Skip to main content

Relaxed Neighbor Based Graph Transformations for Effective Preprocessing: A Function Prediction Case Study

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8883))

Abstract

Protein-protein interaction (PPI) networks are valuable biological source of data which contain rich information useful for protein function prediction. The PPI networks face data quality challenges like noise in the form of false positive edges and incompleteness in the form of missing biologically valued edges. These issues can be handled by enhancing data quality through graph transformations for improved protein function prediction. We proposed an improved method to extract similar proteins based on the notion of relaxed neighborhood. The proposed method can be applied to carry out graph transformation of PPI network datasets to improve the performance of protein function prediction task by adding biologically important protein interactions, removing dissimilar interactions and increasing reliability score of the interactions. By preprocessing PPI network datasets with the proposed methodology, the experiments conducted on both un-weighted and weighted PPI network datasets show that, the proposed methodology enhances the data quality and improves prediction accuracy over other approaches. The results indicate that the proposed approach could utilize underutilized knowledge, such as distant relationships embedded in the PPI graph.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pandey, G., Kumar, V., Steinbach, M.: Computational approaches for protein function prediction: A survey. Technical Report, Department of Computer Science and Engineering,University of Minnesota. 06-028 (2006)

    Google Scholar 

  2. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007)

    Article  Google Scholar 

  3. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

    Article  Google Scholar 

  4. Legrain, P., Wojcik, J., Gauthier, J.-M.: Protein protein interaction maps: a lead towards cellular functions. Trends in Genetics 17(6), 352 (2001)

    Article  Google Scholar 

  5. Breitkreutz, B.J., Stark, C., Tyers, M.: The GRID: the General Repository for Interaction Datasets. Genome Biology 4(3), R23 (2003)

    Google Scholar 

  6. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)

    Article  Google Scholar 

  7. Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)

    Article  Google Scholar 

  8. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21 (2005)

    Google Scholar 

  9. Pandey, G., Steinbach, M., Gupta, R., Garg, T., Kumar, V.: Association analysis-based transformations for protein interaction networks: a function prediction case study. In: KDD 2007: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 549, pp. 540–549 (2007)

    Google Scholar 

  10. Yona, G., Dirks, W., Rahman, S., Lin, D.M.: Effective similarity measures for expression profiles. Bioinformatics 22(13), 1616–1622 (2006)

    Article  Google Scholar 

  11. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., et al.: Comparative assessment of large scale datasets of protein protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  12. Hart, G.T., Ramani, A.K., Marcotte, E.: How complete are current yeast and human protein interaction networks. Genome Biology 7, 120 (2006)

    Article  Google Scholar 

  13. Deng, M., Sun, F., Chen, T.: Assessment of the reliability of protein protein interactions and protein function prediction. In: Pac. Symp. Biocomputing, pp. 140–151 (2003)

    Google Scholar 

  14. de Silva, E., Thorne, T., Ingram, P., Agrafioti, I., Swire, J., et al.: The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biology 4, 39 (2006)

    Article  Google Scholar 

  15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guenoche, A., et al.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology 5, R6 (2003)

    Google Scholar 

  17. Pandey, G., Manocha, S., Atluri, G., Kumar, V.: Enhancing the functional content of protein interaction networks. CoRR abs/1210.6912 (2012)

    Google Scholar 

  18. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  19. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins 54(1), 49–57 (2003)

    Article  Google Scholar 

  20. Yu, G., Domeniconi, C., Rangwala, H., Zhang, G., Yu, Z.: Transductive multi-label ensemble classification for protein function prediction, pp. 1077–1085. KDD (2012)

    Google Scholar 

  21. Lin, C., Jiang, D., Zhang, A.: Prediction of protein function using common-neighbors in protein-protein interaction networks. In: Proc. IEEE Symposium on BionInformatics and BioEngineering (BIBE), pp. 251–260 (2006)

    Google Scholar 

  22. Reddy, P.K., Kitsuregawa, M.: An Approach to Relate the Web Communities through Bipartite Graphs. In: WISE 2001, pp. 301–310 (2001)

    Google Scholar 

  23. Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 32(18), 5539–5545 (2004)

    Article  Google Scholar 

  24. West, D.B.: Introduction to Graph Theory. Prentice Hall (2001)

    Google Scholar 

  25. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for emerging Cyber communities. In: 8th WWW Conference (May 1999)

    Google Scholar 

  26. Garfield, E.: Cocitation analysis as a tool in journal evaluation. Science, 178 (1772)

    Google Scholar 

  27. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web: experiments and models. In: 9th International WWW Conference (May 2000)

    Google Scholar 

  28. Scott, J.: Social Network analysis: a handbook. SAGE Publications (1991)

    Google Scholar 

  29. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  30. Deane, C.M., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics (2002)

    Google Scholar 

  31. Camoglu, O., Can, T., Singh, A.K.: Integrating multi-attribute similarity networks for robust representation of the protein space. Bioinformatics Journal (July 2006)

    Google Scholar 

  32. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Satheesh Kumar, D., Krishna Reddy, P., Parekh, N. (2014). Relaxed Neighbor Based Graph Transformations for Effective Preprocessing: A Function Prediction Case Study. In: Srinivasa, S., Mehta, S. (eds) Big Data Analytics. BDA 2014. Lecture Notes in Computer Science, vol 8883. Springer, Cham. https://doi.org/10.1007/978-3-319-13820-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13820-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13819-0

  • Online ISBN: 978-3-319-13820-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics