length six, with all color lists in {1, . . . , 4}.

Lemma 3 (*). There exists a graph H (on O(1) vertices) with color lists L and
vertices u, v, z ∈ V (H) with L(u) = L(v) = {1, 2, 3} and L(z) = {1, 2, 4}, and
L-coloring α of H with α(u) = α(v) = 1 and α(z) = 4, such that the following
properties hold:

– For every L-coloring γ of H, it holds that γ(z) = 4 or γ(u) �= γ(v).
– For any combination of colors a ∈ L(u), b ∈ L(v) with a �= b, there exists an

L-recoloring sequence from α to an L-coloring γ with γ(u) = a, γ(v) = b and
γ(z) �= 4, of length at most |V (H)|.

Theorem 4. For any constant k ≥ 4, the problem LBCR, with � encoded in
unary, is NP-complete.

Proof: Given an instance G of P3C, we construct an instance (G′, L, �, α, β) of LB
L-CR as follows. Start with the vertex set V (G). All of these vertices u ∈ V (G)
receive color α(u) = 1 and L(u) = {1, 2, 3}. For every edge uv ∈ E(G), add a
copy of the graph H from Lemma 3, where the u-vertex and v-vertex from H
are identified with u and v, respectively. Note that there is no edge between u
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and v in G′. For each uv ∈ E(G), the z-vertex of the corresponding copy of H
is denoted by zuv, and we let Z = {zuv | uv ∈ E(G)}. For these H-subgraphs,
the L-coloring α is as given in Lemma 3. Next, we add a triangle on vertices
a, b, c to G′, with the following colors and lists: α(a) = 1, α(b) = 2, α(c) = 3,
L(a) = {1, 2, 3}, L(b) = {1, 2}, and L(c) = {3, 4}. Add edges from all vertices in
Z to c. This yields the graph G′. Finally, we define the target coloring β. For all
vertices v ∈ V (G′) \ {a, b}, set β(v) = α(v). We set β(a) = 2 and β(b) = 1, so
the goal is to reverse the colors of these two vertices.

We now argue that G is 3-colorable if and only if there exists an L-recoloring
sequence for G′ from α to β of length O(m), where m = |E(G)|. Suppose that
there exists such an L-recoloring sequence. Considering the vertices a, b, and
c, we see that this must contain a coloring γ with γ(c) = 4. This implies that
for every zuv ∈ Z, γ(zuv) ∈ {1, 2}. By Lemma 3, this implies that for every
uv ∈ E(G), γ(u) �= γ(v). Hence γ restricted to V (G) is a 3-coloring of G. On
the other hand, if G is 3-colorable, then we can recolor the vertices of G to such
a 3-coloring, which allows recoloring all vertices zuv to a color different from
4, using O(1) recoloring steps for each H-subgraph, and thus O(m) recoloring
steps in total. This makes it possible to recolor the vertices a, b, and c to their
target color in O(1) steps, and subsequently the other recoloring steps can be
reversed, which gives O(m) steps in total.

Combining this reduction with the fact that we can easily transform the LB
L-CR instance to an LBCR instance, and the NP-hardness of P3C, shows that
LBCR is strongly NP-hard. (This uses the fact that � is polynomial in m.) �

4 An FPT Algorithm for CSP Reachability

We will consider sets of variables B, which all can take on the values D = [k].
The set D is called the domain of the variables. A function f : B → D is called
a value assignment from B to D.2 A set U of value assignments from B to D is
called a VA-set from B to D. Below, we will consider a fixed set X of variables,
and consider VA-sets U for many different subsets B ⊆ X, but always for the
same domain D, so we will omit D from the terminology and simply call U a
VA-set for B, and elements of U value assignments for B.

An instance (X, k, C) of the Constraint Satisfaction Problem (CSP) consists
of a set X of variables, which all have domain D = [k], and a set C of constraints.
Every constraint C ∈ C is a tuple (T,R), where T ⊆ X, and R is a VA-set for
T . The VA-set R is interpreted as the set of all value combinations that are
allowed for the variables in T . A value assignment f : X → D is said to satisfy
constraint C = (T,R) if and only if f |T ∈ R. If f satisfies all constraints in C, f
is called valid (for C). CSP is a decision problem where the question is whether
there exists a valid value assignment.

2 Considering the function f , it is perhaps a little confusing to call D the domain, but
this conforms with the terminology used in the context of CSPs.
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We remark that for many problems that can be formulated as CSPs, the
constraints (T,R) ∈ C are not explicitly given, since R would usually be pro-
hibitively (exponentially) large. Instead, a simple and efficient algorithm is given
that can verify whether the constraint is satisfied. The factor g(C) in our com-
plexity bounds accounts for this.

In order to study reconfiguration questions for CSPs, we define two distinct
value assignments α : X → D and β : X → D to be adjacent if they differ on
exactly one variable v ∈ X (so, expressed differently: if there exists a v ∈ X
such that α|X\{v} = β|X\{v}). For a CSP instance (X, k, C), the solution graph
CSPk(X, C) has as vertex set all value assignments from X to [k] that are valid
for C, with adjacency as defined above. Pseudowalks in CSPk(X, C) are called
CSP sequences for (X, k, C). We consider the following problem.

Length-Bounded CSP Reachability (LBCSPR):
Instance: A CSP instance (X, k, C), two valid value assignments α and β for
X and [k], and an integer �.
Question: Does CSPk(X, C) contain a path from α to β of length at most �?

For every constant �, the LBCSPR problem can be solved in polynomial
time, using the following simple branching algorithm. Denote the given instance
by (X, k, C, α, β, �), with |X| = n. Start with the initial value assignment α. For
every value assignment generated by the algorithm, consider all adjacent value
assignments in CSPk(X, C). Recurse on these choices, up to a recursion depth
of at most �. Return yes if and only if in one of the recursion branches, the
target value assignment β is obtained. Clearly, this algorithm yields the correct
answer. One value assignment has at most kn neighbors, so branching with depth
� shows that at most O((kn)�) value assignments will be considered. This proves
the claim, or in other words: for parameter �, the problem is in XP.

We let S = {x ∈ X | α(x) �= β(x)}. Clearly, when |S| > � we have a no-
instance and when |S| = 0 we have a trivial yes-instance. To obtain an FPT
algorithm, the main challenge that we need to overcome is that the number of
variables that potentially need to be reassigned cannot easily be bounded by a
function of �. However, once we know the set B of variables which will change
at least once, the problem can be solved using a branching algorithm similar
to the one above. Let S = γ0, . . . , γ� be a CSP sequence for a CSP instance
(X, k, C). For a set B ⊆ X, the set of B-variable combinations used by S is
Used(S, B) = {γi|B : i ∈ {0, . . . , �}}. Let U be a VA-set for B. We say that
S follows U if Used(S, B) ⊆ U . A branching algorithm can be given for the
following variant of LBCSPR, which is restricted by choices of B and U .

Lemma 5 (*). Let (X, k, C, α, β, �) be an LBCSPR instance, and let g(C) be the
complexity of deciding whether a given value assignment for X satisfies C. Let
B ⊆ X, and U be a VA-set for B. Let L(x) = {f(x) | f ∈ U} for all x ∈ B, and
p =

∑
x∈B(|L(x)| − 1). Then there exists an algorithm ListCSPreconfig with

complexity O(p� · g(C) · poly(|U |, |X|)), that decides whether there exists a CSP
sequence S for (X, k, C) from α to β of length at most � in which only variables
in B are changed, with Used(S, B) ⊆ U .
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Algorithm 1. CSPReconfig(X, k, C, α, β, �)
Input: A variable set X = {x1, . . . , xn} with domains [k], a set C of constraints
on X, valid value assignments α : X → [k] and β : X → [k], and integer � ≥ 0.
Output: “YES” if and only if there exists a CSP sequence of length at most �
from α to β.

1: S := {x ∈ X | α(x) �= β(x)}
2: if |S| > � then return NO
3: if |S| = 0 then return YES

4: return Recurse(∅, {f∅}, {f∅})

Subroutine Recurse(B, U, L):

5: if
∑

v∈B(|L(v)| − 1) > � then return NO
6: if S ⊆ B and there are no critical constraints for U , B and α then
7: return ListCSPreconfig(X, k, C, α, β, �, B, U).
8: if not S ⊆ B then
9: Let i be the lowest index such that xi ∈ S \ B
10: NewVar := {xi}
11: else
12: choose a critical constraint (T, R) ∈ C for U , B and α.
13: NewVar := T \ B
14: for all x ∈ NewVar:
15: B′ := B ∪ {x}
16: for all VA-sets U ′ for B′ that extend U , with |U ′| ≤ � and {α|B′ , β|B′} ⊆ U ′:
17: L(x) := {f(x) | f ∈ U ′}
18: if |L(x)| ≥ 2 then
19: if Recurse(B′, U ′, L)=YES then return YES
20: return NO

It remains to give a branching algorithm that, if there exists a CSP sequence
S of length at most �, can determine a proper guess for the sets B of variables
that are changed in S, and U = Used(S, B). Clearly, S ⊆ B should hold, so we
start with B = S, and we first consider all possible VA-sets U for this B. We will
say that a constraint C = (T,R) is critical for B, U and α if there exists an f ∈ U
such that the (unique) value assignment g : X → D that satisfies g|B = f and
g|X\B = α|X\B does not satisfy C. Note that in this case, if we assume that the
combination of values f occurs at some point during the reconfiguration, then
for at least one variable in T \B, the value must change before this point, so one
such variable should be added to B, which yields a new set B′. Let B ⊆ B′ ⊆ X,
and let U and U ′ be VA-sets for B and B′, respectively. We say that U ′ extends
U if U = {f |B : f ∈ U ′}. In other words, if U and U ′ are interpreted as
guesses of value combinations that will occur during the reconfiguration, then
these guesses are consistent with each other.

For given B ⊆ X and VA-set U for B, we let L(x) = {f(x) | f ∈ U}
for all x ∈ B. If

∑
x∈B(|L(x)| − 1) > � then the set U cannot correspond to

the set Used(S, B) for a CSP sequence S of length at most �, so this guess
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can be safely ignored. On the other hand, if a guess of B and U is reached
where

∑
x∈B(|L(x)| − 1) ≤ � and there are no critical constraints, then the

aforementioned ListCSPreconfig algorithm can be used to test whether there
exists a corresponding CSP sequence. Using these observations, it can be shown
that Algorithm 1 correctly decides the LBCSPR problem.

It is relatively easy to see that the total number of recursive calls made by this
algorithm is bounded by some function of �, k and r, where r = max(T,R)∈C |T |.
Indeed, Line 18 guarantees that for every recursive call, the quantity

∑
v∈B

(|L(v)| − 1) increases by at least one, so the recursion depth is at most � + 1
(see Line 5). The number of iterations of the for-loops in Lines 14 and 16 is
bounded by r−1, and by some function of � and k, respectively. This shows that
Algorithm 1 is an FPT algorithm for parameter k + � + r. Using a sophisticated
analysis, one can prove the following bound on the complexity.

Theorem 6 (*). Let (X, k, C, α, β, �) be an LBCSPR instance. Then in time
O(

(r − 1)� · k�(�+1) · �� · g(C) · poly(k, �, n)
)
, it can be decided whether there exists

a CSP sequence from α to β of length at most �, where r = max(T,R)∈C |T | and
n = |X|, and where g(C) denotes the time to find a constraint in C that is not
satisfied by a given value assignment, if such a constraint exists.

This result implies e.g. FPT algorithms for LBCR (for parameter k + �), and
Length-Bounded Boolean SAT Reachability (for parameter � + r). In fact, for
CSP problems with binary constraints such as LBCR, the complexity can be
improved, since it suffices to guess only the lists L(x) for each vertex/variable
x, instead of all value combinations U .

Theorem 7 (*). Let G, k, α, β, � be a LBCR instance, with n = |V (G)|. There
is an algorithm with complexity O(2k(�+1) ·�� ·poly(n)) that decides whether there
exists a k-recoloring sequence from α to β for G of length at most �.

5 Hardness Results for CSP Reachability

We give two W[2]-hardness results. These hold in fact for very restricted types
of CSP instances. A CSP instance (X, k, C) is called a Horn-SAT instance if
k = 2, and every constraint in C can be formulated as a Boolean clause that
uses at most one positive literal. (As is customary in Boolean satisfiability, we
assume in this case that the variables can take on the values 0 and 1 instead.)
The Length-Bounded Horn-SAT Reachability problem is the LBCSPR problem
restricted to Horn-SAT instances. The even more restricted problem where all
clauses have three variables is called Length-Bounded Horn-3SAT Reachability.

In both proofs, we will give reductions from the W[2]-hard p-Hitting Set
problem. A p-Hitting Set instance (U ,F , p) consists of a finite universe U , a
family of sets F ⊆ 2U , and a positive integer p. The question is whether there
exists a subset U ⊆ U of size at most p such that for every set F ∈ F we have
F ∩ U �= ∅. We say that such a set U is a hitting set of F . This problem is
W[2]-hard when parameterized by p [9].
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Theorem 8 (*). Length-Bounded Horn-SAT Reachability is W[2]-hard when
parameterized by �.

Proof sketch: Given an instance (U ,F , p) of p-Hitting Set, we create a variable
xu for each element u ∈ U and two additional variables y1 and y2, for a total
of |U| + 2 variables. For each set {u1, u2, . . . ut} ∈ F , we create a Horn clause
(y1 ∨ y2 ∨ xu1 , xu2 , . . . xut

). Finally, we add an additional clause (y2 ∨ y1). These
clauses constitute a Horn formula H with |F| + 1 clauses. Let α be the satis-
fying assignment for H that sets all its variables to 1, and β be the satisfying
assignment for H that sets y1 = y2 = 0 and all other variables to 1.

Observe that before we can set y2 to 0, y1 has to be set to 0. Moreover,
before y1 can be set to 0, some of the x variables (i.e. variables corresponding
to elements of the universe U) have to be set to 0 to satisfy all the clauses
corresponding to the sets. Using the previous two observations, it can be shown
that F has a hitting set of size at most p if and only there is a CSP sequence of
length at most 2p + 2 from α to β. �

Theorem 8 implies in particular that for LBCSPR, there is no FPT algorithm
when parameterized only by k + �, unless FPT=W[2]. Next, we consider the
“above-guarantee” version of LBCSPR. Given two valid value assignments α
and β for X and [k], we let S = {x ∈ X | α(x) �= β(x)}. Clearly, the length
of any CSP sequence from α to β is least |S|. Hence, in the above-guarantee
version of the problem, instead of allowing the running time to depend on the
full length � of a CSP sequence, we let �̄ = � − |S| and allow the running time
to depend on �̄ only. However, the next theorem implies that no FPT algorithm
for LBCSPR exists, when parameterized by �̄ + k + r, unless W [2] = FPT .

Theorem 9 (*). Length-Bounded Horn-3SAT Reachability is W[2]-hard when
parameterized by �̄ = � − |S|, where S = {x ∈ X | α(x) �= β(x)}.

Proof sketch: Starting from a p-Hitting Set instance (U ,F , p), we first create a
variable xu for every u ∈ U . We let F = {F1, F2, . . . Fm} and {u1, u2, . . . ur} be
a set in F . For each such set in F , we create r new variables y1, y2, . . . yr and
the clauses (y1 ∨ xu1 ∨ y2), (y2 ∨ xu2 ∨ y3), . . ., (yr ∨ xur

∨ y1). We let α be the
satisfying assignment for the formula with all variables set to 1, and let β be the
satisfying assignment with all the xu, u ∈ U , variables set to 1 and the rest set
to 0.

Consider the clauses corresponding to a set {u1, u2, . . . ur} in F , with vari-
ables y1, . . . , yr. None of the y variables can be set to 0 before we flip at least
one x variable to 0. Moreover, after flipping any x variable to 0, we can in fact
flip all y variables to 0, provided this is done in the proper order. Combining the
previous observations with the fact that |S| =

∑m
i=1 |Fi|, it can be shown that F

has a hitting set of size at most p if and only there is a CSP sequence of length
at most

∑m
i=1 |Fi| + 2p from α to β. �
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