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Abstract. In the last ten years, ontology-based recommender systems have been 
shown to be effective tools for predicting user preferences and suggesting 
items. There are however some issues associated with the ontologies adopted by 
these approaches, such as: 1) their crafting is not a cheap process, being time 
consuming and calling for specialist expertise; 2) they may not represent 
accurately the viewpoint of the targeted user community; 3) they tend to 
provide rather static models, which fail to keep track of evolving user 
perspectives. To address these issues, we propose Klink UM, an approach for 
extracting emergent semantics from user feedbacks, with the aim of tailoring 
the ontology to the users and improving the recommendations accuracy. Klink 
UM uses statistical and machine learning techniques for finding hierarchical 
and similarity relationships between keywords associated with rated items and 
can be used for: 1) building a conceptual taxonomy from scratch, 2) enriching 
and correcting an existing ontology, 3) providing a numerical estimate of the 
intensity of semantic relationships according to the users. The evaluation shows 
that Klink UM performs well with respect to handcrafted ontologies and can 
significantly increase the accuracy of suggestions in content-based 
recommender systems. 

Keywords: Ontology, User Modelling, Recommender Systems, Ontology-
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1 Introduction 

In the last ten years, ontology-based recommender systems have been shown to be 
effective tools for predicting user preferences and suggesting items. Many of them 
[1,2,3,4] build user models as overlays of the domain ontology and use variations of 
the spreading activation technique for propagating the user feedback on certain items 
to related concepts. This solution allows recommender systems to suggest items that 
are semantically similar to the ones that the user liked and to compare users according 
to their preferences on a variety of concepts. In most cases, the ontologies used by 
these methods are manually crafted in OWL, both to facilitate sharing and because 
this language enjoys good tool support.  

There are however some issues associated with the ontologies adopted by these 
approaches, such as: 1) their crafting is not a cheap process, being time consuming 
and calling for specialist expertise; 2) they may not represent accurately the viewpoint 
of the targeted user community; 3) they tend to provide rather static models, which 
fail to keep track of evolving user perspectives. 



A common way to craft these ontologies is to consult domain experts, who however, 
may disagree on how to represent the different semantic relationships or may propose 
solutions that, while describing a correct formalization of the domain, may not be the 
most adequate for a recommender system. For example, users may take decisions on 
the basis of features that were instead neglected in the expert crafted ontology. Of 
course, it is possible to evaluate a first draft of the ontology on a sample of users and 
then iterate the crafting process; however this is a time consuming and expensive 
process. Moreover, the final product is a static knowledge base that will eventually 
need to undergo new modifications, e.g., when adding new categories of items to the 
recommender system. 
For all these reasons, a more appealing perspective is to consider the domain 
ontology, and in particular the semantic relationships between concepts, as something 
dynamic that can be learned, adjusted and adapted according to the emergent 
semantics that characterize a group of users. The idea of deriving community-based 
ontologies from social networks or folksonomies has been investigated by a number 
of authors, yielding promising results [5,6]. A possible drawback of these ontologies 
is that they usually strongly depend on the community taken in consideration. 
However, this actually becomes an advantage when the aim is to adapt an ontology to 
that same community. Adapting ontologies to specific users is also the idea which 
gave origin to personal ontology views [7] (POVs), which proved to be effective tools 
in assisting tasks like web navigation and search, allowing the users to classify items 
according to their own mental categories [8]. 

We thus propose to combine these two ideas (extracting ontologies from 
communities and tailoring an ontology to particular users) in the context of 
recommender systems by exploiting user ratings for eliciting emergent semantics and 
then adapting the ontology to these users for improving the recommendations 
accuracy. The flow of information thus becomes bidirectional: the user preferences 
are used to adapt and enrich the domain ontology and the ontology is exploited to 
infer additional user preferences. 

Ontologies are formal specifications of a shared conceptualization and thus they 
should theoretically express “a shared view between several parties, a consensus 
rather than an individual view” [9]. Hence, the pretension of tailoring them on a 
particular group of users or on a specific aim, such as recommending items, may 
indeed appear preposterous. However, not even ontologies escape the popular George 
Box paradigm stating that "all models are wrong, but some are useful" [10]. In this 
spirit, we want to be able to select among the possible ontologies describing a certain 
domain the one which works best in forecasting the preferences of a specific group of 
users, by exploiting state of the art algorithms for propagating user preferences in 
ontology-based recommender systems, such as those presented in [1,2,4]. Hence, we 
do not claim that an ontology crafted or enriched by means of user feedback would 
necessary be the most complete or formally correct representation of a domain: only 
that it will work better than the available alternatives for that specific task.  

As an example, by analysing user ratings we may detect that users who like the 
Italian cheese “Gorgonzola” tend to like also “Blue Danish” more often than one 
might expect on the basis of their actual semantic relationships: in fact in that 
ontology they may simply be two subclasses of “Cheese”, with no property in 
common. Hence, this situation can be addressed by analysing these two types of 
products, discovering that they are both blue mould cheeses and add either a common 



superclass, “Blue Mould Cheese”, or a related property. In the same way, we may 
also learn the intensity of the different semantic relationships according to the users. 
For example, we may discover that the relationship between “Wine” and “White 
Wine” is stronger than the one between “Juice” and “Orange Juice”, even if both 
relationships are subClassOf. We can then use this knowledge to compute a more 
accurate semantic distance between concepts and thus foster the recommendation 
process.   

As a contribution to addressing this issue, we propose Klink UM (Klink for User 
Modelling), an algorithm which generates semantic relationships between concepts 
using as input the user ratings on items associated with keywords. Klink UM is a 
modified version of Klink [11], an algorithm designed by the authors of this paper to 
mine semantic relationships between research areas. Klink was developed for 
Rexplore [12], a novel tool that provides a variety of functionalities and visualizations 
to support users in exploring information about the academic domain. Klink UM uses 
similar statistical and machine learning techniques for finding hierarchical and 
similarity relationships between keywords associated with rated items and can be used 
for: i) building a conceptual taxonomy from scratch, ii) enriching and correcting an 
existing ontology, iii) providing a numerical estimate of the intensity of the semantic 
relationships according to a group of users. 

The rest of the paper is organized as follows. In section 2, we describe the Klink 
UM algorithm, focusing in particular on the changes with respect to the original Klink 
algorithm. In section 3 we evaluate the approach i) by comparing the generated 
taxonomies with two gold standard human crafted ontologies and ii) by applying 
Klink UM to a content-based recommender system with the aim of increasing the 
accuracy of recommendations. Section 4 deals with the related work. In section 5 we 
summarize the main conclusions and outline future directions of research. 

2 The Klink UM Algorithm 

2.1 Overview of the Approach 

Most ontology-based recommender systems rely mainly on the conceptual taxonomy 
defined by semantic relationships such as subClassOf [1,2,4]. Klink UM can be used 
to infer both hierarchical and similarity relationships and adopts by default the SKOS 
model1, a standard way to represent knowledge organization systems using RDF. In 
SKOS it is possible to express a taxonomy by stating that a concept is more or less 
specific than another. Thus, the hierarchical links detected by Klink UM (see section 
2.3) are mapped to skos:broaderGeneric, a property from the SKOS 5 model, which 
indicates that a concept is broader than another. For example, “Music” is broader than 
“Rock Music”. Similarly, strong similarity links between concepts (see section 2.3) 
are mapped to the relatedEquivalent relationship, which we define as a sub-property 
of skos:related, to indicate that two particular ways of referring to a concept can be 
treated as equivalent. A trivial case is when there are lexical variations of the same 
tag, e.g., “rock-music” and “Rock Music”.  

                                                           
1 http://www.w3.org/2004/02/skos/ 



Klink UM can be used in two modalities: i) to build a conceptual taxonomy and ii) 
to enrich, correct and/or give suggestions for improving an existing ontology. In the 
first case the input is a collection of user ratings associated with keywords, tags or 
categories and the result is an OWL model and a matrix associating each relationship 
with an intensity score. In the second case, the input includes also the original 
ontology and the output yields the enriched ontology, the intensity matrix and, when 
possible, some suggestions for further modifications. 

When feeding an ontology to Klink UM, it is also possible to associate a weight to 
each semantic relationship. The higher the weight, the more resilient to changes will 
be the relationship. The given ontology is treated as a taxonomy shaped by 
hierarchical links whose strength is defined by the weights. The links will be included 
in the set of hierarchical links discovered by Klink UM (section 2.3) and may be 
deleted if stronger links are found (section 2.5). It is however possible to preserve a 
relationship despite any counter-evidence by assigning a weight equal to infinity. 

The approach herein presented includes several new features with respect to the 
(original) Klink algorithm. Among them: 1) the possibility of using user ratings as 
input, 2) the ability of examining and correcting an existing ontology and 3) the 
capacity of suggesting changes to an ontology or signalling discrepancies between the 
ontology and the user feedback.  
 

Pseudocode 1 – The KlinkUM Algorithm 
 

function KlinkUM (RATINGS, KEYWORDS, OWL, OWL_weights) returns 
(NEW_OWL, NEW_OWL_weights) { 
RATINGS = a set of user ratings on the keywords/tags/categories; 
KEYWORDS = a set of keywords/tags/categories; 
OWL = a initial OWL Ontology, optional; 
OWL_weight = a set of weights associated with the ontology relationships, optional; 
con_prob = computeConditionalProbabilities(RATINGS); // Step 1 
keywords_to_merge=true; 
while (keywords_to_merge) { 
   foreach K in KEYWORDS { 
   co_keywords = selectKeywordsWithRatingsInCommon(K); 
        foreach K2 in co_keywords { // Step 2 
           linkH = computeHL(K, K2,con_prob, RATINGS); 
           if  (linkH > th )  links[“H”, K, K2]= linkH ;  // hierarchical link  

else { 
            linkS = computeSL(K, K2, RATINGS); 
           if  (linkS > tss )   links[“S”, K, K2]= linkS;  // strong similarity link 
              else if (linkS > tws )  links[“WS”, K, K2] = linkS; // weak similarity link 
             } 
       } 
   links = filterKeywords(KEYWORDS, links); // Step 3 
   if (at least one weak similarity link in links)  
   clusters = clusterSimilarityLinks(links); // Step 4 
   if (at least one strong similarity link in links)  
    KEYWORDS = mergeKeywords(links, KEYWORDS); 
   else keywords_to_merge=false; 
} 



links = fixLoops(links); // Step 5 
links = enforceStructuralRequirements(links,  OWL_weight);  
OWL_NEW = OWL; // Step 6 
foreach (link or concept discrepancy between OWL and links ) 

NEW_OWL = proposeModification(discrepancy); 
foreach (cluster in clusters) NEW_OWL = missingPropertyOrSuperClass(cluster); 
NEW_OWL_weights = normalizeWeights(links); 
return  NEW_OWL, NEW_OWL_weights; 
} 
 

The steps of the algorithm are the followings: 

1) The matrix representing user ratings on the keywords is used for computing the 
conditional probability that a user who has given a positive or negative feedback 
on keyword x would give the same feedback on keyword y. 

2) Each keyword is compared with the other keywords with which it shares at least 
n ratings in common in order to infer the hierarchical links, which shape the 
conceptual taxonomy, and the strong/weak similarity links, which denote the 
degree of similarity between keywords.  

3) The keywords are filtered and tidied up and those that do not relate to other 
keywords or appear to be outside the target domain are excluded; 

4) The keywords that share a strong similarity link are merged together, and the 
keywords that share a weak one are clustered together. Steps 2-4 are repeated 
with the new keywords obtained by merging the keywords with inferred 
equivalence relationships, until no new similarity link is inferred. 

5) The links are tidied up by deleting loops and redundancies; the user’s 
requirements on the structure are enforced; 

6) If an initial ontology was given, a series of suggested modifications with respect 
to it and some alerts about possibly missing properties or super concepts may be 
proposed to the user. The algorithm returns an OWL file and a matrix yielding 
the detected intensity of hierarchical and similarity relationships. 

We will now explain more in detail how the individual steps are carried out.  

2.2 Step 1 – From Ratings to Conditional Probability 

Klink UM relies on variations of the subsumption model [13,14] for detecting 
hierarchical links. The subsumption model is used for finding hierarchical 
relationships between terms associated with documents. Term x is said to subsume 
term y if two conditions holds: P(x|y) = 1 and P(y|x) < 1, e.g., if y is associated to 
documents that are a subset of the documents x is associated to. Usually the first 
condition is relaxed in P(x|y) > α, since it is quite improbable to find a perfect 
relationship, with 0.7< α< 0.8. 

As discussed in [11], Klink originally computed the conditional probability of 
keyword x given keyword y by using the ratio of the co-citations to the total citations 
of y. Since Klink UM considers ratings instead than co-citations, it calculates the 
conditional probability that a user who has a positive or negative opinion on x will 
have the same opinion on y. This is computed as the ratio between common 
positive/negative feedbacks and the total positive/negative feedbacks received by a 



keyword. A rating from a user above/below her/his average rating by a chosen 
threshold constitutes a positive/negative feedback on a keyword. Let us consider the 
case in which a user rates 7 the keyword “Beer”, 8 the keyword “Wine” and has an 
average rating of 6.5. If we choose a threshold for the difference equal to 1, Wine has 
a positive feedback, but not so Beer. With a threshold equal to 0.5 both receive a 
positive feedback. We call this a common positive feedback, since it relates to the 
same user. Thus for a common positive feedback the difference between the given 
rating and the average rating of the user must be positive and higher than a threshold 
for both keywords. The common negative feedback follows the same rule with the 
difference that in this case the difference must be negative. Even if in many systems a 
user is not allowed to rate directly the keywords, the rating of a keyword can be 
estimated by using the average rating of the items associated with it.  

For example, if keyword A received 50 feedbacks and 25 of them were in common 
with keyword B, the conditional probability of the feedbacks Pf (B|A) is equal to 0.5, 
indicating a very strong relationship between the two keywords. To have a better idea 
about the direction of the subsumption relationship, we need to compute also Pf (A|B): 
for example if Pf (A|B)=0.1 we have a good evidence that A may be a sub-concept of 
B, since many people who like A also like B, whereas only a limited number of people 
who like B are into A. However, if Pf (A|B)=0.5 we will still be clueless about the 
direction of the relationship: A and B might be similar concepts or even synonymous.  

2.3 Step 2 – Inferring Hierarchical and Similarity Relationships 

In this section we will elaborate on inferring the hierarchical and similarity links 
between keywords. We will use the first kind of link to build the conceptual 
taxonomy, and the second one to merge together keywords that point to a single 
concept and to suggest relationships between concepts that may not be explicit in the 
initial ontology.  

 
Inferring Hierarchical Links.  A hierarchical link of keyword x with respect to y 

is inferred when the difference between the conditional probabilities Pf (y|x) and Pf 

(x|y) is high enough and the two terms are considered fairly similar by the users. More 
formally, we compute the strength of the hierarchical relationship as: 

L(x,y) = ( 
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	 ) · cos(��, ��) · (1+ sim(x,y) )  (1) 

where cos(��, ��) is the cosine similarity between the two user ratings vectors; 
log(Di) is the logarithm of the number of items associated with keyword i; sim(x,y) is 
the percentage of common characters between x and y with respect to the longer 
keyword. The number of items associated with a keyword is needed to balance the 
cases, not so uncommon during the cold start phase, in which a relatively smaller 
keyword may have received a higher number of feedbacks then its super-concept. 
This may bias the sample and reverse the link direction. 

A hierarchical link is inferred when L(x,y) > th and then x is considered a candidate 
for becoming a sub-concept of y. The value of L(x,y) will be also used to weight the 
intensity of a semantic relationship.  

 



Inferring Similarity Links. The similarity between two keywords x and y is 
computed according to the following formula: 

  ���, �� � �
����,���
�����
�������,���,	�
�������,����

				  (2)	

where cos#$%�x�, y�� and cos#()�x�, y�� are the average cosine similarities with the 
common super-concepts and the sibling concepts. The last ones are the sub-concepts 
of the same super-concepts, according to the detected hierarchical relationships. 
Hence, this formula does not only check that two keywords are generally similar, but 
also that they are more similar to each other than they are with their siblings and 
super-concepts. This is important since it is normal for related concepts to be quite 
similar, especially if they are in the lower levels of a conceptual taxonomy. 

Using this formula we infer two kinds of links: the strong similarity link and the 
weak one. The first correspond to S(x,y)>tss, the second to S(x,y)>tws, where tss> tws.  

The strong similarity link is used for the identification of synonymous or related 
keywords that point to the same concept. The weak similarity link is utilized for the 
detection of clusters of similar keywords that may indicate the presence of an implicit 
super-concept or propriety, not reflected by the current ontology.  

 
Estimating the threshold values. Assigning a sound value to th, tss, and tws is 

important for generating a conceptual taxonomy that is optimized for inferring user 
preferences. While is possible to assign these values empirically and vary them 
according to the desired sensibility as we did in [11], in most case it is better to rely 
on an automatic method. Hence, we use the Nelder-Mead algorithm [15], which is a 
derivative-free optimization method, used to solve parameter estimation problems 
when the function values are uncertain. It considers the parameters to be found as 
vertices of a simplex, which is a generalization of the notion of a tetrahedron to 
arbitrary dimensions. Then it performs a sequence of geometrical transformations on 
it, aimed at minimising an evaluation function. 

In this case we need a function that measures the ability of the ontology in yielding 
sound suggestions to the users. Here, we adopt as evaluation function the Spearman’s 
rank correlation coefficient ρ (see section 3.2) computed between the lists of items 
suggested using spreading activation [3] on 50% of the rated items and the list 
produced by ordering the other half according to their ratings. This procedure was 
also used in [3,4] for evaluating the accuracy of ontology-based recommender 
systems. 

2.4 Step 3 and 4 – Keyword Filtering and Merging  

To filter out keywords that are just noise or are related to not relevant domains, Klink 
UM applies mainly three techniques: 1) it deletes keywords without inferred 
relationships with any other keyword; 2) it uses the common feedback distributions to 
detect and delete keywords that are too general; 3) it uses external knowledge from 
web pages about a domain to check the estimated dimension of the keywords in that 
same domain and then deletes those under a certain threshold. These methods are also 
used in Klink, and discussed more thoroughly in [11].  

The keywords which share a strong similarity link are consider synonymous, thus 
they will be merged together and at the next iteration of the algorithm they will be 



considered as a single keyword with a rating vector given by the average of the rating 
vectors of the merged keywords. The keywords that share a weak link will be 
clustered together, but they will preserve their individuality. The cluster will be used 
to generate the alert relative to potential discrepancies between the original ontology 
and the perspective of the users. In fact the clustered keywords point to a situation 
that should be recognized also in the ontology, for example by adding a common 
super-concept or a shared property. Both merging and clusterization are implemented 
by means of a bottom-up single-linkage hierarchical clustering algorithm which uses 
the inverse of S(x,y) as the distance between the keywords.  

The algorithm will then return to step 2 if new similarity links are inferred in this 
iteration, otherwise it will proceed to step 5. 

2.5 Step 5 – Tidying up the Keywords and Adjusting the Links 

The links are reassessed by detecting the loops and breaking them up by eliminating 
the weaker links in terms of L(x,y). Redundant links are also deleted. A redundant link 
is a link that is unnecessary because implicit in other relationships: for example if A is 
a sub-concept of B and B a sub-concept of C, we do not need to state explicitly that A 
is a sub-concept of C. 

This phase includes the enforcement of the user requirements on the structure. At 
the moment Klink UM supports two main structure boundaries, which are the 
maximum number of super and sub concepts. They are implemented by deleting the 
links in excess with lower L(x,y,) score. As anticipated in section 2.2, a semantic 
relationship included in the initial ontology with an assigned weight w can be deleted 
only for inserting links with L(x,y)>w.  

2.6 Step 6 – Suggestions and OWL Creation 

If the algorithm did not receive an ontology in input, it outputs an OWL model and 
the matrix containing detected intensities of the semantic relationships. The intensity 
scores of the relationships (equal to L(x,y)) can be used to weight the links of the 
conceptual taxonomy and enhance a variety of approaches [1,2,4] that rely on graph-
based distance to assess semantic similarity between concepts. 

As stated before, Klink UM produces the OWL by mapping the hierarchical links 
to the skos:broaderGeneric semantic relationships and the strong similarity links to 
the relatedEquivalent relationships. However it is up to each individual 
implementation to decide whether to use the default SKOS-based model or to produce 
instead an alternative representation of the hierarchical structure. 

If an input ontology is given, the algorithm generates a list of suggestions that can 
be answered with a yes or no by the user. For each detected discrepancy between the 
given ontology and the generated one, the algorithm suggests a modification to the 
original ontology, e.g., adding a new skos:broaderGeneric relationship between two 
previously unrelated concepts. At the moment Klink UM can suggest: 1) to add a 
relationship, 2) to delete a relationship, 3) to add a concept, 4) to delete a concept. 
After the user validates the suggestions, the algorithm proceed to generate a new 
OWL model. Of course the user can also decide to trust Klink UM and accept all 
suggestions by default. 



At the end, Klink UM will also yield a warning about potentially neglected 
properties linking the component of the clusters found via the weak similarity links. In 
this case, Klink UM does not try to implement any automatic modification, and only 
reports potential problems that an ontology engineer may want to address.   

3 Evaluation 

In this section we aim to prove that 1) Klink UM can generate conceptual taxonomies 
similar enough to the ones crafted by human experts and 2) the ontologies generated 
or enriched by Klink UM are tailored to a particular group of users, and thus 
particularly useful for recommendation purposes. 
Hence, in the first part we will measure the F-measure between conceptual 
taxonomies generated by Klink and gold standard expert crafted ontologies. In the 
second part we will compare the accuracy of the suggestions yielded by a content-
based recommendation system when using a human crafted ontology, the same 
ontology enriched by Klink UM, and an automatically generated conceptual 
taxonomy. 

3.1 Ontology generation  

In order to evaluate the ability of Klink UM to generate a conceptual taxonomy from 
scratch we used two ontologies, designed about two years ago by experts in the 
gastronomic domain and ontology engineers for an adaptive application called 
WantEat [16], developed as part of the PIEMONTE Project. WantEat is an 
application for Android and iPhone that allows a user to explore the “slow food” 
domain. The users can give a feedback by tagging, voting, visiting and bookmarking 
both items and categories. In this case, items are gastronomic products, such as a 
particular Parmesan cheese sold by a certain producer, while categories include 
general concepts, such as “Parmesan Cheese”, “Fat Cheese” and “Cheese”.  

The two ontologies are 1) Cold Cuts, a three level ontology with 19 classes, 
describing the different cuts of meat and 2) Drinks, a three level ontology with 33 
classes, describing different kinds of drinks. Our hypothesis is that Klink UM should 
be able to generate OWL ontologies that are very similar to the human crafted ones by 
analysing user ratings on the concepts included in the ontology. This approach was 
tested against the classic subsumption method as in [13] and [14], using the 
conditional probability that the average user who likes/dislikes keyword x will have 
the same relationship with keyword y, as described in section 2.2. 

We used the dataset collected for [4] which includes user ratings on cuts of meat 
(in particular cold cuts) and on drinks obtained by mean of online questionnaires. The 
ratings ranged between 0 and 10 and the threshold for the negative/positive feedback 
described in Section 2.2 was set to 1. The initial sample for the Cold Cuts included 
1392 ratings given by 87 subjects, 19-45 years old, recruited according to an 
availability sampling strategy. The sample for the Drinks ontology included 7623 
ratings given by 231 subjects, in the age range 19-38 years old, similarly recruited.  

We ran Klink UM and the baseline method 10 times for each different set of 
randomized input data and compared the generated ontologies with the two original 



gold standard ontologies, using the average recall, precision and F-measure (that is 
their harmonic mean) of the inferred relationships.  

Figure 1 shows the F-measure of the two approaches with respect to the Cold Cuts 
and the Drinks ontologies. Clearly, in both cases Klink UM performs better than the 
subsumption method, with the two resulting curves showing a statistically significant 
difference (p<10-12, according to the chi-square test). Klink UM is able to obtain at 
the largest sample size a Precision of 96% with a Recall of 94% for Drinks (N= 7623) 
and a Precision of 87% with a Recall of 80% for Cold Cuts (N=1392). 

The performance of Klink UM depends on two factors: 1) the fraction of keywords 
voted by the average user (µ) and 2) the number of ratings. The first component is 
important since Klink UM needs to compare the votes of the same user on different 
keywords in order to infer the hierarchical links: if these data are too sparse, this 
becomes difficult. The left panel of Figure 2 shows the Klink UM performance on 
both Drinks and Cold Cuts as a function of µ. It can be seen that it performs well for 
both ontologies, with the Drinks dataset yielding better results thanks to its higher 
number of ratings. 

 

 

The right panel of Figure 2 highlights the trade-off relationship between the 
number of ratings and the µ value for the Drinks dataset. If µ is high enough, Klink 
UM is able to obtain very good results even with a low number of ratings: with µ  = 
0.8, Klink UM is able to reach an F-measure of 75% with only 5000 ratings, whereas 
with µ  = 0.5 it needs 7000 ratings to reach the same F-measure.  

Figure 1. F-measure of Klink UM and the Subsumption method for the Cold Cuts
and the Drinks datasets. 

Figure 2. On the left: the performance of Klink UM in the two tests as a function 
of µ. On the right: the trade-off between µ and ratings for the Drinks dataset. 



It is interesting to notice that the curves exhibit a progressively increasing 
crowding with the increasing value of µ; the gap between the curves corresponding to 
µ = 0.4 and µ = 0.6 is ten times larger than the gap between µ = 0.8 and µ  = 1. The 
chi-square test confirms this behaviour: the probability that the difference between the 
µ  = 0.4 and µ  = 0.6 curves may be ascribed to chance is p < 10-12 , increasing to p = 
2x10-7 for the µ  = 0.6 and µ  = 0.8 curves, and finally losing statistical significance 
with p = 0.93 for the  µ = 0.8 and µ = 1 curves.  

Figure 3 shows a portion of the version of the Drinks ontology generated by Klink 
UM, highlighting the intensity of the subsumption relationships according to the 
users. For example, it appears that “Spumante” (the Italian version of Champagne) is 
considered a less typical “Wine” than “Red Wine” and “White Wine”. Thus if we 
want the ontology to mirror this perception we should differentiate “Spumante” from 
its siblings “Red Wine” and “White Wine” by adding a property or by using a 
different super-concept for “Spumante”. Of course a group of users with different 
background and drinking habits may have a different idea on this subject. 
 

 

 
 

The placement of fruit-flavoured liquor under Wine is formally a mistake since 
accordingly to the human crafted ontology it should be under Hard Liquor. However 
by looking at the ratings we can see in this case a stronger correlation with the Wine 
concept. As the number of ratings increase this may be revealed as a statistical 
fluctuation or rather it may confirm that our users considered it more similar to the 
Wine concept. Hence, the ontology used for recommendation purpose may be 
modified accordingly, e.g., by adding a common property. 

3.2 Ontology Enrichment and Generation for Content-based Recommender 
Systems 

Many state of the art approaches use ontologies or conceptual taxonomies for 
inferring additional user interests from an initial set of ratings and then suggesting 
items. A standard technique is to use spreading activation to propagate user interests 

Figure 3. A portion of the Drinks ontology generated by Klink UM with 5000 
user ratings. The width of a link is proportional to the detected intensity of the 
semantic relationship. 



from a set of initial concepts or items to the semantically related concepts. To 
measure the ability of Klink UM in assisting the recommendation process we will use 
the approach described in Cena et al [4], which was shown to outperform other 
similar techniques, such as [1,2]. The links between concepts were weighted by the 
intensity detected by Klink UM (see formula 1), when available. 

In particular we will compare the accuracy of three approaches, namely: 
-Spreading activation on an expert crafted ontology (labelled S) 
-Spreading activation on an expert crafted ontology, corrected and enriched by 

accepting by default Klink UM suggestions (labelled SE) 
-Spreading activation on a conceptual taxonomy generated from scratch by Klink 

UM (labelled SG) 
To compute the accuracy we rely on the Drinks dataset described in the previous 

section. The accuracy of a certain approach was measured by giving to it only a 
certain fraction r of user ratings and then comparing the produced recommendations 
with the true user preferences. The comparison was done using Spearman’s rank 
correlation coefficient ρ, which provides a non-parametric measure of statistical 
dependence between two ordinal variables and gives an estimate of the relationship 
between two variables using a monotonic function.  
 

Figure 4. Average ρ (left panel) and number of users with ρ > 0.5 (right panel), when 
taking as input a certain rating percentage r for the three techniques.  

 

Figure 4 shows the performance of the three approaches for different percentages 
of input ratings. SE always outperforms S, and is significantly different from it for r ≤ 
30% (0,002 ≤ p ≤ 0.026, according to the chi-square test). In fact, as highlighted by 
the right panel of the figure 4, when r ≤ 30%, SE obtains on the average 8.1% more 
user with ρ > 0.5 than S, while for 40% ≤ r ≤ 70%, the difference is reduced to 4.3%.  
Hence, especially in situations of data sparsity, when the system does not yet know 
much about user preferences, Klink UM is able to significantly improve the quality of 
the recommendation by enriching the initial ontology. 

The SG algorithms, which tries to learn the conceptual taxonomy from scratch, 
does not perform as well as S for r ≤ 40%. However, for higher values of r SG is not 
significantly different from S and SE (0.67 ≤ p ≤ 0,98) and for r ≥ 60% the 
performance of SE and S are almost identical, both of them being superior to S.  
Hence, while it takes a decent amount of user feedback to learn the conceptual 
taxonomy from scratch, once this is achieved, the results are indistinguishable from 
the version that relies on the expert crafted ontology. Hence, SG seems a viable 
option especially for systems that can rely on a good number of user ratings and for 



which the manual crafting of the domain ontology is not easy. In all other cases the 
best solution appears to start with a human crafted ontology and then to enrich and 
correct it accordingly to the user needs.  

4 Related Work 

In the first part of this section, we will describe the state of the art in techniques to 
infer conceptual taxonomies or semantic relationships. In the second part we will 
highlight the main works relative to ontology-based recommender systems, which can 
benefit from Klink UM. 

The idea of extracting ontologies from user communities is thoroughly discussed in 
the work of Mika [5], which extends the traditional bipartite model of ontologies with 
the social dimension, proposing a tripartite model of actor, concepts and instances. 
Similarly, Specia et al [6] extract semantics from folksonomies by clustering tag sets 
and detecting highly related tags corresponding to concepts in ontologies. The 
automatic inference of semantic relationships is usually addressed by means of two 
approaches. The first was developed in the area of computational linguistic and 
exploits lexico-syntactic patterns [17], the second uses clustering techniques [18]. The 
Lexico-Syntactic Pattern Extraction (LSPE) is an approach which discovers 
relationships between terms by exploiting patterns like “such as…”, “and other…”, 
and so on. For example, De Cea et al [19] use this technique to infer ontological 
relationships, such as subClassOf. Instead the approaches that rely on clustering 
techniques build a hierarchy of keywords according to a variety of similarity metrics. 
For example, in [20] a hierarchical clusterization algorithm is applied to the context of 
web pages and a top-down partitioning is used to generate a multi-way-tree taxonomy 
from the binary tree. The TaxGen framework [21] uses instead a hierarchical 
agglomerative clustering algorithm and text mining techniques for building a 
taxonomy from a set of documents. Also Klink UM uses a hierarchical algorithm and 
similarity distances between keywords, but only for the inference of the similarity 
links and for the detection of potentially missing superclasses or properties. 

The subsumption approach, exploited also by Klink UM, was introduced in 
Sanderson and Croft [13]. Also Schmitz et al [14] use a subsumption-based model for 
inducing a faceted ontology from Flickr tags. The metric we propose for finding 
hierarchical links exploits the same idea, but considers also the reciprocal conditional 
probability and other factors, such as the cosine similarity between keywords. The 
subsumption approach inspired also the GrowBag algorithm [22], which uses a biased 
PageRank algorithm to exploit second order co-occurrences. 

While Klink UM aims to adapt an ontology to a groups of users, other approaches 
tailor ontologies to specific users, resulting in personal ontology views [7]. For 
example, Haase et al [8] proposed a method for assisting users in the management of 
their personal ontologies with the aim of yielding more accurate recommendations.  

Klink UM can be useful especially for ontology-based recommenders [1,2,3,4], 
since it makes it easier to craft and update an ontology targeted to a group of users. It 
can currently identify only hierarchical and similarity relationships, however most 
works in the fields also rely solely on these relationships. For example Middleton et al 
[1] exploit the user feedback on research papers and use the hierarchical relationships 
between classes to infer other topics of interest. In Sieg et al [2] the ontology is 



treated as a semantic network and the interest values are updated by means of 
spreading activation. Cena et al [4] propose instead a multi-directional anisotropic 
interest propagation which is able to spread user feedback also to instances.  

 Many other methods exploit the ontology graph structure to compute the distance 
between concepts. For example, Resnik et al presented a semantic similarity measure 
[23] based on information content in a taxonomy that is computed as the negative 
logarithm of the probability of occurrence of the class in a text corpus. Similar 
metrics are also applied to determine the similarity between Linked Data entities [24]. 
Other methods, such as [3], use instead shared and distinctive OWL properties rather 
than a graph-based distance. We believe that Klink UM can be helpful to all these 
approaches as a support for computing a fit-for-purpose conceptual similarity between 
concepts.  

5 Conclusions 

In this work we presented Klink UM, an extension of the Klink algorithm which is 
able to detect relationships between keywords and create or enrich an ontology 
starting from a set of user ratings on the keywords, with the aim of tailoring the 
ontology to a specific group of users. 

We tested the ability of Klink UM to build a conceptual taxonomy from scratch 
and to assist the recommendation process. In the first task it overperformed the 
subsumption approach obtaining an F-measure of 95% for the Drinks test (N= 7623) 
and of 83% for the Cold Cuts test (N=1392). In the second one, the approach relying 
on an ontology enriched by Klink UM outperformed the one relying on the human 
crafted one, especially in conditions of data sparsity (p ≤ 0.03). Moreover, after a 
good number of user ratings, the conceptual taxonomy crafted by Klink UM 
performed as well as the human crafted enriched ontology (p * 0.67). 

Klink UM can also be used for generating suggestions about potential missing 
properties, that may have been forgotten or considered irrelevant when the ontology 
was crafted. Hence, it allows ontology engineers and domain experts to gain an 
interesting user-centred prospective. 

The next step will be to have Klink UM recognizing groups of people with 
different views of the domain in order to build different version of the domain 
ontology, tailored to them [25]. We also are working on novel heuristics for detecting 
a higher number of semantic relationships.  
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