The Complexity of Bounded Length Graph Recoloring and CSP Reconfiguration

Paul Bonsma $^{1(\boxtimes)}$, Amer E. Mouawad², Naomi Nishimura², and Venkatesh Raman³

 $\{aabdomou, nishi\}$ @uwaterloo.ca

³ The Institute of Mathematical Sciences, Chennai, India vraman@imsc.res.in

Abstract. In the first part of this work we study the following question: Given two k-colorings α and β of a graph G on n vertices and an integer ℓ , can α be modified into β by recoloring vertices one at a time, while maintaining a k-coloring throughout and using at most ℓ such recoloring steps? This problem is weakly PSPACE-hard for every constant $k \geq 4$. We show that the problem is also strongly NP-hard for every constant $k \geq 4$ and W[1]-hard (but in XP) when parameterized only by ℓ . On the positive side, we show that the problem is fixed-parameter tractable when parameterized by $k + \ell$. In fact, we show that the more general problem of ℓ -length bounded reconfiguration of constraint satisfaction problems (CSPs) is fixed-parameter tractable parameterized by $k + \ell + r$, where r is the maximum constraint arity and k is the maximum domain size. We show that for parameter ℓ , the latter problem is W[2]-hard, even for k=2. Finally, if p denotes the number of variables with different values in the two given assignments, we show that the problem is W[2]-hard when parameterized by $\ell - p$, even for k = 2 and r = 3.

1 Introduction

For any graph G and integer k, the k-Color $Graph \mathcal{C}_k(G)$ has as vertex set all (proper) k-colorings of G, where two colorings are adjacent if and only if they differ on exactly one vertex. Given an integer k and two k-colorings α and β of G, the Coloring Reachability problem asks if there exists a path in $\mathcal{C}_k(G)$ from α to β . This is a well-studied problem, which is known to be solvable in polynomial time for $k \leq 3$ [7], and PSPACE-complete for every constant $k \geq 4$, even for bipartite graphs [3]. For any $k \geq 4$, examples have been explicitly constructed where any path from α to β has exponential length [3]. On the other hand, for $k \leq 3$, the diameter of components of $\mathcal{C}_k(G)$ is known to be polynomial [7].

M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 110-121, 2014.

DOI: 10.1007/978-3-319-13524-3_10

¹ Faculty of EEMCS, University of Twente, Enschede, The Netherlands p.s.bonsma@ewi.utwente.nl

² David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Amer E. Mouawad, Naomi Nishimura—Research supported by the Natural Science and Engineering Research Council of Canada.

[©] Springer International Publishing Switzerland 2014

Similar questions can be formulated for almost any search problem: After defining a symmetric adjacency relation between solutions, the reconfiguration graph for a problem instance has as vertex set all solutions, with undirected edges defined by the adjacency relation. Such reconfiguration questions have received considerable attention in recent literature; see e.g. the survey by Van den Heuvel [13]. The most well-studied questions are related to the complexity of the reachability problem: Given two solutions α and β , does there exist a path from α to β in the reconfiguration graph? In most cases, the reachability problem is PSPACE-hard in general, although polynomial-time solvable restricted cases can be identified. For PSPACE-hard cases, it is not surprising that shortest paths between solutions can have exponential length. More surprisingly, for most known polynomial-time solvable cases, shortest paths between solutions have been shown to have polynomial length. Results of this kind have for instance been obtained e.g. for the reachability of independent sets [4,17], vertex covers [19], shortest paths [1,2,16], or Boolean satisfiability (SAT) assignments [12].

There are various motivations for studying reconfiguration problems [13], and for studying Coloring Reachability in particular (see [6,13,14]). For example, reconfiguration problems model dynamic situations in which we seek to transform a solution into a more desirable one, maintaining feasibility during the process (see [14] for such an application of Coloring Reachability). However, in many applications of reconfiguration problems, the existence of a path between two solutions is irrelevant if every such path has exponential length. So the more important question is in fact: Does there exist a path between two solutions of length at most ℓ , for some integer ℓ ? Results on such length-bounded reachability questions have been obtained in [2,12,16,19,20]. In some cases where the existence of paths between solutions can be decided efficiently, one can in fact find shortest paths efficiently [2,12]. On the other hand, NP-hard cases have also been identified [16,19]. If we wish to obtain a more detailed picture of the complexity of length-bounded reachability, the framework of parameterized complexity [9,10] is very useful, where we choose ℓ as parameter. We refer to [9,10] for an introduction to parameterized complexity and fixed parameter tractable (FPT) algorithms. A systematic study of the parameterized complexity of reachability problems was initiated by Mouawad et al. [20]. However, in [20], only negative results were obtained for length-bounded reachability: various problems were identified where the problem was not only NP-hard, but also W[1]-hard, when parameterized by ℓ (or even when parameterized by $k+\ell$, where k is another problem parameter). In this paper, we give a first example of a length-bounded reachability problem that is NP-hard, but admits an FPT algorithm. Another example, namely Length-Bounded Vertex Cover Reachability on graphs of bounded degree, was very recently obtained by Mouawad et al. in [19].

Our Results. We first study the Length-Bounded Coloring Reachability (LBCR) problem: Given is a graph G on n vertices, nonnegative integers k and ℓ , and two k-colorings α and β of G. The question is whether $C_k(G)$ contains a path from α to β of length at most ℓ . We fully explore how the complexity of the above problem depends on the problem parameters k and ℓ (when viewed

as input variables or constants/parameters). Using a reduction from Coloring Reachability [3], LBCR is easily observed to be PSPACE-hard in general, for any constant $k \geq 4$: Since there are at most k^n different k-colorings of a graph on n vertices, a path from α to β exists if and only if there exists one of length at most k^n . Nevertheless, this only establishes weak PSPACE-hardness, since the chosen value of $\ell = k^n$ is exponential in the instance size. In other words, if we require that all integers are encoded in unary, then this is not a polynomial reduction. And indeed, the complexity status of the problem changes under that requirement; in that case, LBCR is easily observed to be in NP. In Sect. 3, we show that LBCR is in fact NP-complete when ℓ is encoded in unary, or in other words, it is strongly NP-hard. On the positive side, in Sect. 4, we show that the problem can be solved in time $\mathcal{O}(2^{k(\ell+1)} \cdot \ell^{\ell} \cdot \text{poly}(n))$. This establishes that LBCR is fixed parameter tractable (FPT) when parameterized by $k + \ell$. (We remark that this result was also obtained independently by Johnson et al. [15]. The algorithm in [15] is very different however.) One may ask whether the problem is still FPT when only parameterized by ℓ . In Sect. 3 we show that this is not the case (unless W[1]=FPT), by showing that LBCR is W[1]-hard when only parameterized by ℓ . We observe however that a straightforward branching algorithm can solve the problem in time $n^{\mathcal{O}(\ell)}$, hence in polynomial time for any constant ℓ . In other words, LBCR is in XP, parameterized by ℓ .

Our algorithmic results hold in fact for a much larger class of problems: In a constraint satisfaction problem (CSP), we are given a set X of n variables, which all can take on at most k different values. In addition, a set C of constraints is given, all of arity at most r. Every constraint consists of a subset $T \subseteq X$ of variables with $|T| \le r$, and a set of allowed value combinations for these variables. A k-coloring can be seen as a CSP solution, where the edges correspond to binary constraints, stating that the two incident vertices/variables cannot have the same color/value. The Length-Bounded CSP Reachability (LBCSPR) problem asks, given two satisfying variable assignments α and β for a CSP instance (X, k, \mathcal{C}) , whether there exists a path from α to β of length at most ℓ . (Two solutions are adjacent if they differ in one variable. See Sect. 4 for precise definitions.) In Sect. 4, we give our main result: an FPT algorithm for LBCSPR, parameterized by $\ell + k + r$. This result has many implications, besides the aforementioned result for LBCR: For instance, it follows that Length-Bounded Boolean SAT Reachability is FPT, parameterized by $\ell + r$. In addition, it implies that Length-Bounded Shortest Path Reachability is FPT, parameterized by $\ell + k$, where k is an upper bound on the number of vertices in one distance layer (See [12] resp. [1,2,16]for more details on these problems). This result prompts two further questions: Firstly, is it possible to also obtain an FPT algorithm for LBCSPR for parameter $\ell + k$? Secondly, clearly any reconfiguration sequence from α to β has length at least p, where $p = |\{x \in X \mid \alpha(x) \neq \beta(x)\}|$. Is it also possible to obtain an FPT algorithm for LBCSPR for parameter $(\ell - p) + k + r$? (This is an above-guarantee parameterization). In Sect. 5, we give two W[2]-hardness results that show that the answer to these questions is negative (unless FPT = W[2]). These W[2]-hardness results hold in fact for the restricted case of Boolean SAT instances with only Horn clauses. Together, these hardness results show that

Parameter:	Complexity:
$k + \ell + r$	FPT
k+r	para-NP-complete (ℓ unary) / para-PSPACE-complete (ℓ binary)
	(already for $k = 4$, $r = 2$; Coloring instances)
$k + \ell$	W[2]-hard (already for $k = 2$; Horn SAT instances), in XP
$r + \ell$	W[1]-hard (already for $r = 2$; Coloring instances), in XP
$k+r+\ell-p$	W[2]-hard (already for $k = 2$, $r = 3$; Horn 3SAT instances)

Table 1. Complexity of LBCSPR for different parameterizations

our FPT result for LBCSPR is tight (assuming $FPT \neq W[1]$): to obtain an FPT algorithm, all three variables ℓ , k, and r need to be part of the parameter. See also Table 1, which summarizes our results, and the complexity status of LBCSPR for all different parameterizations in terms of ℓ , k, r and p. (Omitted parameter combinations follow directly from the given rows.)

2 Preliminaries

For general graph theoretic definitions, we refer the reader to the book of Diestel [8]. Let u and v be vertices in a graph G. A pseudowalk from u to v of length ℓ is a sequence w_0, \ldots, w_ℓ of vertices in G with $w_0 = u$, $w_\ell = v$, such that for every $i \in \{0, \ldots, \ell-1\}$, either $w_i = w_{i+1}$ or $w_i w_{i+1} \in E(G)$. A k-coloring for a graph G is a function $\alpha: V(G) \to \{1, \ldots, k\}$ that assigns colors to the vertices of G, such that for all $uv \in E(G)$, $\alpha(u) \neq \alpha(v)$. A graph that admits a k-coloring is called k-colorable. Pseudowalks in $C_k(G)$ from α to β are also called k-recoloring sequences from α to β . If there exists an integer k such that $\alpha_0, \ldots, \alpha_m$ is a k-recoloring sequence, then this is called a recoloring sequence from α_0 to α_m .

A k-color list assignment for a graph G is a mapping L that assigns a color list $L(v) \subseteq \{1,\ldots,k\}$ to each vertex $v \in V(G)$. A k-coloring α of G is an L-coloring if $\alpha(v) \in L(v)$ for all v. By $\mathcal{C}(G,L)$ we denote the subgraph of $\mathcal{C}_k(G)$ induced by all L-colorings of G, and pseudowalks in $\mathcal{C}(G,L)$ are called L-recoloring sequences. The Length-Bounded L-Coloring Reachability (LB L-CR) problem asks, given G, L, α, β , and ℓ , where α and β are L-colorings of G, whether there exists an L-recoloring sequence from α to β of length at most ℓ .

For a positive integer $k \geq 1$, we let $[k] = \{1, \ldots, k\}$. For a function $f: D \to I$ and subset $D' \subseteq D$, we denote by $f|_{D'}$ the restriction of f to the domain D'. The (unique) trivial function with empty domain is denoted by f^{\emptyset} . Note that for any function $g, g|_{\emptyset} = f^{\emptyset}$. We use $\operatorname{poly}(x_1, \ldots, x_p)$ to denote a polynomial function on variables x_1, \ldots, x_p .

3 Hardness Results for Coloring Reachability

To prove W[1]-hardness for LBCR parameterized by ℓ , we give a reduction from the *t-Independent Set* (*t-IS*) problem. Given a graph G and a positive integer t, t-IS asks whether G has an independent set of size at least t.

The t-IS problem is known to be W[1]-hard [9,10] when parameterized by t. We will also use the following result, which was shown independently by Cereceda [5], Marcotte and Hansen [18] and Jacob [14]: For every pair of k-colorings α and β of a graph G, there exists a path from α to β in $C_{2k-1}(G)$, and there are examples where at least 2k-1 colors are necessary. The graphs constructed in [5,14,18] to prove the latter result are in fact very similar. We will use these graphs for our reduction. For any integer $k \geq 1$, the graph B_k has vertex set $V(B_k) = \{b_j^i \mid i, j \in \{1, \dots, k\}\}$, and two vertices b_j^i and $b_j^{i'}$ are adjacent if and only if $i \neq i'$ and $j \neq j'$. Define two k-colorings α^k and β^k for B_k by setting $\alpha^k(b_j^i) = i$ and $\beta^k(b_j^i) = j$ for all vertices b_j^i .

Theorem 1 ([5],*)¹. Let B_k , α^k and β^k be as defined above (for $k \geq 1$). Then (i) every recoloring sequence from α^k to β^k contains a coloring that uses at least 2k-1 different colors, and (ii) there is a (2k-1)-recoloring sequence of length at most $2k^2$ from α^k to β^k .

Theorem 2 (*). LBCR is W/1/-hard when parameterized by ℓ .

Proof sketch: For ease of presentation, we give a reduction from the (t-1)-IS problem, which remains W[1]-hard. Given an instance (G, t-1) of (t-1)-IS, where G = (V, E) and $V = \{v_1, \ldots, v_n\}$, we construct a graph G' in time polynomial in |V(G)| as follows. (We will use n + t + 1 colors.)

G' contains a copy of G and a copy of B_t with all edges between them. In addition, G' contains n+t+1 independent sets C_1, \ldots, C_{n+t+1} , each of size $2t + 2t^2$ and disjoint from the copies of G and B_t . We say that C_i (for $1 \le i \le n+t+1$) is a color-quard set, as it will be used to enforce some coloring constraints; in the colorings we define, and all colorings reachable from them using at most $|C_i| - 1$ recolorings, C_i will contain at least one vertex of color i. We let $V_G = \{g_1, \dots, g_n\}, V_B = \{b_i^i \mid i, j \in \{1, \dots, t\}\}, V_C = C_1 \cup \dots \cup C_{n+t+1},$ and hence $V(G') = V_G \cup V_B \cup V_C$. The total number of vertices in G' is therefore $n+t^2+(n+t+1)(2t+2t^2)$. For every vertex $g_i \in V_G$, we add all edges between g_i and the vertices in $V_C \setminus (C_i \cup C_{n+t+1})$. Similarly, for every vertex $b \in V_B$, we add all edges between b and the vertices in C_{n+t+1} . We define α as follows. For every vertex $g_i \in V_G$, $1 \le i \le n$, we set $\alpha(g_i) = i$. For every $i \in \{1, \dots, n+t+1\}$ and every vertex $c \in C_i$, we set $\alpha(c) = i$. For every vertex $b_i^i \in V_B$, we choose $\alpha(b_i^i) = n + i$. Considering α and the color guard sets, which all have size $2t + 2t^2$, we conclude that for all recoloring sequences $\gamma_0, \ldots, \gamma_p$ with $p \leq 2t + 2t^2$ and $\gamma_0 = \alpha$, for every i and j it holds that $\gamma_j(g_i) \in \{i, n+t+1\}$, and for all $b \in V_B$ and j it holds that $\gamma_i(b) \neq n+t+1$. Finally, we define the target coloring β . For every vertex $v \in V_G \cup V_C$ we set $\beta(v) = \alpha(v)$. For every vertex $b_i^i \in V_B$ (with $i, j \in \{1, \dots, t\}$), we choose $\beta(b_i^i) = n + j$. So the goal is to change from a 'row coloring' to a 'column coloring' for V_B , while maintaining the same coloring for vertices in $V_G \cup V_C$.

¹ A star indicates that (additional) proof details will be given in the full version of the paper.

It can be shown that $C_k(G')$ contains a path from α to β of length at most $\ell=2t+t^2$ if and only if G has an independent set S at size at least t-1: If there exists such a set S, then these vertices can be recolored to color n+t+1, which makes t-1 colors available to recolor V_B from a row coloring to a column coloring. That is, the (2t-1)-recoloring sequence of length at most $2t^2$ from Theorem 1 can be applied. Next, the vertices in G are recolored to their original color again. This procedure yields β and uses at most $2t+2t^2$ recoloring steps in total. If there exists a recoloring sequence from α to β , then this contains a coloring γ that assigns at least 2t-1 different colors to V_B (Theorem 1). This includes at least t-1 colors that originally appeared in V_G , on a vertex set S. As observed above, these vertices are then all colored with color n+t+1 in γ , so they form an independent set with $|S| \geq t-1$.

Next, we show that the LBCR problem is strongly NP-hard for every fixed constant $k \geq 4$. We give a reduction from the Planar Graph 3-Colorability (P3C) problem, which is known to be NP-complete [11]. Given a planar graph G, P3C asks whether G is 3-colorable. In fact we construct an instance of the LB L-CR problem. It was observed in [3] that an instance $(G, L, \alpha, \beta, \ell)$ of the LB L-CR problem with $L(v) \subseteq \{1, \ldots, 4\}$ for all v is easily transformed to an instance $(G', \alpha, \beta, \ell)$ of LBCR, for any $k \geq 4$, by adding one complete graph on k vertices x_i with $i \in \{1, \ldots, k\}$ and $\alpha(x_i) = \beta(x_i) = i$, and edges vx_i for every vertex $v \in V(G)$ and $i \notin L(v)$.

The proof of Lemma 3 makes heavy use of the notion of (a,b)-forbidding paths and their properties, which were introduced in [3]. Informally, these are paths that can be added between any pair of vertices u and v (provided that $L(u), L(v) \neq \{1, \ldots, 4\}$), that function as a special type of edge, which only excludes the color combination (a,b) for u and v respectively, but allows (recoloring to) any other color combination. For any combination of a,b and $L(u), L(v) \neq \{1, \ldots, 4\}$, there exists such a path, of length six, with all color lists in $\{1, \ldots, 4\}$.

Lemma 3 (*). There exists a graph H (on O(1) vertices) with color lists L and vertices $u, v, z \in V(H)$ with $L(u) = L(v) = \{1, 2, 3\}$ and $L(z) = \{1, 2, 4\}$, and L-coloring α of H with $\alpha(u) = \alpha(v) = 1$ and $\alpha(z) = 4$, such that the following properties hold:

- For every L-coloring γ of H, it holds that $\gamma(z) = 4$ or $\gamma(u) \neq \gamma(v)$.
- For any combination of colors $a \in L(u)$, $b \in L(v)$ with $a \neq b$, there exists an L-recoloring sequence from α to an L-coloring γ with $\gamma(u) = a$, $\gamma(v) = b$ and $\gamma(z) \neq 4$, of length at most |V(H)|.

Theorem 4. For any constant $k \geq 4$, the problem LBCR, with ℓ encoded in unary, is NP-complete.

Proof: Given an instance G of P3C, we construct an instance $(G', L, \ell, \alpha, \beta)$ of LB L-CR as follows. Start with the vertex set V(G). All of these vertices $u \in V(G)$ receive color $\alpha(u) = 1$ and $L(u) = \{1, 2, 3\}$. For every edge $uv \in E(G)$, add a copy of the graph H from Lemma 3, where the u-vertex and v-vertex from H are identified with u and v, respectively. Note that there is no edge between u

and v in G'. For each $uv \in E(G)$, the z-vertex of the corresponding copy of H is denoted by z_{uv} , and we let $Z = \{z_{uv} \mid uv \in E(G)\}$. For these H-subgraphs, the L-coloring α is as given in Lemma 3. Next, we add a triangle on vertices a, b, c to G', with the following colors and lists: $\alpha(a) = 1$, $\alpha(b) = 2$, $\alpha(c) = 3$, $L(a) = \{1, 2, 3\}$, $L(b) = \{1, 2\}$, and $L(c) = \{3, 4\}$. Add edges from all vertices in Z to c. This yields the graph G'. Finally, we define the target coloring β . For all vertices $v \in V(G') \setminus \{a, b\}$, set $\beta(v) = \alpha(v)$. We set $\beta(a) = 2$ and $\beta(b) = 1$, so the goal is to reverse the colors of these two vertices.

We now argue that G is 3-colorable if and only if there exists an L-recoloring sequence for G' from α to β of length $\mathcal{O}(m)$, where m = |E(G)|. Suppose that there exists such an L-recoloring sequence. Considering the vertices a, b, and c, we see that this must contain a coloring γ with $\gamma(c) = 4$. This implies that for every $z_{uv} \in Z$, $\gamma(z_{uv}) \in \{1,2\}$. By Lemma 3, this implies that for every $uv \in E(G)$, $\gamma(u) \neq \gamma(v)$. Hence γ restricted to V(G) is a 3-coloring of G. On the other hand, if G is 3-colorable, then we can recolor the vertices of G to such a 3-coloring, which allows recoloring all vertices z_{uv} to a color different from 4, using $\mathcal{O}(1)$ recoloring steps for each H-subgraph, and thus $\mathcal{O}(m)$ recoloring steps in total. This makes it possible to recolor the vertices a, b, and c to their target color in $\mathcal{O}(1)$ steps, and subsequently the other recoloring steps can be reversed, which gives $\mathcal{O}(m)$ steps in total.

Combining this reduction with the fact that we can easily transform the LB L-CR instance to an LBCR instance, and the NP-hardness of P3C, shows that LBCR is strongly NP-hard. (This uses the fact that ℓ is polynomial in m.)

4 An FPT Algorithm for CSP Reachability

We will consider sets of variables B, which all can take on the values D = [k]. The set D is called the domain of the variables. A function $f: B \to D$ is called a value assignment from B to D. A set U of value assignments from B to D is called a VA-set from B to D. Below, we will consider a fixed set X of variables, and consider VA-sets U for many different subsets $B \subseteq X$, but always for the same domain D, so we will omit D from the terminology and simply call U a VA-set for B, and elements of U value assignments for B.

An instance (X, k, \mathcal{C}) of the Constraint Satisfaction Problem (CSP) consists of a set X of variables, which all have domain D = [k], and a set \mathcal{C} of constraints. Every constraint $C \in \mathcal{C}$ is a tuple (T, R), where $T \subseteq X$, and R is a VA-set for T. The VA-set R is interpreted as the set of all value combinations that are allowed for the variables in T. A value assignment $f: X \to D$ is said to satisfy constraint C = (T, R) if and only if $f|_T \in R$. If f satisfies all constraints in C, f is called valid (for C). CSP is a decision problem where the question is whether there exists a valid value assignment.

² Considering the function f, it is perhaps a little confusing to call D the domain, but this conforms with the terminology used in the context of CSPs.

We remark that for many problems that can be formulated as CSPs, the constraints $(T, R) \in \mathcal{C}$ are not explicitly given, since R would usually be prohibitively (exponentially) large. Instead, a simple and efficient algorithm is given that can verify whether the constraint is satisfied. The factor $g(\mathcal{C})$ in our complexity bounds accounts for this.

In order to study reconfiguration questions for CSPs, we define two distinct value assignments $\alpha: X \to D$ and $\beta: X \to D$ to be *adjacent* if they differ on exactly one variable $v \in X$ (so, expressed differently: if there exists a $v \in X$ such that $\alpha|_{X\setminus\{v\}} = \beta|_{X\setminus\{v\}}$). For a CSP instance (X, k, \mathcal{C}) , the solution graph $\mathrm{CSP}_k(X,\mathcal{C})$ has as vertex set all value assignments from X to [k] that are valid for \mathcal{C} , with adjacency as defined above. Pseudowalks in $\mathrm{CSP}_k(X,\mathcal{C})$ are called CSP sequences for (X, k, \mathcal{C}) . We consider the following problem.

Length-Bounded CSP Reachability (LBCSPR):

INSTANCE: A CSP instance (X, k, \mathcal{C}) , two valid value assignments α and β for X and [k], and an integer ℓ .

QUESTION: Does $CSP_k(X, \mathcal{C})$ contain a path from α to β of length at most ℓ ?

For every constant ℓ , the LBCSPR problem can be solved in polynomial time, using the following simple branching algorithm. Denote the given instance by $(X, k, \mathcal{C}, \alpha, \beta, \ell)$, with |X| = n. Start with the initial value assignment α . For every value assignment generated by the algorithm, consider all adjacent value assignments in $\text{CSP}_k(X, \mathcal{C})$. Recurse on these choices, up to a recursion depth of at most ℓ . Return yes if and only if in one of the recursion branches, the target value assignment β is obtained. Clearly, this algorithm yields the correct answer. One value assignment has at most kn neighbors, so branching with depth ℓ shows that at most $\mathcal{O}((kn)^{\ell})$ value assignments will be considered. This proves the claim, or in other words: for parameter ℓ , the problem is in XP.

We let $S = \{x \in X \mid \alpha(x) \neq \beta(x)\}$. Clearly, when $|S| > \ell$ we have a no-instance and when |S| = 0 we have a trivial yes-instance. To obtain an FPT algorithm, the main challenge that we need to overcome is that the number of variables that potentially need to be reassigned cannot easily be bounded by a function of ℓ . However, once we know the set B of variables which will change at least once, the problem can be solved using a branching algorithm similar to the one above. Let $S = \gamma_0, \ldots, \gamma_\ell$ be a CSP sequence for a CSP instance (X, k, \mathcal{C}) . For a set $B \subseteq X$, the set of B-variable combinations used by S is USED $(S, B) = \{\gamma_i|_B : i \in \{0, \ldots, \ell\}\}$. Let U be a VA-set for B. We say that S follows U if USED $(S, B) \subseteq U$. A branching algorithm can be given for the following variant of LBCSPR, which is restricted by choices of B and U.

Lemma 5 (*). Let $(X, k, \mathcal{C}, \alpha, \beta, \ell)$ be an LBCSPR instance, and let $g(\mathcal{C})$ be the complexity of deciding whether a given value assignment for X satisfies \mathcal{C} . Let $B \subseteq X$, and U be a VA-set for B. Let $L(x) = \{f(x) \mid f \in U\}$ for all $x \in B$, and $p = \sum_{x \in B} (|L(x)| - 1)$. Then there exists an algorithm LISTCSPRECONFIG with complexity $\mathcal{O}(p^{\ell} \cdot g(\mathcal{C}) \cdot poly(|U|, |X|))$, that decides whether there exists a CSP sequence \mathcal{S} for (X, k, \mathcal{C}) from α to β of length at most ℓ in which only variables in B are changed, with USED(\mathcal{S}, B) $\subseteq U$.

Algorithm 1. CSPRECONFIG $(X, k, \mathcal{C}, \alpha, \beta, \ell)$

```
Output: "YES" if and only if there exists a CSP sequence of length at most \ell
    from \alpha to \beta.
 1: S := \{ x \in X \mid \alpha(x) \neq \beta(x) \}
2: if |S| > \ell then return NO
3: if |S| = 0 then return YES
4: return Recurse(\emptyset, \{f^{\emptyset}\}, \{f^{\emptyset}\})
    Subroutine Recurse(B, U, L):
5: if \sum_{v \in B} (|L(v)| - 1) > \ell then return NO
6: if S \subseteq B and there are no critical constraints for U, B and \alpha then
           return ListCSPreconfig(X, k, \mathcal{C}, \alpha, \beta, \ell, B, U).
8: if not S \subseteq B then
9:
           Let i be the lowest index such that x_i \in S \setminus B
10:
           NewVar := \{x_i\}
11: else
12:
           choose a critical constraint (T, R) \in \mathcal{C} for U, B and \alpha.
13:
           NewVar := T \setminus B
14: for all x \in \text{NewVar}:
15:
           B' := B \cup \{x\}
           for all VA-sets U' for B' that extend U, with |U'| < \ell and \{\alpha|_{B'}, \beta|_{B'}\} \subset U':
16:
17:
                 L(x) := \{ f(x) \mid f \in U' \}
18:
                 if |L(x)| \geq 2 then
                       if Recurse(B', U', L) = YES then return YES
19:
20: return NO
```

Input: A variable set $X = \{x_1, \ldots, x_n\}$ with domains [k], a set \mathcal{C} of constraints on X, valid value assignments $\alpha : X \to [k]$ and $\beta : X \to [k]$, and integer $\ell \ge 0$.

It remains to give a branching algorithm that, if there exists a CSP sequence S of length at most ℓ , can determine a proper guess for the sets B of variables that are changed in S, and U = USED(S, B). Clearly, $S \subseteq B$ should hold, so we start with B = S, and we first consider all possible VA-sets U for this B. We will say that a constraint C = (T, R) is critical for B, U and α if there exists an $f \in U$ such that the (unique) value assignment $g: X \to D$ that satisfies $g|_B = f$ and $g|_{X \setminus B} = \alpha|_{X \setminus B}$ does not satisfy C. Note that in this case, if we assume that the combination of values f occurs at some point during the reconfiguration, then for at least one variable in $T \setminus B$, the value must change before this point, so one such variable should be added to B, which yields a new set B'. Let $B \subseteq B' \subseteq X$, and let U and U' be VA-sets for B and B', respectively. We say that U' extends U if $U = \{f|_B : f \in U'\}$. In other words, if U and U' are interpreted as guesses of value combinations that will occur during the reconfiguration, then these guesses are consistent with each other.

For given $B \subseteq X$ and VA-set U for B, we let $L(x) = \{f(x) \mid f \in U\}$ for all $x \in B$. If $\sum_{x \in B} (|L(x)| - 1) > \ell$ then the set U cannot correspond to the set USED(S, B) for a CSP sequence S of length at most ℓ , so this guess

can be safely ignored. On the other hand, if a guess of B and U is reached where $\sum_{x \in B} (|L(x)| - 1) \leq \ell$ and there are no critical constraints, then the aforementioned LISTCSPRECONFIG algorithm can be used to test whether there exists a corresponding CSP sequence. Using these observations, it can be shown that Algorithm 1 correctly decides the LBCSPR problem.

It is relatively easy to see that the total number of recursive calls made by this algorithm is bounded by some function of ℓ , k and r, where $r = \max_{(T,R) \in \mathcal{C}} |T|$. Indeed, Line 18 guarantees that for every recursive call, the quantity $\sum_{v \in B} (|L(v)| - 1)$ increases by at least one, so the recursion depth is at most $\ell + 1$ (see Line 5). The number of iterations of the for-loops in Lines 14 and 16 is bounded by r-1, and by some function of ℓ and k, respectively. This shows that Algorithm 1 is an FPT algorithm for parameter $k + \ell + r$. Using a sophisticated analysis, one can prove the following bound on the complexity.

Theorem 6 (*). Let $(X, k, \mathcal{C}, \alpha, \beta, \ell)$ be an LBCSPR instance. Then in time $\mathcal{O}((r-1)^{\ell} \cdot k^{\ell(\ell+1)} \cdot \ell^{\ell} \cdot g(\mathcal{C}) \cdot poly(k, \ell, n))$, it can be decided whether there exists a CSP sequence from α to β of length at most ℓ , where $r = \max_{(T,R) \in \mathcal{C}} |T|$ and n = |X|, and where $g(\mathcal{C})$ denotes the time to find a constraint in \mathcal{C} that is not satisfied by a given value assignment, if such a constraint exists.

This result implies e.g. FPT algorithms for LBCR (for parameter $k + \ell$), and Length-Bounded Boolean SAT Reachability (for parameter $\ell + r$). In fact, for CSP problems with binary constraints such as LBCR, the complexity can be improved, since it suffices to guess only the lists L(x) for each vertex/variable x, instead of all value combinations U.

Theorem 7 (*). Let $G, k, \alpha, \beta, \ell$ be a LBCR instance, with n = |V(G)|. There is an algorithm with complexity $\mathcal{O}(2^{k(\ell+1)} \cdot \ell^{\ell} \cdot poly(n))$ that decides whether there exists a k-recoloring sequence from α to β for G of length at most ℓ .

5 Hardness Results for CSP Reachability

We give two W[2]-hardness results. These hold in fact for very restricted types of CSP instances. A CSP instance (X, k, \mathcal{C}) is called a Horn-SAT instance if k=2, and every constraint in \mathcal{C} can be formulated as a Boolean clause that uses at most one positive literal. (As is customary in Boolean satisfiability, we assume in this case that the variables can take on the values 0 and 1 instead.) The $Length\text{-}Bounded\ Horn\text{-}SAT\ Reachability\ problem}$ is the LBCSPR problem restricted to Horn-SAT instances. The even more restricted problem where all clauses have three variables is called $Length\text{-}Bounded\ Horn\text{-}3SAT\ Reachability}$.

In both proofs, we will give reductions from the W[2]-hard p-Hitting Set problem. A p-Hitting Set instance $(\mathcal{U}, \mathcal{F}, p)$ consists of a finite universe \mathcal{U} , a family of sets $\mathcal{F} \subseteq 2^{\mathcal{U}}$, and a positive integer p. The question is whether there exists a subset $U \subseteq \mathcal{U}$ of size at most p such that for every set $F \in \mathcal{F}$ we have $F \cap U \neq \emptyset$. We say that such a set U is a hitting set of \mathcal{F} . This problem is W[2]-hard when parameterized by p [9].

Theorem 8 (*). Length-Bounded Horn-SAT Reachability is W[2]-hard when parameterized by ℓ .

Proof sketch: Given an instance $(\mathcal{U}, \mathcal{F}, p)$ of p-Hitting Set, we create a variable x_u for each element $u \in \mathcal{U}$ and two additional variables y_1 and y_2 , for a total of $|\mathcal{U}| + 2$ variables. For each set $\{u_1, u_2, \dots u_t\} \in \mathcal{F}$, we create a Horn clause $(y_1 \vee \overline{y_2} \vee \overline{x_{u_1}}, \overline{x_{u_2}}, \dots \overline{x_{u_t}})$. Finally, we add an additional clause $(y_2 \vee \overline{y_1})$. These clauses constitute a Horn formula \mathcal{H} with $|\mathcal{F}| + 1$ clauses. Let α be the satisfying assignment for \mathcal{H} that sets all its variables to 1, and β be the satisfying assignment for \mathcal{H} that sets $y_1 = y_2 = 0$ and all other variables to 1.

Observe that before we can set y_2 to 0, y_1 has to be set to 0. Moreover, before y_1 can be set to 0, some of the x variables (i.e. variables corresponding to elements of the universe \mathcal{U}) have to be set to 0 to satisfy all the clauses corresponding to the sets. Using the previous two observations, it can be shown that \mathcal{F} has a hitting set of size at most p if and only there is a CSP sequence of length at most 2p + 2 from α to β .

Theorem 8 implies in particular that for LBCSPR, there is no FPT algorithm when parameterized only by $k+\ell$, unless FPT=W[2]. Next, we consider the "above-guarantee" version of LBCSPR. Given two valid value assignments α and β for X and [k], we let $S=\{x\in X\mid \alpha(x)\neq\beta(x)\}$. Clearly, the length of any CSP sequence from α to β is least |S|. Hence, in the above-guarantee version of the problem, instead of allowing the running time to depend on the full length ℓ of a CSP sequence, we let $\bar{\ell}=\ell-|S|$ and allow the running time to depend on $\bar{\ell}$ only. However, the next theorem implies that no FPT algorithm for LBCSPR exists, when parameterized by $\bar{\ell}+k+r$, unless W[2]=FPT.

Theorem 9 (*). Length-Bounded Horn-3SAT Reachability is W[2]-hard when parameterized by $\bar{\ell} = \ell - |S|$, where $S = \{x \in X \mid \alpha(x) \neq \beta(x)\}$.

Proof sketch: Starting from a p-Hitting Set instance $(\mathcal{U}, \mathcal{F}, p)$, we first create a variable x_u for every $u \in \mathcal{U}$. We let $\mathcal{F} = \{F_1, F_2, \dots F_m\}$ and $\{u_1, u_2, \dots u_r\}$ be a set in \mathcal{F} . For each such set in \mathcal{F} , we create r new variables $y_1, y_2, \dots y_r$ and the clauses $(y_1 \vee \overline{x_{u_1}} \vee \overline{y_2})$, $(y_2 \vee \overline{x_{u_2}} \vee \overline{y_3})$, ..., $(y_r \vee \overline{x_{u_r}} \vee \overline{y_1})$. We let α be the satisfying assignment for the formula with all variables set to 1, and let β be the satisfying assignment with all the $x_u, u \in \mathcal{U}$, variables set to 1 and the rest set to 0.

Consider the clauses corresponding to a set $\{u_1, u_2, \dots u_r\}$ in \mathcal{F} , with variables y_1, \dots, y_r . None of the y variables can be set to 0 before we flip at least one x variable to 0. Moreover, after flipping any x variable to 0, we can in fact flip all y variables to 0, provided this is done in the proper order. Combining the previous observations with the fact that $|S| = \sum_{i=1}^m |F_i|$, it can be shown that \mathcal{F} has a hitting set of size at most p if and only there is a CSP sequence of length at most $\sum_{i=1}^m |F_i| + 2p$ from α to β .

References

- 1. Bonsma, P.: Rerouting shortest paths in planar graphs. In: FSTTCS 2012. LIPIcs, vol. 18, pp. 337–349. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik (2012)
- Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)
- Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)
- Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in clawfree graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Heidelberg (2014)
- Cereceda, L.: Mixing graph colourings. Ph.D. thesis, London School of Economics (2007)
- Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(56), 913–919 (2008)
- Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theor. 67(1), 69–82 (2011)
- 8. Diestel, R.: Graph Theory, Electronic Edition. Springer, Heidelberg (2005)
- Downey, R.G., Fellow, M.R.: Parameterized Complexity. Springer, New York (1997)
- 10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
- Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)
- Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)
- van den Heuvel, J.: The complexity of change. Surv. Combinatorics 2013, 127–160 (2013)
- 14. Jacob, R.: Standortplanung mit blick auf online-strategien. Graduate thesis, Universität Würzburg (1997)
- 15. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding shortest paths between graph colourings. In: Proceedings of IPEC 2014(2014)
- Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)
- 17. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)
- 18. Marcotte, O., Hansen, P.: The height and length of colour switching. In: Graph Colouring and Applications, pp. 101–110. AMS, Providence (1999)
- Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. arXiv:1403.0359. Accepted for ISAAC 2014 (2014)
- Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)