Skip to main content

Optimization of Wind Direction Distribution Parameters Using Particle Swarm Optimization

  • Conference paper
Afro-European Conference for Industrial Advancement

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 334))

Abstract

Data describing various natural and industrial phenomena can be modeled by directional statistical distributions. In the field of energy, wind direction and wind speed are the most important variables for wind energy generation, integration, and management. This work proposes and evaluates a new method for accurate estimation of wind direction distribution parameters utilizing the well-known Particle Swarm Optimization algorithm. It is used to optimize the parameters of a site-specific wind direction distribution model realized as a finite mixture of circular normal von Mises statistical distributions. The evaluation of the proposed algorithm is carried out using a data set describing annual wind direction on two distinct locations. Experimental results show that the proposed method is able to find good model parameters corresponding to input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mooney, J.A., Helms, P.J., Jolliffe, I.T.: Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome. Computational Statistics & Data Analysis 41(3-4), 505–513 (2003); Recent Developments in Mixture Model

    Article  MATH  MathSciNet  Google Scholar 

  2. Calderara, S., Cucchiara, R., Prati, A.: Detection of Abnormal Behaviors Using a Mixture of Von Mises Distributions. In: Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007, pp. 141–146. IEEE Computer Society, Washington, DC (2007)

    Chapter  Google Scholar 

  3. Vejmelka, M., Musilek, P., Paluš, M., Pelikán, E.: K-means clustering for problems with periodic attributes. International Journal of Pattern Recognition and Artificial Intelligence 23(4), 721–743 (2009)

    Article  Google Scholar 

  4. Allen, C.T., Young, G.S., Haupt, S.E.: Improving pollutant source characterization by better estimating wind direction with a genetic algorithm. Atmospheric Environment 41(11), 2283–2289 (2007)

    Article  Google Scholar 

  5. Carta, J.A., Bueno, C., Ramírez, P.: Statistical modelling of directional wind speeds using mixtures of von mises distributions: Case study. Energy Conversion and Management 49(5), 897–907 (2008)

    Article  Google Scholar 

  6. Carta, J.A., Ramírez, P., Bueno, C.: A joint probability density function of wind speed and direction for wind energy analysis. Energy Conversion and Management 49(6), 1309–1320 (2008)

    Article  Google Scholar 

  7. Heckenbergerova, J., Musílek, P., Mejznar, J., Vancura, M.: Estimation of wind direction distribution with genetic algorithms. In: CCECE, pp. 1–4. IEEE (2013)

    Google Scholar 

  8. Masseran, N., Razali, A., Ibrahim, K., Latif, M.: Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia. Energy Conversion and Management 72, 94–102 (2013); The III. International Conference on Nuclear and Renewable Energy Resources {NURER2012}.

    Article  Google Scholar 

  9. Jung, S., Kwon, S.D.: Weighted error functions in artificial neural networks for improved wind energy potential estimation. Applied Energy 111, 778–790 (2013)

    Article  Google Scholar 

  10. Bazilian, M., Nussbaumer, P., Rogner, H.H., Brew-Hammond, A., Foster, V., Kammen, D.M., Pachauri, S., Williams, E., Howells, M., Niyongabo, P., Lawrence, M.: O Gallachoir, B., Radka, M.: Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa. Utilities Policy 20, 1–16 (2012)

    Google Scholar 

  11. Pereira, M.G., Camacho, C.F., Freitas, M.A.V., da Silva, N.F.: The renewable energy market in Brazil: Current status and potential. Renewable and Sustainable Energy Reviews 16(6), 3786–3802 (2012)

    Article  Google Scholar 

  12. Bekele, G., Tadesse, G.: Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Applied Energy 97, 5–15 (2012); Energy Solutions for a Sustainable World - Proceedings of the Third International Conference on Applied Energy, Perugia, Italy, May 16-18 (2011)

    Google Scholar 

  13. Davis, M.W.: A new thermal rating approach: The real time thermal rating system for strategic overhead conductor transmission lines – Part I: General description and justification of the real time thermal rating system. IEEE Transactions on Power Apparatus and Systems 96(3), 803–809 (1977)

    Article  Google Scholar 

  14. Douglass, D.: Weather-dependent versus static thermal line ratings [power overhead lines]. IEEE Transactions on Power Delivery 3(2), 742–753 (1988)

    Article  Google Scholar 

  15. Heckenbergerová, J., Musilek, P., Filimonenkov, K.: Quantification of gains and risks of static thermal rating based on typical meteorological year. International Journal of Electrical Power & Energy Systems 44(1), 227–235 (2013)

    Article  Google Scholar 

  16. Ettoumi, F., Sauvageot, H., Adane, A.E.H.: Statistical bivariate modelling of wind using first-order Markov chain and Weibull distribution. Renewable Energy 28(11), 1787–1802 (2003)

    Article  Google Scholar 

  17. García-Rojo, R.: Algorithm for the Estimation of the Long-term Wind Climate at a Meteorological Mast Using a Joint Probabilistic Approach. Wind Engineering 28(2), 213–223 (2004)

    Article  Google Scholar 

  18. Erdem, E., Shi, J.: {ARMA} based approaches for forecasting the tuple of wind speed and direction. Applied Energy 88(4), 1405–1414 (2011)

    Article  Google Scholar 

  19. de la Rosa, J.J.G., Pérez, A.A., Salas, J.C.P., Leo, J.G.R., Muñoz, A.M.: A novel inference method for local wind conditions using genetic fuzzy systems. Renewable Energy 36(6), 1747–1753 (2011)

    Article  Google Scholar 

  20. Shamshirband, S., Iqbal, J., Petković, D., Mirhashemi, M.A.: Survey of four models of probability density functions of wind speed and directions by adaptive neuro-fuzzy methodology. Advances in Engineering Software 76, 148–153 (2014)

    Article  Google Scholar 

  21. Tascikaraoglu, A., Uzunoglu, M.: A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews 34, 243–254 (2014)

    Article  Google Scholar 

  22. Koch, W.: Directional analysis of SAR images aiming at wind direction. IEEE Transactions on Geoscience and Remote Sensing 42(4), 702–710 (2004)

    Article  Google Scholar 

  23. AlRashidi, M.R., El-Hawary, M.: A Survey of Particle Swarm Optimization Applications in Electric Power Systems. IEEE Transactions on Evolutionary Computation 13(4), 913–918 (2009)

    Article  Google Scholar 

  24. Onwunalu, J., Durlofsky, L.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences 14(1), 183–198 (2010)

    Article  MATH  Google Scholar 

  25. Mardia, K., Jupp, P.: Directional Statistics. John Wiley & Sons (2000)

    Google Scholar 

  26. Fisher, N.I.: Statistical analysis of circular data. Cambridge University Press (1995)

    Google Scholar 

  27. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. Journal of Machine Learning Research 6 (2005)

    Google Scholar 

  28. Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5 50, 157–175 (1900)

    Article  MATH  Google Scholar 

  29. Anderson, T.W., Darling, D.A.: A Test of Goodness of Fit. Journal of the American Statistical Association (49), 765–769 (1954)

    Google Scholar 

  30. Clerc, M.: Particle Swarm Optimization. ISTE. Wiley (2010)

    Google Scholar 

  31. Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  32. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conf. on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Heckenbergerova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Heckenbergerova, J., Musilek, P., Krömer, P. (2015). Optimization of Wind Direction Distribution Parameters Using Particle Swarm Optimization. In: Abraham, A., Krömer, P., Snasel, V. (eds) Afro-European Conference for Industrial Advancement. Advances in Intelligent Systems and Computing, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-319-13572-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13572-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13571-7

  • Online ISBN: 978-3-319-13572-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics