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Abstract. This paper suggests a method to map the evolution of tech-
nological trajectories by using unstructured text data. Combining tech-
niques from the fields of natural language processing and network anal-
ysis, we are able to identify technological fields as overlapping commu-
nities of knowledge fragments. Over time persistence of these fragments
allows to observe how these fields evolve into trajectories, which may
change, split, merge and finally disappear. As empirical example we use
the broad area of Technological Singularity, a umbrella term for differ-
ent technologies ranging from neuroscience to machine learning and bio-
engineering which are seen as main contributors to the development of
artificial intelligence and human enhancement technologies. Using a so-
cially enhanced search routine, we extract 1,398 documents for the years
2011-2013. While we can identify consistent technology fields in static
document collections, more advanced ontology reconciliation is needed
to be able to track a larger number of communities over time.

Keywords: Technology forecasting, natural language processing, net-
work analysis, dynamic community detection

1 Introduction

Understanding the pattern and drivers of technological change is a crucial pre-
condition to formulate meaningful long-term research and industry policy. This
development usually happens along technological trajectories, within a scientific
paradigm [1]. Apart from defining the boundaries, a paradigm also provides a
set of generic technology artifacts that serve as interface, allowing for interaction
and re-combination of knowledge and technologies between trajectories. In this
paper we present a framework and methodology to understand, illustrate and
analyze technological change and the (co-) evolution of technological trajecto-
ries using large amounts of unstructured text data from various sources on the
internet.
? We would like to thank Dan Mc Farland, Dan Jurafsky, Walter W. Powell, all par-
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Many modern technologies are indeed characterized by the combination and
re-combination of components from different trajectories. The rapid progress of
ICT technology led to its penetration of virtually all areas of social and com-
mercial activity, and the development of common data transfer protocols and in-
terfaces is said to make heterogeneous technology components more compatible
with each other. The continuation of these dynamics on a higher level of aggre-
gation can be seen in the currently evolving Internet of Things (IoT). Here the
connection of existing technological artifacts with sensors and communication
devises is supposed to enable many new applications across formerly separated
technological trajectories. The underlying theme has been widely discussed in
literature on technology combination, diversity and innovation [2–4]. We argue
that today - as briefly outlined in the examples above - we face an accelerat-
ing deterioration of the technological burdens to combination through growing
complementary of components and modularization [5, 6]. In order to understand
innovation activity in many technological fields, it thus becomes important to
uncover the dynamics of these processes of recombination.

During the last decade we have witnessed tremendous growth of freely avail-
able digital information, often in the form of unstructured text data from sources
such as web-sites and blogs, the written communication of entire communities
in forums or via e-mail, and repositories (e.g. SSRN or recently Researchgate).
The topicality and sheer amount of such data bear great opportunities for so-
cial science research. Yet, commonly used analytic approaches, are limited to
in-depth case studies [7, 8], quantitative methods depending on data such as
patents [9] or scientific publications [10], and more generic simulation models
[11, 12]. While our understanding of the emergence and evolution of technologies
has greatly benefited from such studies, they either require massive effort to
qualitatively analyze such complex interaction patterns in technological space,
or rely on quantitative data only available with non-negligible time delay, and
only relevant for certain technology domains, often underestimating the context
in which technology is used.

Our attempt is to provide a method to map the development of technologies
by using large amounts of unstructured data from various sources by combining
techniques from the fields of natural language processing and network analysis.
Conceptualizing technological change as changing interaction patterns between
technology fragments, and their clustering in space to technological fields, and in
time to technological trajectories, we provide a framework as well as a method-
ology to deeper understand the co-evolution of technology. We use the case of
technological singularity to illustrate our approach graphically as well as with
key measures derived from network analysis.

The remainder of the paper is structured as follows. Section 2 reviews and
discusses literature and concepts of technological change, and provides a theo-
retical framework for our approach to be developed in the following. Section 3
reviews empirical work analyzing technological change and discusses merits and
drawback of applied methods. In Section 4 we provide a novel methodology how
to map technological change and the evolution of technological fields, which we
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illustrate in Section 5 at the case of Singularity technologies. Finally, Section 6
concludes, provides implications for theory, empirical research, and suggests ap-
plications for science and industry policy.

2 Conceptualization of Technological Change

The development of technology is contextual to the development of industrial
structures, or more broadly the different factors that act as focusing forces upon
the direction of technological development [13]. It is also understood as happen-
ing within broader technological paradigms [1] and linked to a particular generic
application. Within this framework technology is perceived as a mean to prob-
lem solving in a particular context. The same problem could easily be solved
in various other ways using other technologies. Technological trajectories here
represent pathways, which span across the multidimensional space defined by
the paradigm [13]. They do so by generating technologies that respectively can
contribute with alternative solutions to the general task that is defined by the
paradigm. Overall that suggests competition between the trajectories. Yet, they
can also be compatible to each other.

Many of the technologies developed since the publication of the framework
are characterized by the combination and recombination of components stem-
ming from different trajectories, perhaps even different paradigms. The rapid
progress of ICT technology led to its penetration of virtually all areas of social
and commercial activity. This dynamic paired with the development of com-
mon data transfer protocols and interfaces is likely to have made technologies
from different trajectories more compatible with each other. In fact, [14] even
assert that in the presence of network externalities, compatible designs make
even sense among competitors, what would provide an additional incentive to
support compatibility.

A recent and very obvious example for this development is the smartphone.
The combination of voice and data communication with GPS, camera, com-
pass and accelerometer technologies, bound together by a miniature touchscreen-
computer opened up for a uncountable number of not anticipated applications.
Various standardized wireless connection technologies like bluetooth or WiFi
allow for compatibility with many other external devises, thus increasing the
functionality and re-purposing the phone. Figure 1 illustrates this example. The
continuation of these dynamics on a higher level of aggregation can be seen in
the currently evolving Internet of Things (IoT). Here the pairing of everyday ob-
jects with sensors and communication devises is supposed to enable many new
applications in a variety of contexts, and potentially triggering many disruptive
innovations [15].

The underlying theme has been widely discussed in literature on invention
and complex adaptive systems [3]. Drawing on work in theoretical biology [16],
evolution is conceived as a process of recombination of novel and existing compo-
nent technologies. The result of such a development, a technological system, can
also be understood as a complex system with a number of elements that collec-
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tively fulfil a single or various goals [17]. The number of potential combinations
in such a system is an exponential function of the number of elements. Yet, the
amount of possible or useful combinations is moderated by the interdependen-
cies or epistatic relations of the components. Interdependence is understood as
a functional sensitivity of a system to changes in these constituent elements [3],
meaning that a change in one element will affect the functioning of the particular
element and the functioning of those that are epistatically related [18]. The level
of complexity in such systems is thus determined by the number of elements and
their respective functional interdependencies. Too high levels of interdependence
might make possible combinations difficult to detect or costly to achieve, while
a lack of interdependence implies no difference in functionality across configura-
tions [3]. As an alternative to intermediate levels of interdependence, modularity
has been discussed in the literature [5, 6, 19]. Modularization of systems aims at
the development of standardized interfaces between more discrete elements to
mediate interdependence [20], thus allowing to decrease the overall complexity
while maintaining or even increasing the number of possible recombinations.

We argue that today, we are witnessing a rapid decline of the burdens to
technology-combination through efficient modularization between components
within artefacts such as the smartphone and on a higher level, where standard-
ized interfaces opened up for combination. Embracing this line of thought, we
present an framework and methodology geared towards the analysis of the evo-
lution of such interdependent technology systems.

3 Measurement of Technological Change – State of the
Art

Empirical research on technological change has a long tradition in different aca-
demic communities. Generally technology exists to fulfill or support some societal
functions through direct application or indirectly through derived products, is
thus always embedded in and framed by a societal, political and organizational
context, which co-evolves with it [21]. Work by sociologists of science within the
STS (Science, Technology and Society) tradition, has produced many concepts
and valuable insights into processes of systemic technological change [22]. The
work often relies on detailed description of the complex multidimensional setup
around the studied technology and sheds light on the variety of factors that (can)
influence and shape its development [23].

A substantial stream of more positivistic research in the fields of industrial
economics and sciencometrics is based on patent data as an approximation for
technological development. Research so far mostly incorporates patent data as
aggregated numbers to explain differences in scale [24], or in a network represen-
tation to explain structural differences [9, 25] in the development of technologies
across countries and industries. Patent data has also been used to study inven-
tion as a recombination process [3, 4, 26].1 Alternatively, similar research also

1 However, besides its merits and easy accessibility, there are widely recognized limits
in the use of patent data [27, 28] such as the high variation of importance across
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utilizes the assessment by industry experts to delimit and quantify development
within and across technologies [29]. [30], suggest for instance the use of industry
experts to delineate technological systems.

Most recently, social scientists have also started to deploy methods from the
fields of computational linguistic and natural language processing to advance
empirical research on the development of science, technology and other bodies
of knowledge In their essence, such linguistically informed methods are capable
of identifying patterns of language usage in large bodies of text and communi-
cation. They range from simple measures of (raw or somewhat weighted) word
co-occurrence across documents, corpora and over time [31], to complex proba-
bilistic language and topic identification models [32], which lately started to gain
traction in the social science [33–36]. Such models basically identify larger topics
by fitting a linguistically informed probability model which tries to predict them
using text and meta information of the corpus under investigation. Such topics
by nature are rather descriptive and aims to understand how language is used
by a certain set of actors to describe and differentiate real-life phenomena. For
instance, the interesting variety of lead-lag models which groups of actors, such
as universities [37] or outlets [38] influence the formation of topics, and which
adapt instead.

4 Analizing technology Evolution: Dynamic Semantic
Network Approach

In this section, we provide a conceptual model to how to map the evolution
of technological fields embedded in a larger technological system based on large
amounts of text data. A summary of the method pipeline is illustrated in Figure 6

4.1 Conceptualization and Definition

The representation of systems of interacting elements as networks has brought
fresh perspectives and insights to the analysis of complex phenomena from the
biological to the social sciences [39]. As discussed earlier, technology can be
framed as a system of interdependent components [40] within their respective
trajectories of development [13].On an abstract level, one can imagine such a
technological paradigm or technological system projected only in technology
space as a system of interacting elements. On the lowest level of aggregation, we
find what we call technology fragments, which are atomic, non-reducible reposi-
tories of scientific/technological knowledge needed to fulfill a certain and narrow
task. In scientific, technological and industrial applications such as machines,
software and other devices which we call technological artifacts, such fragments
are linked in a functional relationship to produce some output. On a again higher
level, sets of complementary and substitutional artifacts form a a technological

industries and countries, and over time and the long delay between the time research
is conducted and the corresponding patent publication.
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field. Over time, such field develop along Dosian technological trajectories, where
accumulated sets of common configuration pattern partially reproduce over time
and set the foundation for further combinations.Again, fragments and artifacts
originating from one field might be reconfigured and redeployed in a different
field to fulfill the same or even a different purpose. Furthermore, fragments as
well as artifacts might not even mainly belong to one field, but be so generic in
the nature of task they fulfill, that they can be deployed equally across multiple
fields.

Such a conceptualization of technology evolution comes pretty close to how
[41] describes the innovation process, as the recombination of existing resources
in a novel way. It furthermore has the advantage that it allows us to envision
technology evolution as a developing network, and deploy the rich toolkit of
network analysis and visualization. In summary, our conceptualization of tech-
nological change and evolution, and the suggested methods to analyze it, is based
on the following assumptions:

Assumption 1: Knowledge fragments are atomic, non-reducible repositories
of scientific/technological knowledge

Assumption 2: Co-location of technology fragments in documents imply a
functional relationship

Assumption 3: Technology fragments can be arbitrary combined and re-
combined to form functional technological artifacts

4.2 From unstructured Text to Technology Fragments

Having defined and extracted the relevant text documents that in the optimal
case address a particular technology, it is necessary to reduce them to a ma-
chine readable representation. Typically, this takes the format of a bag of words
(BOW), a line-up of thematically relevant keywords, usually nouns and bi-gram
noun phrases. The key assumption of this type of NLP applications is that
statistically significant co-occurrence patterns of concepts across the corpus is
indicative for actual association between them. For our means, the goal is to
reduce each document to the contained technological concepts. Instead of using
a probabilistic approach that stepwise excludes text-elements that are definitely
not a technology, we try to detect mentioned technologies in the data. This task
falls into the category of named entity extraction, which typically relies on tagged
dictionaries and string-matching rules to identify the required concepts. Entity
recognition has recently also become important in the context of the so called
semantic web. The aim of this development is to make more data on the internet
machine-readable, structured and thus allow for more machine learning applica-
tions and cognitive computing in general. A number of applications related to
this development target the identification of different concepts in unstructured
text, among others technological and industrial terms. The advantage of these
semantic web tools is that they are supported by large centralized, constantly up-
dated and optimized dictionaries and intelligent disambiguation functions. The
result of a successful entity extraction returns a collection of documents that
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only contain the mentioned technology terms and their document appearance
frequency.

4.3 Network Creation

In a first step, one could create a network with the corpus documents as nodes,
then vector space modeling and represent them as vectors defined by the respec-
tive combination of contained concepts. This representation allows to calculate
pairwise similarities between the documents. The result is a fully connected
weighed network with documents as nodes and corresponding similarities as
edges. Now clustering or community detection algorithms can be used to iden-
tify technological fields, represented by document communities discussing them,
as suggested by [42]. Yet this approach has two disadvantage: First, technology
fragments are only indirectly represented in networks as node characteristics,
what means that many powerful measures in network analysis (such as central-
ity, betweenness, etc.) are not directly available to describe them, but only the
documents containing them. Second and related, nodes representing documents
are not suitable for a dynamic analysis, since they are only associated with one
observation period. Thus, one can either construct a cumulative network that
only grows, or a network with a complete node turnover every period.

For that reasons we have chosen to liberate the terms from their document
boundaries while maintaining the latent semantic similarity structure that is
defined by their co-occurrence in documents. We construct a 2-mode network
consisting of the distinct technology fragments as nodes of interest, and the
corresponding documents as nodes in the second mode, linked by the pairwise
cosine similarity between the vectors of the particular term and document within
a 400-dimensional vector space as edges (see. fig. 3). The vector space is defined
by training a LSI (Latent Semantic Indexing) model [43, 44] on the full corpus of
documents, which is spanning along the whole timeline.2 Rather then informing
about the presence of a term in a given document, the weighted edge indicates
to witch extent the term is semantically close to the entirety of the other terms
contained by the document (see. Figure 2).

When separating such a network in time slices by selecting only the docu-
ments and the distinct terms that existed during a determined period, the node
set of the first mode stays stable, since terms (as opposed to documents) tend to
reappear over time. When projecting this network in the technology dimension,
we end up with a one-mode network of technology fragments connected by the
pairwise projected semantic similarity values, associated with the corresponding
period.

Again, the underlying rationale is based on the assumption that co-occurrence
in documents at least on an aggregated level also corresponds to a functional

2 Before training the model, we apply TF-IDF weights to all terms within the doc-
uments. This appreciates the value of particularly important terms for the single
document, while depreciating the value of generic terms that often occur across the
corpus.
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relationship between technology fragments. However, on a document level that
will not always be true. While some documents will discuss separate and coher-
ent technological fields, others might serve more as an overview on industry or
research of a broader context, hence contain a collection of technological frag-
ments from many otherwise distinct fields. Thus, we penalize documents con-
taining more technology fragments in a similar spirit as the method used by [45],
which can be represented by the following equation [46], where wij represents
the edge-weight between nodes I and j, and p the corresponding documents. We
end up with a node-set of technology fragments which might be imagined as a
adjacency matrix with a stable composition over time. Figure 4 illustrates these
nodeset properties in dynamic networks.

wij =
∑
p

wi,p

Np − 1
(1)

4.4 Technological field detection

When analyzing the structure, function, and dynamics of networks, it is ex-
tremely useful to identify sets of related nodes, known as communities, clusters,
or partitions [47]. We depict the evolution of broad technological paradigms as
the change of structural properties in micro level interactions between atomic
technology fragments. Changes in this structure reveal the ongoing emergence,
functional combination and recombination of these fragments to assemble higher
level technological artifacts. The atomic structure of technology fragments im-
plies that they cannot resemble technological artifacts alone but only in a func-
tional combination, and the systemic nature of technology that fragments will
often maintain functional relationships to multiple other fragments. In the follow-
ing we use state-of-the-art community detection techniques to identify communi-
ties of fragments characterized by dense internal interaction. Such communities
resemble what we call a technological field.3

Overlapping Community Detection Early clustering and community de-
tection algorithms, in network analysis and elsewhere, usually assumed that the
membership of entities to one distinct groups. However, depending on the mean-
ing of edges and nodes, many real life networks show a high overlap of communi-
ties, where nodes at the overlap are associated with multiple communities. This
especially tends to happen when relationship of different quality are projected
in a one-mode network [48]. Ones’ social interaction network for instance may
consist of family members, work colleagues, members of the same karate club

3 An alternative approach would be to use to identify technological fields by the using
topic modeling, an approach that lately started to gain traction in social science
[36, 35, 32], create a two-mode network of terms and topics, and project it to an
one-mode network of terms. However, for reasons described we here want to offer
an alternative, where the topics are already identified using the powerful community
detection methods offered by network analysis.
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or other associations. The more diverse interests such a person has, in the more
different communities this person will be assigned to. In the same way, the more
generic the nature of a technology fragment or artifact, the more technologi-
cal fields will have functional relationships with it. Some technological artifacts
are that pervasive, they facilitate almost all other technologies in the way they
work, such as by its time steam-power or nowadays semiconductors [49]. Most
traditional community detection algorithms would in such a case detect com-
munities somewhat resembling a core-periphery structure, with a central highly
interconnected community surrounded by sparsely interconnected ones.

Since we want to avoid exactly that, we apply the link community detection
algorithm proposed by [50], which is able to detect communities with highly
pervasive overlap by clustering links between the nodes rather than the nodes
themselves. Each node here inherits all memberships of its links and can thus
belong to multiple, overlapping communities. By doing so, we owe respect to
the overlapping and nested structure of technology, and are able to identify key
technological fragments interacting with multiple distinct fields.

Dynamic Community Detection Former research within technology fore-
casting and technology field mapping, which relied on the analysis large text
corpora in form of patent descriptions or scientific publication, usually identi-
fies technological fields separately at different points of time [31]. Technological
fields, however, do spontaneously reassemble themselves in a vacuum in what-
ever intervals. They emerge, mutate, grow or decline, split and eventually disap-
pear. To owe respect the evolutionary nature of technology, we want to identify
communities which are somewhat stable and thus to be found in multiple ob-
servation periods, but also allow technological fields to experience key-events in
their life-cycle. Besides helping us linking changing communities over time, the
identification of such effects in itself represent an interesting information.

We consider the following significant events a community might experience
during its evolution, also illustrated in Figure 5:

– Birth & Death: The first time a community Ct
i is observed and not matched

with an already existing community Ct−1
j . This community, however, does

not have to be stable over time. We in fact expect a substantial share of
communities to only appear in on period but not sustain. In this case, the
birth is equal the death of the community, which occurs in the last period
a community can be observed and in none of the following periods a match
can be found.

– Pause: We relax the assumption that a dynamic community has to be ob-
servable in every period between its birth and death. Indeed, technological
fields (which are the representation of the identified communities) might be
more stable than the report-ing on them in articles, publications, tech-blogs
or whatever might serve as corpus for our analysis. When allowing communi-
ties to pause for some periods but to be identified later again, we smoothen
possible trend and hype effects in technology reporting.
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– Merge: During the evolution of a technology it might happen that at one
point two technological fields develop that much functional interdependence,
that their main interaction with the rest of the system only happens between
them, thus they merge and form a new technological field consisting of both
of them. Technically that happens when our matching algorithm (explained
in the following) matches two or more different communities with one dy-
namic community Dj in the previous period.

– Split: In the same manner, technological fields can also separate into in-
dependent disciplines. Technically a split occurs when one community Ci

matches with two or more dynamic communities in the previous period.

Technically, we do so by applying a simple but effective heuristic threshold-
based method allowing for many-to-many mappings between communities across
different time steps proposed by [51]. Here we compare an identified community
Ct

i in observation period t with the set of dynamic communities in the previous
period {Ct−1

1 , , Ct−1
J } by employing the widely adapted Jac-card coefficient J t

ij ,
calculated as follows:

J t
ij = sim(Ct

i , C
t−1
j ) =

|Ct
i ∩ Ct−1

j |
|Ct

i ∪ Ct−1
j | (2)

If the similarity exceeds the defined matching threshold θ ∈ [0, 1], both com-
munities are added to the dynamic community Di. Using this simple but efficient
method has the advantage that is independent of (static) community detection
in the observation periods, hence represents a somewhat modular approach. It
can also handle overlapping as well as (with some minor adjustments) weighted
communities. A major advantage of this approach is the separation of static
and dynamic community detection is the high flexibility in the choice of suitable
algorithms.

d

5 Demonstration Case

For the demonstration of our method, we intended to find an empirical case of
technological development that would combine a large number of components
from traditionally disconnected technological fields. Additionally, the technology
field in focus should be yet in a formative stage and have a potentially strong
and broad social impact to generate enough attention. The latter requirement is
important as it is public interest that usually triggers high numbers of reporting
and thus the production of text data, which this project builds upon. We decided
to explore the field of technological singularity. Rather then a clearly delineated
technological field, singularity represents a future scenario and an umbrella term
that summarizes a number of developments in areas as diverse as neuroscience
and 3D printing.
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5.1 Empirical Setting: The Singularity Case

Technological Singularity as a term has gained momentum since the publication
of Ray Kurzweil’s book in 2005 [52]. Observing various measures of technological
progress over time, he argues that most technologies improved their performance
exponentially and therefore it is only a matter of a few decades until we will
have reached a point in history when artificial intelligence will supersede human
intelligence. The most powerful technological advancement of the 21th century
will happen when robotics, nanotechnology, genetic engineering and artificial
intelligence reach a certain level of development and can be combined, what
will potentially have disruptive consequences for society, culture and the human
nature.

While many of the forecasts sound like science fiction, others seem plausi-
ble. Smartphones, for instance became a rapidly adopted human enhancement
device and currently a number of different wearable technologies are entering
the mainstream markets. Recently, singularity entered the European technology
policy context, as a technological field within the Horizon 2020 programming.
Since 2012, the Directorate General for Communications Networks, Content and
Technology (DG CONNECT) is undertaking a foresight process to inform the
ICT related programming of research to be financed under Horizon 2020, where
singularity was identified as one of the 10 central technological fields. It is cur-
rently being examined closer to capture early signals and anticipate beneficial
trends that should be supported within public research funding schemes.

5.2 Data Mining & Corpus Generation

Researchers, organizations and science journalists are increasingly using social
media and the blogosphere to communicate findings and developments, far ahead
of journal publication or conference proceedings. This makes microblogging plat-
forms and in particular Twitter with over 200 million monthly active users (Feb.
2014) a valuable source of data. We now describe our data mining approach
aiming at selecting relevant twitter updates by relevant users. Twitter’s graph
structure, built on followship links, is similar to citation networks in academic
publications. This enables the construction of large directed graphs and allows
applying network analysis methods, to identify central actors for a particular
field or topic. For this study we constructed a large followship graph around the
- somewhat arbitrarily selected - account Singularity Hub, which is an online
news platform that actively reports on the topic. The initial snowballed network
has 49,574 accounts. Using eigenvector centrality, we identify the most influen-
tial users and then manually reduce the number of nodes down to 34 twitter
accounts. Figure 7 shows the most central fragment of the network. Coloring
represents communities, detected by the Louvain algorithm and is mostly illus-
trative. Yet, we can see that the red cluster seems to contain all the central
organisations that are present on twitter and focused on singularity and tran-
shumanism like the H+ movement, KurzweilAI, David Orban and more. The
green cluster is mostly populated with users that are related to robotics and the
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violet to software architecture. An overview of the selected user accounts can be
found in Table 1.

Micro-blogged tweets (status updates) by these actors often contain links to
research papers, popular media articles or blog entries that the selected user
considers as worth communicating. For each of these accounts we extract up
to 3,200 status updates starting with the most recent, 63k in total. We discard
all updates that do not carry a link. Relevant tweets were then identified using
a vector space model powered semantic search. The text content behind the
embedded links - outside of Twitter is then extracted and processed, and finally
represents our document corpus for further analysis.

5.3 Network generation and analysis

The documents in our corpus discuss technology from very different angles. Some
talk about state-of-the art research in certain university labs, while others review
the allocation of public research grants or venture capital investment strategies.
When attempting to uncover functional relationships between technology frag-
ments, it is crucial to avoid false positive caused by other relationships that
are non-technical in nature, such as being funded by the same investor, or de-
veloped in the same country. As described above, we rely on entity extraction
when condensing documents to BOW representations. In the particular case we
use OpenCalais, a free web service that performs entity identification across 39
different concepts within submitted text data. The great advantage of cloud-
sourcing in this case is given by the fact that the centralized machine learning
algorithms of OpenCalais are trained on a very large amount of natural text and
its dictionaries are constantly updated and optimized. An offline solution would
hardly be able to compete in terms of performance and topicality.4 In addition,
OpenCalais provides ontology reconciliation and disambiguation.5

When inspecting the results we find clear technology terms such as dna pro-
filing, robotic surgical systems, clinical genomics or regenerative stem cell tech-
nologies, which come fairly close to how we understand technology fragments.
These terms narrowly describe technology deployed for a fairly delimited task.
However, we also find boarder technology terms such as stem cells genomics,
which span a somewhat larger field of applications and likely to include some
of the aforementioned terms, and on an even more generic level terms such as
biotechnology or robot.6 While this clearly diverts from our theoretical frame-
work, where we find on node level only functional interaction of atomic knowl-
edge fragments, we do not consider that as worrisome for the analysis to come.
Our main objective is to identify and delimit technological fields, what we will

4 For an overview and performance evaluation of available systems see [53].
5 Identified entities are in many cases enriched with metadata (e.g. profession for

persons, ticker symbols for companies and geospatial coordinates for locations).Other
detected entity types are not used in this analysis.

6 In future iteration of this approach, a more conservative filtering of high-frequency
contextual stopwords might decrease the presence of too general terms.
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do mainly by clustering nodes applying an overlapping community detection al-
gorithm. Most community detection algorithms assume communities to have a
higher within than between connectedness. Our approach of choice is able to
detect such nested communities without falsely treating them as one large com-
munity clustered around some broad and generic term. For a very first inspection
of the nodeset we create a simple network of all documents connected by their
similarity in terms of containing technology fragments, cluster them by apply-
ing the very common Louvain algorithm [54, c.f.], and plot them in Figure 8.
For the three main communities detected we provide a tag-cloud, weighted by
the fragments’ TF-IDF scores. One can see at first glance that our Singularity
corpus very broadly consists of three fields, where the biggest is centered around
robotics, and the two others around (stem) cell and brain research, or to be more
interpretative: Robotics, biotechnology and neuroscience.

As described before, we now construct a set of two-mode networks between
this nodes and the documents in our corpus,7, containing only documents pub-
lished in the corresponding time period, which we choose to be half a year.8

Finally, we project this structures on one-mode networks between technology
fragments.

5.4 Identification of technological fields

Now we identify technological fields using the overlapping community detection
approach proposed [50].9 We first run the community detection separated for
every time step independently. We do not a-priori set a fixed amount of commu-
nities, but rather set the cutoff at the point in the dendogram where the overall
community density is optimized in every timestep.

Table 2 provides some statistics on the networks and communities, and their
development. While subject to some fluctuation, the networks seem to develop
from many to less nodes and edges, and to less but denser communities. This
might indicate Singularity after an initial phase of experimentation to mature
and establish more delimited fields and sub-disciplines.

Table 3 plots the network of knowledge fragments and their community mem-
bership for every timestep. Again, what can be seen is that Singularity appears
to develop from a broad area without clear boundaries and high interconnect-
edness towards clearly delimited technological fields. However, we also find first
hints that over time some very generic technologies such as smartphones and
artificial intelligence appear to develop towards a very central position, where

7 Vector space modeling is performed with the gensim package [55] within IPython,
using LSI and a 400 dimensional model as suggested by [56]

8 This choice has to be made according to the properties of the data to be analyzed,
since best results can be achieved when the network structure shows some gradual
change between the observation periods, but no radical turnover suggestion complete
discontinuity. This corresponds roughly to a Jaccard index of the two networks
somewhere between 0.2 and 0.8.

9 We use the implementation of the link-community approach provided by [57] as
package for the statistical environment R.
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they serve as common interface between most other fields. While it seems un-
likely that smartphones (as we understand them today) will be around for longer
then a decade, their centrality in the singularity discussion can be understood as
the importance of mobile devices that enhance our by nature limited interaction
range. A more radical interpretation would be that the smartphone is already
now making us to some extent transhuman. Artificial intelligence, on the other
hand, is at the very core of the singularity debate.

Table 4 illustrates the composition of some selected communities.10 The tag-
cluster are a good way to visualize the interaction between the actual technolo-
gies, principal applications and challenges. The first cluster suggests for instance
that an important area of application for biometric technologies in conjuncture
with machine learning will be found within law enforcement. The second clus-
ter addresses advancements in the area of augmented reality and connections to
existent social network structures using primarily mobile devices.

6 Conclusion

The aim of this paper was to provide a novel method to map the development
of technologies by using large amounts of unstructured data from various recent
sources by combining techniques from the fields of natural language process-
ing and network analysis. We identified 1398 relevant text documents all over
the internet, using a social search routine that we built around the followship
structure within the microblogging service twitter.

Using entity recognition tools from the semantic web area, we were able
to reduce documents to technology-term representations and finally generate a
semantic timestep network of technology fragments. Our community detection
exercise identified many coherent technological fields within each community.
Already the static clustering provides valuable insights in the emergence of new
technological fields and applications for existing technologies. Overlapping com-
munity detection, allowed us also to identify certain general technologies that
work as hubs between other technologies, stemming from a large number of
different domains.

Yet, we find the results of the community-tracking over time unsatisfactory.
The obstacle are false negatives that obstruct the identification of similar com-
munities over time. While we, as humans, can see that very similar communities
are present in successive timesteps, even though the contained terms are slightly
different, the algorithm is unable to identify this because the terms are not iden-
tical. Our language is full of synonyms, metaphors and unregulated terminology.
The reader of this article might get an idea that for us clusters and communities
mean basically the same thing, but computers wouldn’t stand a chance. While
we are (yet) unable to teach the algorithm a deep understanding of ontology,
we can try to normalize the terminology as far as possible. This future measure
should increase the number of identical terms over time.

10 For the sake of clarity, the technology fragments are weighted by their within-cluster
centrality.
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Appendix

Fig. 1. Illustrative combination of technology components from different trajectories
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Fig. 3. Vector projection of terms and documents
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Fig. 5. Illustration of significant events in the evolution of communities
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• Split: In the same manner, technological fields can also separate into independent dis-

ciplines. Technically a split occurs when one community Ci matches with two or more

dynamic communities in the previous period.

Technically, we do so by applying a simple but effective heuristic threshold-based method

allowing for many-to-many mappings between communities across different time steps proposed

by Greene et al. (2010). Here we compare an identified community Ct
i in observation period t

with the set of dynamic communities in the previous period {Ct�1
1 , . . . , Ct�1

J } by employing the

widely adapted Jac-card coefficient J t
ij , calculated as follows:

J t
ij = sim(Ct

i , C
t�1
j ) =

|Ct
i \ Ct�1

j k
|Ct

i [ Ct�1
j k

(2)

If the similarity exceeds the defined matching threshold ✓ 2 [0, 1], both communities are

added to the dynamic community Di. Using this simple but efficient method has the advantage

that is independent of (static) community detection in the observation periods, hence represents

a somewhat modular approach. It can also handle overlapping as well as (with some minor

adjustments) weighted communities.

4.5 Summary

In this section, we provide a conceptual model to how to map the evolution of techno-logical

fields embedded in a larger technological system based on large amounts of text data.

15
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Fig. 7. The central fragment of the twitter account network with the finally selected
profiles for text-extraction
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Table 2. Network and community statistics over time

2011, 2nd 2012, 1st 2012, 2nd 2013, 1st 2013, 2nd

N nodes 320 293 341 163 233
N edges 3,979 2,579 3,445 1,105 1,752
N communities 74 49 66 30 36
Max. community density 0.58 0.77 0.63 0.75 0.71
Max. nodes community 54 34 28 21 26
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Table 3. Network of Knowledge Fragments per Period after Overlapping Community
Detection
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Nodes are aligned according to their main community, represented by the number outside the circle. Node size is scaled by number
of communities the node belongs to. Multi-community membership is also indicated by multiple node color
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Table 4. Exemplary identified technological fields and their knowledge fragments

Biometrics & Law Enforcement Ubiquity & Social Networks

Genomics 3D Printing
Nodes term representing the name of the technology fragment represented as tag-cloud. Size weighted by the nodes within community
degree centrality.


