Skip to main content

Performance Classification of Genetic Algorithms on Continuous Optimization Problems

  • Conference paper
Book cover Nature-Inspired Computation and Machine Learning (MICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8857))

Included in the following conference series:

Abstract

Modelling the behaviour of algorithms is the realm of Evolutionary Algorithm theory. From a practitioner’s point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. Recently, there have been works that addressed this problem by proposing models of performance of different Genetic Programming Systems. In this work, we complement previous approaches by proposing a scheme capable of classifying the hardness of optimization problems based on different difficulty measures such as Negative Slope Coefficient, Fitness Distance Correlation, Neutrality, Ruggedness, Basins of Attraction, and Epistasis. The results indicate that this procedure is able to accurately classify the performance of the GA over a set of benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, K.Y., Aydin, M.E., Fogarty, T.C.: An epistasis measure based on the analysis of variance for the real-coded representation in genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 297–304. IEEE (2003)

    Google Scholar 

  2. Chen, Y., Hu, J., Hirasawa, K., Yu, S.: Solving deceptive problems using a genetic algorithm with reserve selection. In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, pp. 884–889 (2008)

    Google Scholar 

  3. Fogel, D.B. (ed.): Evolutionary Computation. The Fossil Record. Selected Readings on the History of Evolutionary Computation. IEEE Press (1998)

    Google Scholar 

  4. Fonlupt, C., Robilliard, D., Preux, P.: A bit-wise epistasis measure for binary search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 47–56. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  6. Graff, M., Escalante, H.J., Cerda-Jacobo, J., Avalos Gonzalez, A.: Models of performance of time series forecasters. Neurocomputing 122, 375–385 (2013) 00001

    Google Scholar 

  7. Graff, M., Poli, R., Flores, J.J.: Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty. In: Evolutionary Computation (November 2012)

    Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2012)

    Google Scholar 

  10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms Workshop, vol. 3, pp. 243–269. Morgan Kaufmann (1995)

    Google Scholar 

  12. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation 4(2), 150–194 (2013)

    Article  MATH  Google Scholar 

  13. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  14. Katada, Y., Ohkura, K., Ueda, K.: Measuring neutrality of fitness landscapes based on the nei’s standard genetic distance. In: Proceedings of 2003 Asia Pacific Symposium on Intelligent and Evolutionary Systems: Technology and Applications, pp. 107–114 (2003)

    Google Scholar 

  15. Kauffman, S.A., Johnsen, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149(4), 467–505 (1991)

    Article  Google Scholar 

  16. Lobo, J., Miller, J.H., Fontana, W.: Neutrality in Technological Landscapes. Technical report, working paper, Santa Fe Institute, Santa Fe (2004)

    Google Scholar 

  17. López, E.G., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms.. what do we know? Evolving Systems 2(3), 145–163 (2011)

    Article  Google Scholar 

  18. Malan, K., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: IEEE Congress on Evolutionary Computation, pp. 1440–1447. IEEE (2009)

    Google Scholar 

  19. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Information Sciences 241, 148–163 (2013)

    Article  Google Scholar 

  20. Graff, M., Poli, R.: Practical performance models of algorithms in evolutionary program induction and other domains. Artificial Intelligence 174(15), 1254–1276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Picek, S., Golub, M.: The new negative slope coefficient measure. In: Proceedings of the 10th WSEAS International Conference on Evolutionary Computing, EC 2009, pp. 96–101. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2009)

    Google Scholar 

  22. Pitzer, E., Affenzeller, M., Beham, A.: A closer look down the basins of attraction. In: 2010 UK Workshop on Computational Intelligence (UKCI), pp. 1–6 (September 2010)

    Google Scholar 

  23. Poli, R., López, E.G.: The effects of constant and bit-wise neutrality on problem hardness, fitness distance correlation and phenotypic mutation rates. IEEE Trans. Evolutionary Computation 16(2), 279–300 (2012)

    Article  Google Scholar 

  24. Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1335–1342. ACM, New York (2007)

    Google Scholar 

  25. Reeves, C.: Fitness landscapes and evolutionary algorithms. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999. LNCS, vol. 1829, pp. 3–20. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Reeves, C.R., Wright, C.C.: Epistasis in genetic algorithms: An experimental design perspective. In: Proc. of the 6th International Conference on Genetic Algorithms, pp. 217–224. Morgan Kaufmann (1995)

    Google Scholar 

  27. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  28. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2008)

    Article  Google Scholar 

  29. Trujillo, L., Martínez, Y., Galván-López, E., Legrand, P.: Predicting problem difficulty for genetic programming applied to data classification. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1355–1362. ACM, New York (2011)

    Google Scholar 

  30. Trujillo, L., Martínez, Y., López, E.G., Legrand, P.: A comparative study of an evolvability indicator and a predictor of expected performance for genetic programming. In: Soule, T., Moore, J.H. (eds.) GECCO (Companion), pp. 1489–1490. ACM (2012)

    Google Scholar 

  31. Trujillo, L., Martínez, Y., Melin, P.: Estimating Classifier Performance with Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 274–285. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Vanneschi, L.: Genetic programming theory and practice V. In: Riolo, R.L., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V, May 17–19, pp. 107–125. Springer, Ann Arbor (2007)

    Google Scholar 

  33. Vanneschi, L.: Investigating problem hardness of real life applications. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V. Genetic and Evolutionary Computation Series, pp. 107–124. Springer US (2008)

    Google Scholar 

  34. Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness clouds and problem hardness in genetic programming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Vanneschi, L., Tomassini, M.: A study on fitness distance correlation and problem difficulty for genetic programming. In: Luke, S., Ryan, C., O’Reilly, U.-M. (eds.) Graduate Student Workshop, New York, July 8, pp. 307–310. AAAI Press (2002)

    Google Scholar 

  36. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Verel, S.: Fitness landscapes and graphs: multimodularity, ruggedness and neutrality. In: Proceedings of the Fifth International Conference on Genetic and Evolutionary Computation Conference Companion, Amsterdam, Pays-Bas, pp. 1013–1034. ACM (2013)

    Google Scholar 

  38. Weise, T.: Global Optimization Algorithms – Theory and Application. it-weise.de (self-published): Germany (2009)

    Google Scholar 

  39. Wright, S.J.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  40. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodriguez-Maya, N.E., Graff, M., Flores, J.J. (2014). Performance Classification of Genetic Algorithms on Continuous Optimization Problems. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13650-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13649-3

  • Online ISBN: 978-3-319-13650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics