Towards Exploiting Query History for Adaptive
Ontology-based Visual Query Formulation

Ahmet Soylu', Martin Giese!, Ernesto Jimenez-Ruiz?, Evgeny Kharlamov?,
Dmitriy Zheleznyakov?, and Ian Horrocks?

! Department of Informatics, University of Oslo, Norway
{ahmets, martingi}@ifi.uio.no
2 Department of Computer Science, University of Oxford, United Kingdom
{name.surname}@cs.ox.ac.uk

Abstract. Grounded on real industrial use cases, we recently proposed
an ontology-based visual query system for SPARQL, named OptiqueVQS.
Ontology-based visual query systems employ ontologies and visual repre-
sentations to depict the domain of interest and queries, and are promising
to enable end users without any technical background to access data on
their own. However, even with considerably small ontologies, the number
of ontology elements to choose from increases drastically, and hence hin-
ders usability. Therefore, in this paper, we propose a method using the
log of past queries for ranking and suggesting query extensions as a user
types a query, and identify emerging issues to be addressed.

Keywords: Visual Query Formulation, Ontology-based Data Access, SPARQL,
Ranking, Recommendation.

1 Introduction

In data-intensive organisations, domain experts usually meet their information
needs either by operating a set of predefined queries embedded into applications
or by involving IT experts to translate their information needs into queries. This
is because domain experts often lack necessary technical knowledge and skills
pertaining to query languages and databases. This man-in-the-middle approach
for extracting data introduces a bottleneck in data access and consequently delays
in value creation processes (cf. [1]).

Visual query formulation (cf. [2]) is a longstanding research endeavour and,
though oriented towards a wide spectrum of users, a particularly prominent
approach to mitigate the data access problem of users without any technical skills
(i.e., end users — cf. [3]). This is due to fact that visual query formulation tools
rely on recognition, rather than recall, and direct manipulation of objects, rather
than a command language syntax, by using visual representations to depict the
domain of interest and queries. In this context, we have recently introduced an
ontology-based visual query system (VQS) for end users, named Optique VQS [AJ5].
It is built on a scalable data access platform for Big Data developed within an EU

2 Soylu et al.

project called Optiqueﬂ [1]. Ontologies provide reasoning support and a domain
representation closer to end users’ understanding, compared to earlier approaches
built on low-level domain models (e.g., relational schemas) (cf. [612]). Besides,
Optique employs an ontology-based data access (OBDA) (cf. [78]) technology
that extends the platform’s data access capabilities to traditional relational data
sources, which store a significant amount of the world’s enterprise data today.

One of the main problems that OptiqueVQS and typically any other VQS
face is scalability against large ontologies (cf. [9]). A VQS has to provide its users
with the elements of ontology (e.g., concepts and properties) continuously, so that
users can select relevant ontology elements and iteratively construct their queries.
However, even with considerably small ontologies, the number of concepts and
properties to choose from increases drastically due to the propagative effect of
ontological reasoning (cf. [I0]). In turn, the high number of ontology elements
overloads the user interface and hinders usability.

We approach the aforementioned problem with adaptivity (cf. [I1]) by ex-
ploiting a query history to rank and suggest ontology elements with respect to
an incomplete query that a user has constructed so far (i.e., context-aware). The
approach is specifically devised for SPARQL [12], takes semantics into account
with reasoning support, and uses SPARQL, as a programming language, for
the implementation. In the rest of paper, we first describe OptiqueVQS, present
our ranking proposal, and then discuss the related work. Finally, we provide a
discussion on the proposal and emerging issues and conclude the paper.

2 OptiquevVQS

OptiqueVQS is built on multiple and coordinated representation and interaction
paradigms (cf. [2]) and enables end users to formulate comparatively complex
queries. OptiqueVQS has a widget-based architecture, which underpins its multi-
paradigm approach and provides extensibility and flexibility. In the followings,
we describe the interface and the formal aspects of SPARQL generation.

2.1 Interface

OptiqueVQS currently has three widgets, see Fig. [If W1 (see the top part of
Fig. [1)) employs a diagram-based representation paradigm, gives an overview
of the constructed query, and allows further manipulation of it; W2 (see the
bottom-left part of Fig. [1) employs a menu-based representation paradigm along
with query by navigation interaction style (cf. [I3]) to let users join concepts
via relationships connecting them; W& (see the bottom-right part of Fig. [l) is
form-based and presents the attributes of a selected concept for selection and
projection operations. W3 also has a faceted search flavour (cf. [14]), as it uses
several natural interaction mechanisms, such as range sliders.

Query construction process in OptiqueVQS works as follows [4l5] — a demo
is availabldﬂ The user begins with selecting a starting concept in W2, i.e., a

! http://www.optique-project.eu/
2 http://youtu.be/ks5tcPZVHpO

http://www.optique-project.eu/
http://youtu.be/ks5tcPZVHp0

Adaptive Ontology-based Visual Query Formulation 3

Facility
drillingFac..

Untitled query Wellbore £
Wellbore_name(o) i
Please provide a
description here... + Company

drilingOpe... _EE?‘

€ Delete Node © undo (@ Redo @ NewQuery (€ SaveQuery (@) Stored Queries @ sPARQL Query €) Run Query

Company

A 4 SeismicSurvey @ © @ isFormerLicencelicensee
(inv) reportingCompany
Any (V]
BAA EON>)
(inv) baaOperatorCompany
@ isCurrentLicenceOperator
i
2 MoveableFacility P Any (V)
ﬁ (inv) currentResponsibleCompany
w Wellbore = © @ isCurrentLicenceLicensee
I (inv) drilinaOoeratorComoany.

Fig. 1. OptiqueVQS — an example query is depicted.

kernel concept, the selected concept appears in W1 as a typed wvariable-node,
and becomes active (aka focus, pivot etc.). Then, the user can extend the query
either by selecting one of the offered concept-property pairs in W2, i.e., concepts
reachable from the pivot via some object property, or by setting constraints on
data type properties or selecting output variables in W3, i.e., by restricting the
data properties of the objects belonging to the pivot. W3 also handles subclass
selection, as it presents direct subclasses of the pivot concept as a multi-select
form element. The user can change the pivot by clicking on any variable-node in
W1 and continue extending the query by selecting a concept-property pair in W2.
OptiqueVQS automatically extends the list of concept-property pairs and data
properties in W2 and W3 via the HermiT reasoner [15] (e.g., a concept inherits
all the properties of its parent concept). The user can delete nodes, access query
catalogue, save/load queries, undo/redo actions, or continue query construction
in the textual SPARQL mode.

2.2 Formal description

OptiqueVQS currently supports linear and tree-shaped conjunctive queries. The
OBDA framework behind OptiqueVQS supports OWL 2 QL [16] and a conjunctive
fragment of SPARQL 1.1 [12]. OWL 2 QL is a profile of OWL 2 and in this
profile query answering can be implemented by rewriting queries into a standard
relational query language [17].

4 Soylu et al.

The way the ontology controls the behaviour of OptiqueVQS should be
seen from two perspectives: from a knowledge representation (KR) perspective,
Optique exploits the graph-based organisation of ontological elements and data
for representing the domain and query structures (cf. query by navigation); from
a logic perspective, it uses ontological axioms to constrain the behaviour of the
interface and to extend the available knowledge. On a purely structural level,
OptiqueVQS could be controlled directly by a graph G that captures the concepts
and the properties of an ontology O. An OWL ontology can be viewed as a labeled
directed RDF graph G = (N, E), where N is a finite set of labeled nodes and F is
a finite set of labeled edges (cf. [I7]). We consider pairwise disjoint alphabets U,
a set of URIs, L, a set of terminal literals, and B, a set of blank nodes. An edge is
a triple written in the form of (s,p,0) € (UUB) x U x (UU LU B). The nodes of
the graph mainly represent concepts and edges represent properties. A SPARQL
query is formally represented by a tuple defined as Q = (A4,V, D, P, M, R). A is
the set of prefix declarations, V' is the output form, D is the RDF graph being
queried, P is a graph pattern, M are query modifiers, which allow to modify
the results by applying projection, order, limit, and offset options. SPARQL is
based on matching graph patterns against RDF graphs. P is composed of a set
of triple patterns and describes a subgraph of D. The main difference between
a triple pattern and RDF triple comes from the fact that the former may have
each of subject, predicate and object as a variable. However, once we substitute
variables in triple patterns with constants or blank nodes, we reach an RDF
graph P'(N’ E’) that could be considered as a subgraph of the actual RDF data
graph.

Every query generated by OptiqueVQS has a graph pattern represented by a
set of triple patterns, where each triple pattern is a tuple t € Var x U x (U U
Var U L) and Var is an infinite set of variables. The state of an edited query
is composed of a partial graph pattern and a cursor position (cf. pivot). The
cursor position is either blank (i.e., empty query) or points to a variable in the
query. If the query is empty, the selection of a concept v from W2 results in
a new tuple (x,rdf:type,v) € Var x U x U in P, where x is a fresh variable.
If the cursor points to a variable z, of type v, then each selection of a object
property o with target class w from W1 (corresponding to an edge (v,0,w) € G)
adds the following two triple patterns to P: (z,0,y) € Var x U x Var and
(y,rdf:type,w) € Var x U x U, where y is a fresh variable. Every selection and
projection operation realised over a data property d in W3, while cursor is on a
variable x, adds a new tuple (z,d,y) € Var x U x (Var U L) to P. Finally, the
selection of a subclass v for a typed variable z in W3 results in a new triple in P:
(x,rdf:type,v) € Var x U x U.

3 Adaptive Query Formulation

Currently, the widgets W2 and W3 (see Fig. [1)) present all the available concept-
object property pairs and data properties to users respectively. However, the
lists grow quickly due to ontology size, number of relationships between concepts,

Adaptive Ontology-based Visual Query Formulation 5

subproperties, inverse properties, inheritance of restrictions etc. As the lists grow,
the time required for a user to find elements of interest increases; therefore ranking
ontology elements with respect to previously executed queries and suggesting
highly ranked elements first as possible query continuations have potential to
increase the efficiency of the users. The nature of OptiqueVQS requires suggestions
to be done for the pivot (i.e., cursor point) rather than for any part of a query.

In what follows, we first present a running example and then describe our
ranking method for context-aware suggestions. The running example is built on
one of the industrial Optique use cases, namely the Statoil use case. StatoiEI is a
large international energy company focused on upstream oil and gas operations.
The company reports that value creation processes could be improved considerably,
if domain experts are to be able to access data on their own.

3.1 Running Example

The exploration department of Statoil has to find new hydrocarbon reserves in a
cost effective way and ultimately the only way to prove the presence of a reserve
is to drill an exploration well, which may consist of one or several well paths,
i.e., wellbores. But since drilling is very expensive, it is important to maximise
the chances of success. To do this, all available data from previous and ongoing
exploration and production projects to extrapolate a model of the geology of a
field, which then allows to anticipate the presence of hydrocarbon reserves.

A partial simplified ontology for Statoil exploration department is depicted
in Fig. 2] The ontology currently contains 344 concepts, 148 object properties,
237 data properties, and 8190 axioms and it is yet to grow. In Fig. [3] an example
query log with three queries is assumed for the sake of brevity. The first query,
@1, is the one that is depicted in Fig. [1| and asks for the names of wellbores with
a drilling facility and a drilling company. The second query, @2, asks for the
content of all shallow wellbores that belongs to a well and has a drilling company
of type operator. The final query, @3, asks for the content of all exploration
wellbores that has a fixed drilling facility and a drilling company.

In Fig.[3] PQ refers to an example partial query. The query in its incomplete
form asks for all exploration wellbores with a drilling company; the cursor point
is the variable of type exploration wellbore. At this point of query formulation
session, the widgets W2 and W3 need to suggest the most relevant continuations,
by comparing the partial query with the queries in the query log.

3.2 Ranking Method

A query log QL is basically a set of SPARQL queries: QL = {Q1,Q2, ..., Qn}.
We define a function p that takes a query @ as an input and returns its graph
pattern P. We define S as a set suggestions {T1,T5,...,T,,}. Each suggestion
in S is a triple set T;, which either contains two triples for W2 in the form of
{{(z,0,y) € Var x U x Var, (y,rdf :type,w) € Var x U x U} or one triple for

3 http://www.statoil.com/

http://www.statoil.com/

6 Soylu et al.

Development
Wellbore

Wellbore

l l Exploration
\‘ ,l
A} ’
~ ’/

name , content

subclass v subclass

Shallow

subclass Wellbore forField
Wellbore
forLicense belongsToWell
) drillingopCompany drillingFacility
Production
License
subclass subclass
subclass subclass
Operator Pipeline
Fixed
Facility

Fig. 2. A partial simplified ontology for the Statoil use case.

W3 in the form of {{x,d,y) € Var x U x (Var U L)}, where x corresponds to
the cursor variable in a partial user query Q.. Note that subclass suggestion is
not included in the ranking, since it is always suggested by default.

The ranking score, at this point, basically corresponds to the conditional
probability for each suggestion T; in S, given a partial query @), and a query log
QL, that is Pr(T; | p(Q.)). Conditional probability and probability functions are
defined in the followings.

Within a query log QL, the probability of a graph pattern P is defined as
the fraction of graph patterns in QL that are supergraphs [I8] of P, as shown in

Eq.

(@i € QLIP < p(Q))}]
QL

Pr(P)

Adaptive Ontology-based Visual Query Formulation 7
Q1 drillingFacility Facility Q2 belongsToWell el
Wellbore Shallow Wellb
name (o) content (o)
Company Operator
drillingOpCompany drillingOpCompany
Q3 drillingFacility, | Fixed Facility PQ ?J ? !
Ra - 1
Exp Wellbore Exp Wellbore ! S ——
content (o) ? ="
Company \ Company
drillingOpCompany drillingOpCompany

Fig. 3. A query log with three queries and an example partial user query.

The conditional probability of a triple set T" given a graph pattern P is defined
as the quotient of the probability of the union of 7" and P, and the probability
of P as shown in Eq.

Pr(TNP)
Pr(P) @)

Now two important questions come into play. First, how do we find supergraphs
in the query log, given a partial user query? Second, how do we extract possible
extensions, i.e., suggestions, for the partial query from found supergraphs? As far
as the first problem is concerned, it boils down to a graph matching problem. We
consider a graph pattern P; to be subgraph of another graph pattern Ps, if all the
triple patterns of P; are covered by P,, independent of variable names, ordering
of triple patterns, and the values of constraints. Dividino and Groner [19] review
different approaches for checking graph similarity, where our interest falls into
content-based approaches. We propose a method that relies on SPARQL itself
and provides us with an exhaustive solution, as it allows us to exploit semantic
knowledge while matching queries.

The method starts with the instantiation of graph patterns of queries in the
query log by replacing variable names and constraints on data type properties
with blank nodes; blank node names are marked with a query identifier for
preventing any overlap and identification purposes. Then, the resulted RDF
graphs are stored in a common dedicated triple store; the instantiation of the
query log depicted in Fig. [3|is given in Fig. [d By applying the partial query over
this triple store, one can retrieve all the queries that are the supergraphs of the
partial query.

As far as the second question is concerned, i.e., finding possible extensions, the
partial query is extended with a triple pattern from the cursor point to retrieve
all extensions occurred in the matching supergraphs. The output of partial query

Pr(T | P) =

8 Soylu et al.

Query log: SPARQL form Query log: triple form

Q1 SELECT DISTINCT ?cl ?al ?c2 ?c3
WHERE {
?cl nsl:type ns2:Wellbore.
?c2 nsl:type ns2:Facility.
?c3 nsl:type ns2:Company.
?cl ns2:drillingFacility ?c2.
?cl ns2:drillingOpCompany ?c3.
?cl ns2:name ?al.

}

Q2 SELECT DISTINCT ?cl ?al ?c2 ?c3
WHERE {
?cl nsl:type ns2:ShallowWellbore.
?c2 nsl:type ns2:Operator.
?c3 nsl:type ns2:Well.
?cl ns2:drillingOpCompany ?c2.
?cl ns2:belongsToWell ?c3.

:qlcl nsl:type ns2:Wellbore.

:qlc2 nsl:type ns2:Facility.

:qlc3 nsl:type ns2:Company.

:qlcl ns2:drillingFacility _:qlc2.
:qlcl ns2:drillingOpCompany _:qlc3.
:qlcl ns2:name _:qlal.

:q2cl nsl:type ns2:ShallowWellbore.
:q2c2 nsl:type ns2:Operator.

:q2c3 nsl:type ns2:Well.

:q2cl ns2:drillingOpCompany _:q2c2.
:q2cl ns2:belongsTolWell _:g2c3 .

?cl ns2:wellboreContent ?a2. _:g2cl ns2:wellboreContent _:qg2al.
}
Q3 SELECT DISTINCT ?cl ?al ?c2 ?c3
WHERE {

:q3cl nsl:type ns2:ExpWellbore.
:q3c2 nsl:type ns2:Company.

:q3c3 nsl:type ns2:FixedFacility.
?cl ns2:drillingOpCompany ?c2. :q3cl ns2:drillingOpCompany _:q3c2.
?cl ns2:drillingFacility ?c3. :q3cl ns2:drillingFacility _:q3c3.
?cl ns2:wellboreContent ?al. :q3cl ns2:wellboreContent _:qg3al.

?cl nsl:type ns2:ExpWellbore.
?c2 nsl:type ns2:Company.
?c3 nsl:type ns2:FixedFacility.

Fig. 4. The instantiation of query graph patterns.

is modified to retrieve the identifiers of matching queries, properties, and the
types of variables for the returned extension. An example is given in Fig. [f] for the
partial query depicted in Fig. 3] and the triple store depicted in Fig. [d] The rest
of the method involves calculation of conditional probabilities for the suggestions,
as exemplified in Fig.

If one inspects the results in Fig. [5] closely, she will realise that reasoning is
involved. This is because in the query log, only Q3 is an exact match for the
partial query. However, thanks to reasoning support, Q1 is also matched, since
exploration wellbore is a subclass of wellbore. Likewise, this guarantees a match
for any query that has a semantic similarity [20] to the partial query, involving
subclasses, subproperties, inverses etc. Later in the paper, this is to be discussed
further, as there is a semantic distance involved between the partial query and the
matched query. Yet, it is possible to query the triple store without any reasoning,
if one wants to eliminate such matches, hence avoiding any semantic distance.

Adaptive Ontology-based Visual Query Formulation 9

Partial user query Modified partial user query

SELECT DISTINCT ?c3 ?prop ?type

SELECT DISTINCT ?cl ?c2 WHERE {
WHERE { ?cl nsl:type ns2:ExpWellbore.
?cl nsl:type ns2:ExpWellbore. ?c2 nsl:type ns2:Company.
?c2 nsl:type ns2:Company. ?cl ns2:drillingOpCompany ?c2.
?c1 ns2:drillingOpCompany ?c2. ?cl ?prop ?c3.
} OPTIONAL { ?c3 rdf:type ?type }
}
Matches
?2c3 ?prop 2type Pr(T|P) Widget
_:qlc2 T, | ns2:drillingFacility ns2:Facility 016 W2
_:gqlc3 T, | ns2:drillingOpCompany ns2:Company 0.33 W2
_:qlal T, ns2:name 0.16 w3
_:q3c2 T, | ns2:drillingOpCompany ns2:Company
_:q3c3 T, | ns2:drillingFacility ns2:FixedFacility 0.16 W2
_:q3a1 Ts | ns2:wellboreContent 0.16 w3

Fig. 5. Modified partial user query and possible query extensions.

The final stage involves ordering and dividing S into two sets, S; for W2
and Sy for W3, with respect to ranking score and type of each suggestion (i.e.,
concept-relationship pair vs. data type property). Then, suggestions in each set

are paginated into ‘Sjil pages, where i is the set identifier and j is the window

size for a page (i.e., the required number of suggestions for a page).

4 Related Work

There are a number of visual query formulation tools available in the literature
(e.g., [2I2T2223]); however, to the best of authors knowledge none of them sup-
ports adaptive visual query formulation. Existing approaches for adaptive query
formulation are largely developed for context-sensitive textual query formulation.

Khoussainova et al. [24] provide a system, named SnipSuggest, for context-
aware composition of textual SQL queries with respect to a given query log. The
authors translate each SQL query in the query log into a set of features (e.g., a
table name appearing in the FROM clause). Similarly, the partial query of the user
is also translated into a set of features. Possible features for extension are identified
by matching the feature sets of the partial query and the feature sets of queries
in the query log and are ranked by calculating conditional probabilities. The
approach generates suggestions for extending any part of the partial query rather

10 Soylu et al.

than a single cursor point. Authors also propose a set of supportive algorithms
and techniques for, such as feature set matching (i.e., what if the partial query
does not appear in the query log), the selection of suggestions (i.e., accuracy
vs. diversity), and query log elimination (i.e., to reduce the size). The elaborate
approach provided by SnipSuggest system is relevant to our contribution in many
aspects. However, a fundamental difference is in feature comparison; while the
features of SnipSuggest system are a set of syntactic elements and the feature
comparison is string based, for OptiqueVQS feature sets (i.e., correspond to the
triple sets of graph patterns) have a semantic nature and compared semantically.
The semantic aspects not only concern how the matching is done, but also the
calculation of rankings, which we discuss in the following section.

As far as approaches for SPARQL are concerned, Campinas et al. [25] propose
an approach for assisting textual SPARQL query formulation, however in a
different context. The approach assumes that an ontology describing the data
set is unknown. Therefore, the authors propose a model that summarises the
underlying data graph and extracts ontology elements to suggest. The approach
extends a given partial user query from the cursor point, similar to our approach,
and then evaluates it over the data graph summary to retrieve possible extensions.
However, the approach does not realise any ranking of suggestions based on the
previously executed queries and does not take semantic similarities between
queries into account, possibly due to lack of rich domain knowledge (e.g., lack of
subclass, inverse property axioms).

Kramer et al. [26] present a tool, named SPACE, to support autocompletion
of textual SPARQL queries. For this purpose, it takes a SPARQL query log as an
input and then builds an index structure for the computation of query suggestions.
The index structure has a root node at level 0, representing a set of queries, while
each vertex at level 1 represents a SPARQL query. The vertices from level n — 2
to index level 1 represent graph patterns recursively. Finally the vertices at the
highest level (n — 1) represent IRIs, blank nodes, literals, variables, and binary
operators such as AND, UNION, and FILTER. The suggestion process is done by
subgraph matching for the partial user query in the index graph in a bottom up
manner. However, the authors describe neither the subgraph matching process
nor the details of ranking calculation. Finally, the index structure could grow
quickly as it is built on recursive decomposition of graph patterns.

5 Discussion

The fact that there exist SPARQL engines capable of handling large triple sets
effectively [2728] is a positive evidence for the execution performance of our
approach, since our proposal relies on SPARQL querying for matching partial
user queries against a query log. One should also note that the size of a triple
store for a query log is only expected to be in the order of thousands triples, if
maintained — e.g., pruned, clustered etc.

As far as the precision of suggestions is concerned, approaches that take
the partial query into account are reported to be better than popularity-based

Adaptive Ontology-based Visual Query Formulation 11

approaches purely built on the number of occurrences of terms in the query
log [24]. Note that, initially, when no kernel concept is selected, our approach
behaves like a popularity-based approach, as it extends an empty query. Below,
we discuss a set of issues that need to be addressed:

Semantic distance: In Fig. |3] the match between the first query and partial
query is due to their semantic similarity and is not exact (e.g., exploration
wellbore is a subclass of wellbore); and in Fig. [5] the drillingFacility - Facility and
drillingFacility - FixedFacility suggestions are semantically similar. Therefore one
could incorporate the semantic distance involved as a cofactor into the ranking
function, so that semantically distant queries contribute less to the ranking.
Huang et al. [20] suggest a similarity measure, which can readily incorporated to
our proposal. It uses the depth of compared concepts and properties and their
least common ancestors from the root of hierarchy to compute similarity between
concepts and properties and combine them to compute similarity between triple
patterns, hence queries.

No match: A problematic situation arises when no match is found for the
partial query in the query log (cf. [24]). A possible solution could be pruning the
partial query until a match is found. At each step of a pruning process, a leaf
node, which is not the cursor point, could be randomly selected and deleted (or
with respect to some heuristics), so that partial query graph pattern does not
get disconnected and the cursor point is preserved.

Cold start: The proposal cannot draw any suggestions, when the query log
contains no or insufficient number of queries. Mostly likely sources to use for
addressing this problem are the ontology and data set. A statistical inspection of
ontology, e.g., concept centrality with respect to the number of incoming and
outgoing relationships, and the data set, e.g., the number of times each concept
and property appears in the dataset, could reveal useful information to overcome
the cold start problem.

Collective, group, or individual: The ranking and suggestions could be applied
on an individual basis for each user, i.e., only over the portion of query log that
belongs to the subject user, on group basis, i.e., only over the portion of query
log that belongs to the users of same type, and on a collective basis, i.e., over the
whole query log for every user (cf. [II]). The decision possibly should consider
whether users are homogeneous or there exist different user groups, each using a
part of the ontology heavily — e.g., geologist and chemists. In the former case, a
group or even user specific approach is more feasible, as each user group/user
focuses on a specific part of the ontology.

6 Conclusion and Future Work

Ontology-based end-user visual query formulation is promising for enhancing value
creation processes; yet existing approaches are not scalable against large ontologies.
Although there are some attempts for assisted textual query formulation in the
literature; they are either not elaborate enough to be readily used in our case or
do not take previously executed queries into account. In this paper, we proposed

12 Soylu et al.

a method for ranking and suggesting SPARQL query extensions, which relies
on the partial user query, the queries in the query history, and their semantic
similarity. We also identified notable issues to be addressed in order to reach an
elaborate solution.

The future work involves comparative evaluation of the proposed method and
its variants (e.g., with/without semantic similarity) in terms of precision. End-
user studies are also planned to measure the perceived usefulness, i.e., whether in
practice users find ranking approach useful or not.

Acknowledgements. This research is funded by the FP7 of the European
Commission under Grant Agreement 318338, “Optique”.

References

1. Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M.,
Lenzerini, M., Moller, R., Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R.,
Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In Rajendra, A., ed.:
Big Data Computing. Chapman and Hall/CRC (2013)

2. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for
databases: A survey. Journal of Visual Languages and Computing 8(2) (1997)
215-260

3. Lieberman, H., Paterné, F., Klann, M., Wulf, V.: End-User Development: An
Emerging Paradigm. In Lieberman, H., Paterné, F., Wulf, V., eds.: End-User Devel-
opment. Volume 9 of Human-Computer Interaction Series. Springer, Netherlands
(2006) 1-8

4. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks,
I.: OptiqueVQS — Towards an Ontology-based Visual Query System for Big Data.
In: Proceedings of the International Conference on Management of Emergent Digital
EcoSystems (MEDES 2013), ACM (2013) 119-126

5. Soylu, A., Skjeveland, M., Giese, M., Horrocks, 1., Jimenez-Ruiz, E., Kharlamov,
E., Zheleznyakov, D.: A Preliminary Approach on Ontology-based Visual Query
Formulation for Big Data. In: Proceedings of the 7th International Conference on
Metadata and Semantic Research (MTSR 2013). Volume 390 of CCIS., Springer
(2013) 201-212

6. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on
novice user query performance with conceptual and logical database interfaces.
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and
Humans 34(2) (2004) 276-281

7. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the
Semantic Web: A survey. Semantic Web 3(2) (2012) 169-209

8. Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and
Computer Software 38(4) (2012) 167-182

9. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods - A survey. ACM Computing Surveys 39(4) (2007) 10:1-10:43

10. Grau, B.C., Giese, M., Horrocks, 1., Hubauer, T., Jimenez-Ruiz, E., Kharlamov,
E., Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation and
Query-Driven Ontology Extensions in OBDA Systems. In: Proceedings of the 10th
OWL: Experiences and Directions Workshop (OWLED 2013). Volume 1080 of
CEUR Workshop Proceedings., CEUR-WS.org (2013)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Adaptive Ontology-based Visual Query Formulation 13

Brusilovsky, P., Kobsa, A., Nejdl, W., eds.: The Adaptive Web: Methods and
Strategies of Web Personalization. Volume 4321 of LNCS. Springer (2007)

Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
W3C (March 2013)

Ter Hofstede, A.H.M., Proper, H.A., Van Der Weide, T.P.: Query formulation as
an information retrieval problem. Computer Journal 39(4) (1996) 255-274
Tunkelang, D., Marchionini, G.: Faceted Search. Synthesis Lectures on Information
Concepts, Retrieval, and Services. Morgan and Claypool Publishers (2009)

Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research 36(1) (2009) 165-228

Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles. W3C Recommendation, W3C (October 2009)

Grau, B.C., Horrocks, 1., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: The Next Step for OWL. Web Semantics: Science, Services and Agents on
the World Wide Web 6(4) (2008) 309-322

Ray, S.S.: Subgraphs, Paths, and Connected Graphs. In: Graph Theory with
Algorithms and its Applications. Springer India (2013)

Dividino, R., Groner, G.: Which of the following SPARQL Queries are Similar? Why?
In: Proceedings of the 1st International Workshop on Linked Data for Information
Extraction (LD4IE 2013). Volume 1057 of CEUR Workshop Proceedings., CEUR-
WS.org (2013)

Huang, H., Liu, C., Zhou, X.: Computing Relaxed Answers on RDF Databases.
In: Proceedings of the 9th International Conference on Web Information Systems
Engineering (WISE 2008). Volume 5175 of LNCS., Springer (2008) 163-175
Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An
ontology based visual tool for query formulation support. In: Proceedings of the
16th Eureopean Conference on Artificial Intelligence (ECAI 2004). Volume 110 of
Frontiers in Artificial Intelligence and Applications., IOS Press (2004) 308-312
Kapetanios, E., Baer, D., Groenewoud, P.: Simplifying syntactic and semantic
parsing of NL-based queries in advanced application domains. Data & Knowledge
Engineering 55(1) (2005) 38-58

Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology Enabled Graphical
Database Query Tool for End-Users. In: Proceedings of the 8th International Baltic
Conference on Databases and Information Systems (DB&IS 2008). Volume 187 of
Frontiers in Artificial Intelligence and Applications., IOS Press (2009) 105-116
Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: SnipSuggest: Context-aware
Autocompletion for SQL. Proceedings of the VLDB Endowment 4(1) (2010) 22-33
Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing
RDF Graph Summary with Application to Assisted SPARQL Formulation. In:
Proceedings of the 23rd International Workshop on Database and Expert Systems
Applications (DEXA 2012), IEEE (2012) 261-266

Kramer, K., Dividino, R., Groner, G.: SPACE: SPARQL Index for Efficient
Autocompletion. In: Proceedings of the ISWC 2013 Posters & Demonstrations
Track (ISWC-PD 2013). Volume 1035 of CEUR Workshop Proceedings., CEUR-
WS.org (2013)

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP?Bench: A SPARQL Perfor-
mance Benchmark. In: Proceedings of the IEEE International Conference on Data
Engineering (ICDE 2009), IEEE Computer Society (2009) 222-233

Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on
Semantic Web and Information Systems 5(2) (2009) 1-24

	Towards Exploiting Query History for Adaptive Ontology-based Visual Query Formulation

