Skip to main content

Machine Learning for Parameter Screening in Computer Simulations

  • Conference paper
  • 2044 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8906))

Abstract

The aim of this paper is to highlight the potential of Machine Learning for parameter screening in computer simulations, presenting alternative approaches to automatic parameter ranking and screening. This is indeed a fundamental step in the development of a simulator, because it allows reducing the dimensionality of the parameter set, making model tuning more efficient. With parameter ranking we denote the process of measuring the relevance of the parameters for accurately simulating a phenomenon, while with parameter screening we denote the choice of a specific subset of parameters to be used for model tuning. We will present ranking techniques based on Logistic Regression and Multilayer Perceptron, and a simple procedure for going from ranking to screening. Our techniques have been validated against a helicopter simulator case-study but the techniques do not rely on any domain-specific feature or assumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan, P.J., Cleave-Hogg, D., Desousa, S.: Applying theory to practice in undergraduate education using high fidelity simulation. Med. Teach. 28(1), e10–e15 (2006)

    Google Scholar 

  2. Lewis, J.H., Jiang, S.B.: A theoretical model for respiratory motion artifacts in free-breathing CT scans. Phys. Med. Biol. 54(3), 745–755 (2009)

    Article  Google Scholar 

  3. Zhang, A.: One-factor-at-a-time Screening Designs for Computer Experiments, SAE Technical Paper 2007-01-1660 (2007), doi:10.4271/2007-01-1660

    Google Scholar 

  4. Bettonvil, B., Kleijnen, J.P.C.: Searching for important factors in simulation models with many factors: Sequential bifurcation. European Journal of Operational Research 96(1), 180–194 (1997)

    Article  MATH  Google Scholar 

  5. Last, M., Luta, G., Orso, A., Porter, A., Young, S.: Pooled ANOVA. Computational Statistics & Data Analysis 52(12), 5215–5228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fisher, R.A.: The design of experiments, xi 251 p. Oliver & Boyd, Oxford (1935)

    Google Scholar 

  7. Harrel, F.: Regression Modeling Strategies. Springer (2001)

    Google Scholar 

  8. Bishop, C.: Pattern Recognition and Machine Learning, pp. 217–218. Springer Science+Business Media, LLC (2006)

    Google Scholar 

  9. Nelder, J., Wedderburn, R.: Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General) 135(3), 370–384 (1972)

    Article  Google Scholar 

  10. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in Logistic Regression. Applied Statistics (1992)

    Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall (1998) ISBN 0-13273350-1

    Google Scholar 

  12. Hall, M., Eibe, F., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDDExplorations 11(1) (2009)

    Google Scholar 

  13. Bergmeir, C., Benìtez, J.M.: Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. Journal of Statistical Software 46(7) (2012)

    Google Scholar 

  14. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  15. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 2(4), 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hinton, G.E., Osindero, S.: Yee-Whye The: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagatingerrors. Nature 323(6088), 533–536 (1986), doi:10.1038/323533a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hessel, M., Ortalli, F., Borgatelli, F. (2014). Machine Learning for Parameter Screening in Computer Simulations. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2014. Lecture Notes in Computer Science, vol 8906. Springer, Cham. https://doi.org/10.1007/978-3-319-13823-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13823-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13822-0

  • Online ISBN: 978-3-319-13823-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics