Skip to main content

A Supervised Segmentation Algorithm for Crop Classification Based on Histograms Using Satellite Images

  • Conference paper
  • 1750 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8856))

Abstract

Recognizing different types of crops trough satellite imagery is an important application of Digital Image Processing in Agriculture. A supervised algorithm for identifying different types of crops is pro- posed. In the training stage, the studied images are preprocessed using a bilateral filter, and then the histogram of intensity levels is constructed for every crop class. The segmentation stage begins with the assignment of the likelihood of each pixel to belong to each class, which is based on the histogram information. Finally the segmentation is obtained using Gauss-Markov Measure Field. For this research Landsat-5 TM satellite images are used. The experimental work included synthetic and real images. In the case of the real image, the ground truth image was given by an expert. The results of the proposed algorithm were compared with other methods such as Maximum likelihood, Fisher linear likelihood, and Minimum Euclidean distance, among others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dalmau, O., Rivera, M.: A general bayesian markov random field model for probabilistic image segmentation. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 149–161. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Dalmau, O., Rivera, M.: Beta-measure for probabilistic segmentation. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part I. LNCS, vol. 6437, pp. 312–324. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Dalmau, O., Rivera, M.: Alpha markov measure field model for probabilistic image segmentationl 412(15), 1434–1441 (2011)

    Google Scholar 

  4. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)

    Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The elements od Statiscal Learning. Data Mining, Inference, and Prediction. Springer (2001)

    Google Scholar 

  6. José, L., Marroquín, S.B., Calderón, F., Vemuri, B.C.: The mpm-map algorithm for image segmentation. Pattern Recognition 1, 303–308 (2000)

    Google Scholar 

  7. Karakahya, H., Yazgan, B., Ersoy, O.K.: A spectral-spatial classification algorithm for multispectral remote sensing data. In: ICANN, pp. 1011–1017 (2003)

    Google Scholar 

  8. Kavzoglu, T., Mather, P.M.: The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sensing 24(23), 4907–4938 (2003)

    Article  Google Scholar 

  9. Kettig, R.L., Landgrebe, D.A.: Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics 14(1), 19–26 (1976)

    Article  Google Scholar 

  10. Landgrebe, D.: The development of a spectral-spatial classifier for earth observational data. Pattern Recognition 12(3), 165–175 (1980)

    Article  Google Scholar 

  11. Omkar, S.N., Senthilnath, J., Mudigere, D., Kumar, M.M.: Crop classification using biologically-inspired techniques with high resolution satellite image. Journal of the Indian Society of Remote Sensing 36(2), 175–182 (2008)

    Article  Google Scholar 

  12. Peuquet, D.J.: An algorithm for calculating minimum euclidean distance between two geographic features. Computers& Geosciences 18(8), 989–1001 (1992)

    Article  Google Scholar 

  13. Pulido, H.G., Andalón, M.B., Rubio, M.G.: Jalisco territorio y problemas de desarrollo. Iterritorial (2013)

    Google Scholar 

  14. Su, B., Noguchi, N.: Agricultural land use information extraction in miyajimanuma wetland area based on remote sensing imagery. Environmental Control in Biology 50(3), 277–287 (2012)

    Article  Google Scholar 

  15. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)

    Google Scholar 

  16. Wang, H., Zhang, J., Xiang, K., Liu, Y.: Classification of remote sensing agricultural image by using artificial neural network. In: International Workshop on Intelligent Systems and Applications, pp. 1–4 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliva, F.E., Dalmau, O.S., Alarcón, T.E. (2014). A Supervised Segmentation Algorithm for Crop Classification Based on Histograms Using Satellite Images. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13647-9_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13646-2

  • Online ISBN: 978-3-319-13647-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics