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Abstract

The modeling of tracer kinetics with use of low-temporal-resolution data is of central importance 

for patient dose reduction in dynamic contrast-enhanced CT (DCE-CT) study. Tracer kinetic 

models of the liver vary according to the physiologic assumptions imposed on the model, and they 

can substantially differ in the ways how the input for blood supply and tissue compartments are 

modeled. In this study, single-input flow-limited (FL), Tofts-Kety (TK), extended TK (ETK), 

Hayton-Brady (HB), two compartment exchange (2CX), and adiabatic approximation to the tissue 

homogeneity (AATH) models were applied to the analysis of liver 4-phase DCE-CT data with 

fully continuous-time parameter formulation, including the bolus arrival time. The bolus arrival 

time for the 2CX and AATH models was described by modifying the vascular transport operator 

theory. Initial results indicate that single-input tracer kinetic modeling is feasible for 

distinguishing between hepatocellular carcinoma and normal liver parenchyma.
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1 Introduction

Dynamic contrast-enhanced CT (DCE-CT) that involves intravenous administration of 

iodinated contrast agent (CA) can measure the vascular physiology of tumors through an 

analysis of the temporal changes of CT attenuation during sequential imaging. The fitting of 

a predefined compartmental model involves estimation of the values of kinetic parameters 

that provide a best fit to an observed concentration-time curve [1, 2]. A mathematical model 
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is applied to the arterial and the tissue tracer concentration to estimate the physiologic 

parameters of interest.

Assessment of hemodynamic changes is particularly challenging for the liver due to its dual 

blood supply [3]. A dual-input model has potential to provide the physiologic proportions of 

blood supply to the liver tissue from the hepatic arterial system and from the portal venous 

system in vivo [4]. However, practical application of a dual-input model has various 

limitations. First, the hepatic artery may be difficult to locate, because it is thin and hardly 

visible on images. Therefore, the hepatic arterial input is generally approximated by 

sampling of the concentration-time curve at the abdominal aorta [4, 5, 6], which is a global 

input that supplies blood to the abdominal cavity. Thus, because the delay and dispersion of 

the CA to the aorta-hepatic artery pathway are prone to errors in the estimation of the flow 

[7], most of the currently developed dual-input liver models might not generate a precise 

physiological reality, although they would be physiologically more accurate than single-

input models. Second, the low temporal resolution of 4-phase DCE-CT data may hamper the 

use of dual-input models with different physiologic scenarios because of high uncertainty in 

the intervals of data points that might contain mixed hepatic arterial and portal flow 

information. Furthermore, an additional parameter, such as arterial flow fraction in the dual-

input models, can cause the total number of unknown parameters to exceed the effective 

degrees of freedom in measured data. Therefore, it may be necessary to make simplifying 

assumptions in order to reduce the number of parameters down to a manageable number, 

while providing a reasonable goodness-of-fit as well as enabling the study of different tracer 

kinetic models with varying degrees of complexity in the capillary-tissue system. 

Ultimately, there is a trade-off between computational cost and potential benefits of a 

precise model.

Tumor angiogenesis in the liver develops generally from the arterial blood supply rather 

than from the portal circulation, because the portal blood supply decreases with 

advancement of the tumor and eventually the tumor is fed mainly by arterial flow [8]. Thus, 

hepatic tumor circulation differs from the overall circulation pattern [9].

We performed a pilot study to evaluate six different single-input tracer kinetic models with 

the fundamental biophysical concepts and tracer kinetic principles of dynamic contrast-

enhanced imaging: the flow-limited (FL) model [1], Tofts-Kety (TK) model [10], extended 

TK (ETK) model [11], Hayton-Brady (HB) model [12], two compartment exchange (2CX) 

model [13], and adiabatic approximation to the tissue homogeneity (AATH) model [14]. For 

parametric fitting of 4-phase DCE-CT data, the six models were extended to a fully 

continuous-time parameter formulation, including the bolus arrival time. Thus, the aim of 

this study was to investigate the discriminatory ability of each model between hepatocellular 

carcinoma (HCC) and normal liver parenchyma, and to demonstrate the potential of single-

input tracer kinetic modeling in liver 4-phase DCE-CT.
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2 Methods

2.1 Arterial Input Function

To derive the continuous formulation of each kinetic model in the time domain, first an 

arterial input function (AIF) needs to be modeled as a continuous-time functional form. The 

AIF was acquired on the abdominal aorta with use of a sums-of-exponentials model from 

individual patients [15]. By imposing the bolus arrival time (tLag,A) in the artery [16], a 

functional form for the AIF model can be given by CA(t) = {AB(t–tLag,A)e−μB(t–tLag,A) + AG 

(e−μG(t–tLag,A) − e−μB(t–tLag,A))}u(t–tLag,A), where CA(t) is the arterial blood concentration of 

CA (in g/ml), and u(t) is the unit step function. The AB = aB – aBaG/(μB – μG), AG = 

aBaG/(μB – μG)2, μB and μB are scaling constants that govern the height and shape of the 

AIF.

2.2 Continuous-Time Formulation of Tracer Kinetic Models

Once the AIF is modeled as a continuous-time functional form, an analytic solution for each 

kinetic model can be derived by incorporating the scaling constants of the AIF. Adopting the 

approach of a linear time-invariant system, the concentration of CA for the liver tissue, 

CT(t), can be described as a convolution integral between the impulse response function, 

QT(t), and CT(t),

(1)

where HLV is the hematocrit of blood in large vessels (≅ 0:45) [1], and ⊗ denotes the 

convolution operator. All models considered here basically fall under this assumption. The 

impulse response functions QT(t), for the six different models are given by

(2)

(3)

(4)

(5)

(6)
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with  and 

,

(7)

where QT,FT(t), QT, TK(t), QT, ETK(t), QT,HB(t), QT, 2CX(t) and QT,AATH(t) represent the 

QT(t), for the FL, TK, ETK, HB, 2CX, and AATH models, respectively. Note that δ(t) is the 

Dirac delta function, νP is the plasma volume fraction, νI is the interstitial volume fraction, 

νD = νP + νI is the relative distribution volume, VP is the plasma volume (in ml), F is the 

plasma flow (in ml/min), PS is the permeability-surface area product (in ml/min), and E = 1 

– e−PS/F is the extraction fraction, respectively. The AHB, a and b are reparametrization of 

the compartmental variables [12]. To account for the difference in bolus arrival times 

between CA(t), and CT(t), a time lag (delay) to the liver tissue, tLag,T, can be imposed on 

either CA(t), or QT(t) to calculate CT(t). For the AIF described above, the analytic forms of 

CT(t), are given explicitly for the six different models by

(8)

(9)
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(10)

(11)

(12)
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(13)

where CT,FL(t), CT,TK(t), CT,ETK(t), CT,HB(t), CT,2CX(t) and CT,AATH(t) represent CT(t) for 

the FL, TK, ETK, HB, 2CX, and AATH models, respectively. The tBAT = tLag,A + tLag,T is 

the bolus arrival time from the injection site of CA to the target tissue.

2.3 Kinetic Parameter Calculation

Model fitting was performed with a constrained nonlinear optimization algorithm based on 

MINPACK-1 [17], which yields the sum of squared errors as a measure of the goodness-of-

fit [18]. The number of curve-fitting parameters was limited to at most four to avoid over-

fitting to the data. The parameters that can be directly estimated by parametric fitting for 

each model are as follows: {F/VP, νP, νI, tLag,T} for the FL model, {EF/VP, νP, νI, tLag,T} for 

the TK and ETK models, {AHB, a, b, tLag,T} for the HB model, and {F/VP, PS/VP νP, νI} for 

the 2CX and AATH models. With these parameterizations, blood flow (BF) for the FL, 

2CX, and AATH models, blood volume (BV) for all models except the HB model, mean 

transit time (MTT) for the FL, 2CX, and AATH models, permeability-surface area product 

(PS) for the 2CX and AATH models, extraction-flow product (EF) for all models except the 

HB model, and efflux rate constants (EF/VI for the TK, ETK, and AATH models, and PS/VI 

for the 2CX model, where VI is the interstitial volume (in ml)) can be computed according 

to: BV = 100 · VP/{(1 – HSV) · m} (in ml/100 g), where HSV is the hematocrit in small 

vessels (≅ 0:25) [1], and m = ρTVP/νP is the mass of the tissue with density ρT (= 1.04 g/cm3 

in the case of soft tissue), BF = BV · F/VP (in ml/min/100 g), MTT = νDVP/(νPF) (in min), 

PS = (1 – HSV) · BV · PS/VP (in ml/min/100 g), EF = (1 – HSV) · E · BF (in ml/min/100 g), 

EF/VI = (νP/νI) · EF/VP (min−1), and PS/VI = (νP/νI) · PS/VP (min−1).
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The tLag,T for the 2CX and AATH models was modeled by modifying the vascular transport 

operator (VTO) theory [19], so that it could directly be estimated during the fitting 

procedure. Originally, the VTO theory was designed to estimate a pure delay of 

concentration-time curves at inflow and outflow on intravascular transport along a single 

path. The VTO consists of two components in series, a pure delay and a fourth-order linear 

differential operator that gives a dispersive delay. The parameters of the VTO are MTT and 

relative dispersion (RD), which is the standard deviation (SD) of the impulse response 

divided by MTT. To calculate SD at the target tissue, we used the tissue reside function, 

RT(t) = QT(t) · VP/(vPF) instead of the impulse outflow response, hT(t) = −dRT(t)/dt in [19], 

and then multiplied vD into the SD to calculate the RD for each of the 2CX and AATH 

models. The RD and its corresponding tLag,T for the 2CX and AATH models can be given 

by

(14)

(15)

(16)

where RD2CX, RDAATH, RT,2CX(t) and RT,AATH(t) are the RD and RT(t) for the 2CX and 

AATH models, respectively. The constant 0.48 is a maximum RD for the dispersiveness of 

the operator [19]. In case that tLag,T was a negative value or a value greater than a stipulated 

threshold, it was assigned a value of 0 in the curve-fitting process so that it could converge 

into a new value.

2.4 Patients and DCE-CT Imaging

We investigated nine patient HCC cases to demonstrate clinical applicability of the six 

different single-input tracer kinetic models with the proposed continuous-time parameter 

formalism in 4-phase liver DCE-CT. The patients were scanned with a 64 multidetector CT 

scanner (LightSpeed VCT or Discovery CT750 HD; GE Medical Systems, Milwaukee, WI). 

A total of 1.7 ml/kg (80 to 135 ml) of nonionic iodinated CA (Iomeron; Eisai, Tokyo, 350 

mg/ml) was injected with 30 s injection duration time at the rate of 3–5 ml/s and a volume as 

per 550–600 mgI/kg weight. The arterial-phase timing was determined with bolus tracking 

technology (Smart Prep; GE Healthcare), and scan was initiated 17 s after the preselected 

threshold of 200 HU was attained, with a region of interest (ROI) placed in the aorta above 

the celiac axis branching, where the tLag,A was determined by observation of a snapshot to 

show the onset time of temporal enhancement in the aorta. The portal-venous phase and 

delayed phase initiated at 70 s and 150 s, respectively, after the preselected threshold of 200 

HU was attained. In the patient cohort, tLag,A ranged from 10 to 16 s, and the time when the 
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preselected threshold of 200 HU was attained ranged from 14 to 24 s. The following CT 

parameters were used for obtaining volume data: 120 kVp, Auto mA, 16 × 0.625 mm 

detector collimation, 2.5 mm slice thickness, 95 to 120 slices, and a pitch of 1.

2.5 Image Processing and Analysis

To enhance contrast-to-noise ratios, DCE-CT images were denoised by use of multiple 

observations Gaussian process regression [20]. To reduce movement-induced artifacts, we 

coregistered each set of dynamic images with the portal-phase image as a template by using 

the Insight Segmentation and Registration Toolkit [21]. The registration was performed 

based on serial applications of 3D rigid, affine, and symmetric force Demons deformable 

registration methods with use of a multiresolution scheme [16]. For curve-fitting of the 4-

phase DCE-CT data, 2D spatial filtering with a 5 × 5 pixel median kernel was applied on 

each DCE-CT sequence before extracting a voxel-level tissue concentration-time curve for 

fitting. ROIs were manually drawn by an experienced radiologist over a primary HCC and 

its adjacent normal tissue for each patient. Mean values in the ROIs (in total, 9 HCC and 9 

normal tissue ROIs) were recorded for each parameter for each model for each patient. An 

example of fitting the voxel-level 4-phase DCE-CT data in HCC and normal tissue with the 

six different kinetic models is shown in Fig. 1.

2.6 Statistical Analysis

The predictable value of each parameter was evaluated by measuring the area under the 

receiver operating characteristic curve (AZ). The Mann-Whitney (MW) test was used to test 

for differences in the mean values of each parameter between normal liver parenchyma and 

HCC ROIs. To assess the independent impact of each parameter on differentiation between 

HCC and normal liver parenchyma, binary logistic regression (BLR) analysis was 

performed with bootstrapping with 1000 replications. A P value <0.05 indicated a 

significant difference.

3 Results

Results of ROI analysis and comparison of the various hepatic microcirculatory parameters 

for the different models are shown in Table 1. In all of the applicable models, the ROIs of 

HCC showed increased BF and BV, earlier bolus arrival time tLag,T, shorter MTT, and 

smaller E than those of the normal liver tissue. The three parameters (i.e., AHB, a, and b) for 

the HB model were all higher in the HCCs than in the normal liver tissue. The EF and EF/VI 

were higher in the HCC with the TK, ETK, and AATH models, whereas the EF and PS/VI 

were lower with the 2CX model. The vI was lower in the HCC with the FL, TK, ETK, and 

AATH models, whereas it was higher with the 2CX model. The PS was higher in the HCC 

with the AATH model, while it was lower with the 2CX model. Considering parameters 

with AZ > 0.95 as well as statistical significance in both the MW and BLR tests, the ETK-

model-derived BV (AZ = 0.975, MW: P < 0.001, and BLR: P = 0.009) and tLag,T (AZ = 

0.963, MW: P < 0.001, and BLR: P = 0.021), the HB-model-derived AHB (AZ = 0.975, MW: 

P < 0.001 BLR: P = 0.004), and the 2CX-model-derived E (AZ = 0:963, MW: P < 0.001, 

and BLR: P = 0.002) and tLag,T (AZ = 0:988, MW: P < 0.001, and BLR: P = 0.002), and the 

AATH model-derived tLag,T (AZ = 0.963, MW: P < 0.001, and BLR: P = 0.002) led to a 
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favorable outcome in this study. However, we note that all of the six different single-input 

models showed statistical significance in terms of discrimination between HCC and normal 

liver tissue. Parametric maps for two most significant parameters for each model that 

yielded relatively higher discriminatory ability between HCC and normal liver tissue are 

shown in Fig. 2.

4 Conclusion

We developed six different tracer kinetic models for 4-phase DCE-CT data analysis with 

fully continuous-time parameter formulation based on the linear time-invariant system, 

including the bolus arrival time. In particular, we enabled 4-phase data fitting with full two-

compartment models such as the 2CX and AATH models by introducing the VTO theory. 

Because kinetic parameter values differ substantially among different models, the selection 

of a tracer kinetic model influences its discriminatory ability. The preliminary results 

indicate that single-input tracer kinetic modeling of the liver is feasible although the portal 

venous contribution to tumor perfusion is still an open question. Further work is encouraged 

to establish the clinical usefulness of the proposed approach in the imaging diagnosis and 

prognosis of HCC.
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Figure 1. 
Graphs illustrating examples of fitting the voxel-level 4-phase DCE-CT data with the FL, 

TK, ETK, HB, 2CX, and AATH models in the HCC (left) and normal liver tissue (right).
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Figure 2. 
Parametric maps obtained with six different tracer kinetic models for a patient with HCC. 

Each model displays two most significant parameters that yielded relatively higher 

discriminatory ability between HCC and normal liver tissue.
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Table 1

Statistics (mean ± SD) for ROI analysis of each parameter in the HCC and background liver tissue, and the 

corresponding results of MW and BLR tests.

Parameter Model Mean ± SD AZ P-value

HCC Normal MW BLR

BF (ml/min/100 g) FL 100.2 ± 84.53 40.52 ± 15.32 0.840 0.014 0.027

2CX 93.49 ± 51.31 44.14 ± 13.09 0.938 0.001 0.011

AATH 75.95 ± 40.71 41.19 ± 12.82 0.840 0.014 0.018

BV (ml/100 g) FL 11.74 ± 7.681 6.958 ± 2.378 0.790 0.040 0.253

TK 36.41 ± 22.86 20.44 ± 8.038 0.802 0.031 0.137

ETK 11.70 ± 6.870 4.935 ± 1.053 0.975 <0.001 0.009

2CX 24.97 ± 7.750 20.30 ± 4.343 0.654 0.297 0.056

AATH 18.88 ± 6.872 14.78 ± 2.977 0.679 0.222 0.048

MTT (min) FL 0.560 ± 0.338 1.366 ± 1.097 0.765 0.063 0.080

2CX 0.658 ± 0.332 1.125 ± 0.783 0.679 0.222 0.060

AATH 0.791 ± 0.421 1.316 ± 0.983 0.691 0.190 0.066

PS (ml/min/100 g) 2CX 29.01 ± 21.60 56.44 ± 45.14 0.765 0.063 0.113

AATH 23.91 ± 16.41 18.46 ± 4.744 0.556 0.730 0.224

EF (ml/min/100 g) TK 119.4 ± 156.1 29.70 ± 12.51 0.802 0.031 0.042

ETK 38.27 ± 39.50 23.88 ± 8.052 0.519 0.931 0.154

2CX 13.46 ± 11.68 19.11 ± 6.205 0.716 0.136 0.315

AATH 16.85 ± 9.953 13.08 ± 2.833 0.593 0.546 0.209

EF/VI or PS/VI (min−1) TK 4.947 ±5.314 1.243 ±0.708 0.827 0.019 0.024

ETK 85.22 ± 159.9 1.197 ± 0.647 0.654 0.297 0.360

2CX 181.7 ± 224.1 235.2 ± 321.8 0.531 0.963 0.675

AATH 29.61 ± 62.90 0.985 ± 0.539 0.580 0.605 0.313

v I FL 0.173 ± 0.119 0.238 ± 0.081 0.753 0.077 0.345

TK 0.265 ± 0.110 0.287 ± 0.071 0.605 0.489 0.665

ETK 0.211 ± 0.146 0.262 ± 0.097 0.753 0.077 0.518

2CX 0.179 ± 0.168 0.152 ± 0.132 0.556 0.730 0.695

AATH 0.199 ± 0.154 0.209 ± 0.132 0.531 0.863 0.895

E 2CX 0.224 ± 0.108 0.605 ± 0.192 0.963 <0.001 0.002

AATH 0.304 ± 0.093 0.438 ± 0.084 0.877 0.006 0.004

A HB HB 16.49 ± 11.19 3.119 ± 2.459 0.975 <0.001 0.004

a 14.63 ± 3.312 7.470 ± 5.046 0.877 0.006 0.004

b 5.690 ± 2.530 2.648 ± 1.320 0.864 0.008 0.006

tLag,T (min) FL 0.028 ± 0.026 0.141 ± 0.087 0.926 0.001 0.004

TK 0.034 ± 0.034 0.142 ± 0.087 0.877 0.006 0.004

ETK 0.089 ± 0.049 0.271 ± 0.092 0.963 <0.001 0.021

HB 0.021 ± 0.026 0.026 ± 0.043 0.531 0.863 0.778
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Parameter Model Mean ± SD AZ P-value

HCC Normal MW BLR

2CX 0.020 ± 0.024 0.156 ± 0.084 0.988 <0.001 0.002

AATH 0.057 ± 0.036 0.181 ± 0.072 0.963 <0.001 0.002

Note—MW = Mann-Whitney, and BLR = binary logistic regression. Bold numbers indicate statistical significance (P < 0.05).
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