Skip to main content

Bloat and Generalisation in Symbolic Regression

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Symbolic regression is a common application of genetic programming (GP). Increasingly, the GP community is identifying the need to measure the generalisation performance of the models evolved in symbolic regression, and consequently the need to design operators and methods that promote generalisation. In this paper, we explore the use of bloat control methods as a means of promoting generalisation. The results suggest that bloat control methods effectively reduce the computational requirements of symbolic regression, but do not significantly improve generalisation performance. Additionally, we compare the symbolic regression models traditional machine learning techniques, and find that the traditional methods produce models that generalise more effectively than their GP counterparts, while also using fewer computational resources. The results highlight the importance of contextualising GP performance with methods outside of evolutionary computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaydin, E.: Introduction to machine learning, 2nd edn. MIT Press (2010)

    MATH  Google Scholar 

  2. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml

    Google Scholar 

  3. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Transactions on Evolutionary Computation 17(3), 368–386 (2013)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  6. Costelloe, D., Ryan, C.: On improving generalisation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Dick, G., Whigham, P.A.: Controlling bloat through parsimonious elitist replacement and spatial structure. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Dignum, S., Poli, R.: Operator equalisation and bloat free gp. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic programming, validation sets, and parsimony pressure. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Harper, R.: Spatial co-evolution: Quicker, fitter and less bloated. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 759–766. ACM, New York (2012)

    Chapter  Google Scholar 

  11. Howard, D., Roberts, S.C.: Genetic programming solution of the convection-diffusion equation. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), July 7-11, pp. 34–41. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  12. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backpropagation. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 941–948. ACM, New York (2013)

    Chapter  Google Scholar 

  15. Kushchu, I.: An evaluation of evolutionary generalisation in genetic programming. Artif. Intell. Rev. 18(1), 3–14 (2002)

    Article  MATH  Google Scholar 

  16. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 829–836. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  17. Luke, S., Panait, L.: A comparison of bloat control methods for genetic programming. Evol. Comput. 14(3), 309–344 (2006)

    Article  Google Scholar 

  18. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 791–798. ACM, New York (2012)

    Chapter  Google Scholar 

  19. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic programming: The case for real-valued function regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genetic Programming and Evolvable Machines 13(2), 197–238 (2012)

    Article  Google Scholar 

  22. Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting: A study on human oral bioavailability prediction. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp. 1115–1122. ACM, New York (2009)

    Google Scholar 

  23. Uy, N.Q., Hien, N.T., Hoai, N.X., O’Neill, M.: Improving the generalisation ability of genetic programming with semantic similarity based crossover. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184–195. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Whigham, P.A., Dick, G.: Implicitly controlling bloat in genetic programming. IEEE Transactions on Evolutionary Computation 14(2), 173–190 (2010)

    Article  Google Scholar 

  25. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3(1), 17–38 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dick, G. (2014). Bloat and Generalisation in Symbolic Regression. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics