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Abstract: Bio-inspired optimization algorithms have been successfully used to 
solve many problems in engineering, science, and economics. In computer 
science bio-inspired optimization has different applications in different domains 
such as software engineering, networks, data mining, and many others. One of 
the main tasks in data mining is clustering, namely k-means clustering. Distance 
metrics are at the heart of all data mining tasks. In this paper we present a new 
method which applies differential evolution, one of the main bio-inspired 
optimization algorithms, on a time series k-means clustering task to set the 
weights of the distance metrics used in a combination that is used to cluster the 
time series. The weights are obtained by applying an optimization process that 
gives optimal clustering quality. We show through extensive experiments how 
this optimized combination outperforms all the other stand-alone distance 
metrics, all by keeping the same low complexity of the distance metrics used in 
the combination.        

Keywords: Evolutionary Computing, Differential Evolution, Distance Metrics, 
k-means Clustering, Time Series Data Mining.  

1   Introduction 

Global optimization is a ubiquitous problem that has a very broad range of 
applications in engineering, economics, and others. In computer science optimization 
has different applications in software engineering, networking, data mining and other 
domains. Optimization can be defined as the action of finding the best-suited solution 
of a problem within given constraints. These constraints can be in the boundaries of 
the parameters controlling the optimization problem, or in the function to be 
optimized.  Optimization problems can be classified according to whether they are: 
discrete/continuous/hybrid,constrained/unconstrained, single objective/multiobjective, 
unimodal (one extreme point) /multimodal (several extreme points). 

Formally, an optimization task can be defined as follows: Let [ ]nbp21 x,...,x,xX =  
be the candidate solution to the problem for which we are searching an optimal 
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function f is called the fitness function, the objective function, or the cost function. It is 
worth mentioning here that it is a convention for optimization problems to be 
expressed as minimization problems since any maximization optimization problem 
can be transformed into a minimization problem.  

Metaheuristics are probabilistic optimization algorithms which are applicable to a 
large variety of optimization problems. Many of these metaheuristics are inspired by 
natural processes, natural phenomena, or by the collective intelligence of natural 
agents, hence the term bio-inspired, also called nature-inspired, optimization 
algorithms.   

Bio-inspired optimization can be classified into two main families; the first is 
Evolutionary Algorithms (EA). This family is probably the largest family of bio-
inspired algorithms. EA are population based algorithms that use the mechanisms of 
Darwinian evolution such as selection, crossover and mutation. Of this family we cite 
Genetic Algorithms (GA), Genetic Programming (GP), Evolution Strategies (ES), and 
Differential Evolution (DE).  The other family is Swarm Intelligence (SI). This family 
uses algorithms which simulate the behavior of an intelligent biological system. Of 
this family we mention Particle Swarm Intelligence (PSO), Ant Colony Optimization 
(ACO), and Artificial Bee Colony (ABC). Fig. 1 shows the main bio-inspired 
metaheuristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Some of the main bio-inspired metaheuristics 
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Data mining is a field of computer science which handles several tasks such as 
classification, clustering, anomaly detection, and others. Processing these tasks 
usually requires extensive computing. As with other fields of computer science, 
different papers have proposed applying bio-inspired optimization to data mining 
tasks [11], [12], [13], [14], [15].  

In this paper we apply one bio-inspired optimization technique on a particular task 
of time series data mining which is k-means clustering. This task includes using a 
distance metric or a similarity measure. In this work we use a weighted combination 
of distance metrics to cluster the time series. The novelty of our work is that the 
weights of the combination are obtained through an optimization process using 
differential evolution as an optimizer. The experiments we conducted clearly show 
how the proposed combination can enhance the quality of the k-means clustering of 
time series compared with the clustering quality obtained when using the distance 
metrics that constitute the combination as stand-alone distances.   

The rest of the paper is organized as follows; the related work is presented in 
Section 2, in Section 3 we introduce the new algorithm, which we test in Section 4. 
We conclude this paper with Section 5.  

2   Related Work 

A time series is an ordered 
collection of observations at 
intervals of time points. These 
observations are real-valued 
measurements of a particular 
phenomenon.  

Time series data mining 
handles several tasks such as 
classification, clustering, 
similarity search, motif 
discovery, anomaly detection, 
and others.  

Clustering, also called 
unsupervised learning, is 
partitioning of the data objects 
into groups, or clusters, so that 
the objects within a cluster are 
similar to one another and 
dissimilar to objects in other 
clusters. [8]. There are several 
basic clustering methods such as 
Partitioning Methods, 
Hierarchical Methods, Density-
Based Methods, and Grid-Based 
Methods. k-means, is a centroid-
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based partitioning technique which uses the centroid (also called center) of a cluster;  
ci , to represent that cluster. Conceptually, the centroid of a cluster is its center point. 
The centroid can be defined in various ways such as by the mean of the objects 
assigned to the cluster. k-means is one of the most widely used and studied clustering 
formulations [9] . In k-means clustering we are given a set of n data points in d-
dimensional space Rd and an integer k and the problem is to determine a set of k points 
in Rd, the centroids, so as to minimize the mean distance from each data point to its 
nearest center [9]. More formally, the k-means clustering error can be measured by: 
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Where uij is the ith  point in the jth cluster, and nj is the number of points in that 

cluster. The quality of the k-means clustering increases as the error given in relation 
(1) decrease. Fig. 2 shows the flow chart of the k-means algorithm.   

The number of clusters is decided by the user, or application-dependent, or given by 
some cluster validity measure.  

The k-means starts by selecting the centroids ci , which are usually chosen 
randomly. In step two the membership of each of the n data points is determined by 
assigning it to the nearest cluster centroid. In step three ci are re-calculated assuming 
the memberships obtained in step two are correct. If none of the n data objects have 
changed its membership the algorithm stops otherwise it goes back to step tow. Fig. 3 
shows an example of the different steps of the k-means clustering with n=30 and k=3.  

The concept of similarity on which clustering, and other data mining tasks, is based 
is a fundamental one in data mining.  In the similarity search problem a pattern or a 
query is given and the similarity search algorithm seeks to retrieve the data objects in 
the database that are “close” to that query according to some semantics that quantify 
this closeness. This closeness or similarity is quantified using a principal concept 
which is the similarity measure or its strongest form; the distance metric. Distance 
metrics satisfy the well-known metric axioms (non-negativity, symmetry, identity, 
triangle inequality). Metric spaces have many advantages, the most famous of which 
is that a single indexing structure can be applied to several kinds of queries and data 
types that are so different in nature. This is mainly important in establishing unifying 
models for the search problem that are independent of the data type. This makes 
metric spaces a solid structure that is able to deal with several data types [16]                                         

There are many similarity measures and distance metrics that are widely used in the 
field of time series data mining; the most-widely known is the Minkowski distance. 
This is actually a whole family of distances, the most famous of which are: 

i- Euclidean Distance (L2)- defined between time series S and T as:  
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ii- Manhattan Distance (L1)- defined as: 
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This distance is also called the city block 
distance.  

  
iii- Maximum Distance (L∞)- defined as: 
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This distance is also called the infinity 
distance or the chessboard distance. Fig. 4 
shows a few examples of the Minkowski 
distance.  

It is important to mention here that one of 
the advantages of the members of the 
Minkowski distance is their low 
computational complexity which is O(n). It 
is also important to emphasize, and this is 
related to the experimental section of our 
paper, that the aforementioned distances are 
all distance metrics.  A last note about this, 
which is also related to the experimental 
section of this work, is that all these 
distances are applicable only to time series 
of the same length.    
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Fig. 3. The different steps of the  
k-means clustering algorithm 



 
 
Fig. 4. From left to right; the Manhattan distance, the Euclidean distance, and the infinity 
distance 

3  Using a Combination of Distance Metrics for k-means Clustering  

Instead of using one similarity measure or distance metric to handle data mining 
tasks, we can use a combination of several similarity measures or distance metrics to 
get better results. This idea has been proposed by several researchers before. In [2] the 
authors propose utilizing a similarity function defined as a weighted combination of 
several metrics to handle the similarity search problem. A similar idea was proposed 
in [3] where the authors present a retrieval method based on a weighted combination 
of feature vectors. However, these two works do not suggest using any optimization 
algorithm to determine the weights.   

In this paper we propose utilizing a weighted combination of distance metrics to 
handle the k-means clustering task of time series data. The novelty of our method is:  
(i) the weights are determined as the outcome of an optimization process and (ii) it 
proposes a combination of distance metrics to handle a clustering task of time series 
data.   

Formally, we perform a k-means clustering task of time using a combination d 
which is defined as: 
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where [ ]1,0i ∈ω . 
 
Notice that we could also impose that ∑ =

i
i 1ω  , but this would not make any 

difference as this latter condition is simply a normalized version of the one used in 
(5).   

As mentioned earlier, we determine the weights iω through an optimization process, 
where the objective function to be maximized is the quality of the k-means clustering. 
The optimization algorithm we use is differential evolution.  
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3.1 Differential Evolution   

Differential Evolution (DE) is an optimization method based on the principles of 
genetics and natural selection. DE is considered as one the most powerful stochastic 
optimization algorithms for continuous parameters [4]. DE has the same elements as a 
standard evolutionary algorithm; i.e. a population of individuals, selection according 
to fitness, crossover, and random mutation. DE creates an environment in which a 
population of individuals, representing solutions to a particular problem, is allowed to 
evolve under certain rules towards a state that minimizes the value of the fitness 
function.  

As with other evolutionary algorithms, the first step of DE is defining the problem 
variables and the fitness function. The range of the variable values can be constrained 
or unconstrained. A particular configuration of variables produces a certain value of 
the fitness function and the objective of DE is to find the configuration that gives the 
optimal value of the fitness function.  

DE has many variations, but in the following we present the classical DE. DE starts 
with a collection of randomly chosen individuals constituting a population, whose size 
is popsize . Each of these solutions is a vector of nbp  dimensions and it represents a 
possible solution to the problem at hand. The fitness function of each individual is 
evaluated. The next step is optimization. In this step for each individual of the 
population, which we call the target vector iT

r
at this stage, three mutually distinct 

individuals 1rV
r

, 2rV
r

, 3rV
r

, and different from iT
r

, are chosen at random from the 

population (hence the minimum value of popsize  is 4). The donor vector D
r
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as a weighted difference of two of 1rV
r

, 2rV
r

, 3rV
r

, added to the third; i.e. 

( )3r2r1r VVFVD
rrrr

−+= . F is called the mutation factor or the differentiation constant 
and it is one of the control parameters of DE. F is usually chosen from [ [10,  .  

The trial vector R
r

is formed from elements of the target vector iT
r

and elements of 

the donor vector D
r

according to different schemes such as the exponential and the 
binomial ones [1]. In the following we present the crossover scheme presented in [6] 
which we adopt in this paper; an integer Rnd is randomly chosen among the 
dimensions [ ]nbp,1 . This guarantees that at least one of the dimensions will be 

changed. Then the trial vector R
r

is formed as follows:  
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where nbp,...,i 1= . rC is the crossover constant, which is another control parameter. 
The control parameters of DE are determined by the algorithm designer. 

The next step of DE is selection. This step decides which of the trial vector and the 
target vector will survive in the next generation and which will die out. The selection 



is based on which of the two vectors; trial and target, yields a better value of the 
fitness function.  

Crossover and selection repeat for a certain number of generations NrGen , which is 
the third control parameter of DE. Most algorithms add a stopping criterion, which 
terminates DE if met, even if NrGen has not been reached.                                                                                             

4   Experiments   

We conducted extensive experiments using time series datasets of different sizes 
and dimensions available at UCR [10]. This archive makes up between 90% and 
100% of all publicly available, labeled time series datasets in the world, and it 
represents the interest of the data mining/database community, and not just one group 
[5]. 

The distances we are using in the combination in relation (5) are the Euclidean 
distance, the Manhattan distance, and the maximum distance (relations (2), (3), and 
(4)).  

In the time series data mining community Dynamic Time Warping (DTW) [7] is 
widely used, however we decided not to include it in the combination for several 
reasons; first, DTW is a similarity measure and not a distance metric, while L2, L1, L∞ 
are all distance metrics, so their combination will result in a distance metric, while 
combining a similarity measure (such as DTW) with distance metrics will result in a 
similarity measure (this can be easily proved mathematically). The second reason why 
we are not adding DTW to the combination is that DTW has a higher complexity, 
which is O(mn) (or O(n2) if the two time series have the same length), whereas, the 
three other distances have a complexity, as mentioned in Section 2, of O(n) . The third 
reason for not adding DTW is that it is applied to time series of different lengths, 
which is not the case with the other three distances. For all these reasons we decided 
to exclude DTW from the combination despite its widespread use in time series data 
mining, so our final combination is:  

 
                         ( ) ( ) ( ) ( )T,SLT,SLT,SLT,Sd 32211 ∞++= ωωω                      (7) 

 
We tested our method on a variety of datasets; the length of the time series varied 

between 60 (Synthetic_control) and 1639 (CinC_ECG_torso). The size of the training 
sets varied between 20 (SonyAIBORobot Surface) and 467 (ChlorineConcentration). 
The size of the testing sets varied between 30 (OliveOil) and 3840 
(ChlorineConcentration), so as we can see, we tested our method on a wide range of 
datasets of different lengths and sizes to avoid getting biased results. 

For each dataset the experiment consists of two phases; the training phase and the 
testing phase. In the training phase we perform an optimization process where the 
parameters of the optimization problem are the weights [ ]3,1i;i ∈ω . The objective 
function is the k-means clustering quality which we seek to maximize. The outcome 
of this optimization problem is the weights ωi which give the optimal k-means 
clustering quality (c.f. Section 2). 



In the testing phase, these 
optimal weights are used on the 
corresponding testing datasets to 
evaluate the quality of the k-means 
clustering. 

 As for the elements of the DE, 
we used the following : the 
population size popsize was 12, the 
number of generations NrGen was 
set to 100, the differentiation 
constant F was set to 0.9, and the crossover constant Cr was set to 0.5. The dimension 
of the problem nbp, as we mentioned earlier, is ωi. Table 1 summarizes the values of 
the control parameters of DE used in the experiments.  

Table 2 shows the optimal weights for the three distances metric for the different 
training datasets after running the algorithm for 100 generations.  As we can see the 
weights vary between 0 and 0.97, which proves that some distance metrics are more 
effective for clustering certain datasets than others.  

In the next phase we use these weights shown in Table 2 on the corresponding 
testing datasets to get the k-means clustering quality. Table 3 shows the k-means 
clustering quality for the combination together with those for L2, L1, L∞ for 
comparison.  

Table 3 shows that the clustering quality of the combination of the three distance 
metrics for all the datasets outperforms that of all the other three distance metrics for 
L2, L1, L∞ as stand-alone distance metrics, which proves the validity of our proposed 
algorithm.  

 
 
 
 
 
 

Table 2. Weights assigned to each distance metric after 100 generations on the training datasets 
 

dataset ω1  ω2 ω3 
 

Synthetic_control 0.34 0.39 0.76 
OSULeaf 0.95 0.94 0.25 
Lighting2 0.57 0.09 0.97 
Lighting7 0.86 0.21 0.27 
SonyAIBORobotSurfac 0.55 0.80 0.22 
FaceFour 0.40 0.16 0.58 
ECG200 0.01 0.02 0.93 
Yoga 0.34 0.88 0.11 
OliveOil 0.72 0.83 0.87 
CinC_ECG_torso 0.43 0.20 0.38 
ChlorineConcentration 0.00 0.00 0.67 
Haptics 0.63 0.51 0.26 
MedicalImages 0.63 0.11 0.69 
Cricket_X 0.02 0.01 0.88 
Cricket_Y 0.36 0.12 0.76 

popsize Population size 12 
NrGen Number of generations 100 
F Differentiation constant 0.9 
Cr Crossover constant 0.5 

nbp Number of parameters 3 

Table 1. The values of the control parameters of 
DE used in the experiments 



 
 
 

Table 3. The k-means clustering quality of the combination and L2, L1, L∞ on the testing 
datasets  

 
k-means clustering quality dataset 

L1 L2 L∞ combination 
 

Synthetic_control 0.57 0.71 0.64 0.73 
OSULeaf 0.39 0.40 0.33 0.41 
Lighting2 0.56 0.63 0.63 0.65 
Lighting7 0.54 0.57 0.50 0.64 
SonyAIBORobotSurfac 0.87 0.66 0.69 0.92 
FaceFour 0.61 0.54 0.55 0.67 
ECG200 0.69 0.69 0.62 0.72 
Yoga 0.50 0.48 0.48 0.51 
OliveOil 0.57 0.57 0.57 0.58 
CinC_ECG_torso 0.49 0.47 0.46 0.52 
ChlorineConcentration 0.40 0.40 0.40 0.41 
Haptics 0.33 0.32 0.32 0.34 
MedicalImages 0.33 0.34 0.30 0.37 
Cricket_X 0.30 0.27 0.30 0.31 
Cricket_Y 0.31 0.32 0.36 0.38 

 

5   Conclusion  

In this paper we presented a new algorithm for k-means clustering of time series data 
using a combination of weighted distance metrics. The weights of the combination are 
obtained through an optimization process where the optimizer is differential 
evolution; one of the most effective bio-inspired optimization algorithms for 
continuous optimization problems, all by keeping a low complexity of the 
combination. The extensive experiments we conducted show the superiority of our 
proposed combination over other, widely-used distance metrics, as stand-alone 
distance metrics.  

As future work, we like to study how our proposed algorithm can be extended to 
cluster streaming data as an important application in time series data mining.  
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