A Simulation Tool for Evaluating Attack Impact in Cyber

Physical Systems

Gianluca Dini, Dept. of Ingegneria dell’Informazione/Res. Cent. “E. Piaggio”, University of Pisa, g.diniQiet.unipi.it,

Italy

Marco Tiloca, SICS Swedish ICT, marco@sics.se, Sweden

Abstract

Security is getting an ever increasingly important issue in cyber-physical systems comprising autonomous
systems. However, it is not possible to defend from all possible attacks for cost and performance reasons.
An attack ranking is thus necessary. We propose a simulative framework that makes it possible to rank attacks
according to their impact. We also describe a case study to assert its usefulness and effectiveness.

Keywords: Security, cyber-physical systems, risk assessment, simulation.

1 Introduction

Autonomous Systems results from the convergence
of communication, computing and control. They are
cyber-physical systems equipped with sensing, ac-
tuating and computing capabilities, interconnected
through a wireless communication network, which may
operate in both isolation and cooperation.

As with many of these complex networks of systems,
it is possible for adversaries to intentionally compro-
mise their functionality or performance. As to security,
autonomous systems present two peculiarities with
respect to conventional complex networks such as the
Internet [1]. First a security infringement may traduce
into a safety infringement with possible physical con-
sequences. Second, autonomous systems are subject
to both cyber and physical attacks. They are often
deployed in open, unattended, possibly hostile environ-
ments where adversaries can physically attack them as
well as interfere with the sensing process.

Security in autonomous systems is quite a new research
field. Security vulnerabilities and related countermea-
sures are increasingly being discovered and exploited.
However it is well-known that perfect security cannot
be achieved for both performance and cost reasons.
Thus, it is vital to define a threat model and then per-
form a risk assessment in order to determine the extent
of potential threats and identify appropriate solutions.
Typically, risk assessment involves two dimensions,
namely the feasibility and impact of an attack. Here,
we focus on the latter.

We present a simulation framework aimed at evaluat-
ing the impact of an attack in a cyber-physical system.
The framework presents several advantages. First, it

defines a simple attack description language that al-
lows us to describe the effects of a cyber-physical
attack in terms of events the attack generates. The
language is composed of a reduced set of statements
that make it possible to specify such events and thus
easily describe even complex cyber-physical attacks
such as a wormhole attack. Second, the simulator inte-
grates an off-the-shelf simulator of the cyber-physical
system under analysis and extends it as far as pro-
cessing attack-related events is concerned. When the
designer wishes to evaluate a new attack, he/she has
only to provide the framework with the description
of the attack. No line of code has to be re-written or
part of the simular re-implemented. Third, and finally,
the simulation framework makes it possible to quan-
titatively evaluate the impact of an attack, provided
that appropriate security metrics have been defined.
Methods and protocols for threat analysis have been
defined, a recent relevant example being [5]. However,
they tend tend to support a subjective analysis. This
framework is a first stride towards a more objective
analysis.

The paper is organizes as follows. Section 2 reports the
main security requirements of autonomous systems.
Section 3 provides an overall description of the simula-
tion framework and its prototype based on Castalia [3],
an off-the-shelf WSN simulator based Omnet-++[7].
Section 4 discusses a case study where we apply our
framework to analyze the impact of several attacks
against the pollution monitoring system of an indus-
trial plant. Finally, Section 5 reports our final conclu-
sions.

Message integrity
__— Network Availability
Confidentiality

Network

Autonomous System Autonomous System Autonomous System

actuators sensors

/
Physical Environenment \

N\
Measurement integrity Behaviour integrity

Figure 1: Autonomous Systems.

2 Security in Autonomous Systems

With reference to Figure 1, autonomous systems result
from the convergence of communication, computing
and control (C3). They are cyber-physical systems
equipped with sensing, actuating and computing ca-
pabilities, interconnected through a wireless commu-
nication network, and operating in isolation and/or
cooperation.

From a security standpoint, autonomous systems must
fulfil the usual CIA requirements, namely confidential-
ity, integrity, and availability.

Informally, availability refers to the ability of autho-
rized entities to act and collect data in a timely way.
Availability guarantees that information is accessible
and usable upon demand by the legitimate entity.
In brief, availability guarantees that messages are re-
ceived. A violation of network availability is a denial
of service, i.e. the prevention of authorized access to
data. Denial of service attacks are mainly based on
network congestion and network jamming so that the
network appears to be unavailable. In the former case,
the system is actually busy in serving “fake” requests.
In the latter case, an adversary maliciously creates
interference with the radio frequency band used by
the system by exploiting the broadcast nature of the
wireless medium. Recently, selective jamming, a par-
ticularly insidious form of jamming aimed at a specific
node, has been considered [4, 9].

Integrity refers to the confidence that actions are
correct and collected data are accurate. A violation
of integrity results in deception, a circumstance where
an authorized entity receives false information about
the phenomenon being monitored, and it believes it
to be true (data deception). In addition, a deception
may counsist in one or more entities acting differently
than specified (actions deception). In the most general
case, an entity may be deceptive in terms of both
data and actions. An integrity violation may have
implications in terms of safety, loss of productivity or
loss of reputation.

In computer security, the term integrity regularly
refers to message integrity. However, this notion is
limited and not sufficient to capture the integrity
of the functional goal of autonomous systems. The

interactions of autonomous systems with one another
and with the physical world, together with the fact
that the data sent by sensor nodes depends on their
location, lead us to extend the notion of integrity
by means of those of measurement and behaviour
integrity.

Measurement integrity prevents the modification of a
sensor measurement. An attack against measurement
integrity succeeds when an autonomous system reports
a sensed measurement that is not representative of the
intended environment. A violation of the measurement
integrity may derive from i) an environment attack, i.e.
an attack affecting the environment around a sensor
node by the adversary (e.g. placing a magnet on top
of a magnetometer); ii) a false position attack, i.e.
changing the location of a sensor node by the attacker,
and the sensor node is unable to detect this change
and report it; and iii) a sensor spoofing attack, i.e.
sending the sensor a spoofed signal GPS spoofing [10]
and ultrasound spoofing [1] are relevant instances of
sensor spoofing attacks. This kind of attacks opens a
new frontline that characterizes autonomous system
security with respect to network security. Actually
autonomous systems are designed and manufactured
with certain safety measures. Once a system is man-
ufactured and tested against natural errors, it is ex-
pected to conform to its design specifications unless
accidental failures. However these safety measures are
against non-malicious faults and thus usually do not
consider mechanisms for adversary detection and pre-
vention. As a consequence, the system safety may
result fragile with respect to maliciously induced fail-
ures.

Behaviour integrity prevents the unauthorized modifi-
cation of an autonomous system logic/behaviour. An
attack against behaviour integrity succeeds when an
autonomous system is compromised and does not be-
have as expected. The misbehaviour of a system man-
ifests itself in reporting a fake measurement, sending
a fake message, or taking a fake action. An adversary
may violate the behaviour integrity of an entity by
compromising it, reprogramming it in order to send
incorrect data, perform wrong computations, or take
wrong actions. This threat is particularly relevant in
autonomous systems for several reasons. First, they
are often deployed in unattended, possibly hostile en-
vironments. Second, often they are not equipped with
physical protection mechanisms for cost and perfor-
mance reasons. Third, autonomous systems are gen-
erally composed of several to many embedded com-
puting units. Therefore, practical and functional rea-
sons require a functionality of remote firmware updat-
ing. However, connecting embedded computing units
over the network greatly increases the risk of attacks
against behaviour integrity. Actually, if an attacker
breaks into the remote firmware update channel, then
he/she could compromise the security of the firmware

by spoofing and counterfeiting it or even injecting a
Trojan horse [6, 8].

Finally, confidentiality refers to the confidence that
no information is disclosed to unauthorised principals.
Confidentiality guarantees that information provided
by an entity is accessible only to legitimate users.
Privacy is a special case of confidentiality when the
information is personal (e.g. information collected by
a camera). A successful violation of confidentiality is
called disclosure. A disclosure not only undermines
sensitive and personal information but it can provide
an adversary information for more effective attacks
against integrity and availability. A disclosure attacks
may be thus an intermediate step of a more elaborate
attack strategy.

3 A framework for simulation of
attack impact

The framework is composed of three components: i) an
Attack Description Language that makes it possible to
describe the effects of an attack; ii) an Attack Simula-
tor that simulates the effects of attacks on the system
under investigation and consequently makes it possible
to evaluate their impact; iii) an Attack Description
Compiler that convert attack effects descriptions into
simulator configuration files.

The user first describes the effects of an attack to
be evaluated by means of the Attack Description
Language—possibly, descriptions are stored for later
reuse. Then, the user compiles such a description into
a configuration file which is provided as input to
the attack simulator. Finally, the simulator simulates
executions of the system affected by the described
attack.

3.1 The Attack Description Language

The Attack Description Language (ADL) allows users
to describe attacks to be evaluated. It is important
to notice that here we are not interested in how an
attack can be actually carried out. This issue attains
to the feasibility of the attack which is the other
dimension of risk assessment and is not our focus.
Rather, we are interested in the effects of an attack
once it has been successfully played. To fix ideas, let
us consider an injection attack, a kind of deception
attacks. We are not interested in how the adversary
can inject fake messages in the system but, rather, in
what are the effects of such messages once they have
been successfully injected.

From such a standpoint, we assume that the successful
execution of an attack produces a sequence of events,
which takes place atomically. ADL consists in a col-
lection of statements that allow the user to specify
such a sequence of events. We consider two sets of

simple statements: 1) node statements, that allow us
to describe alterations in node behaviour and account
for physical attacks; and ii) message statements, that
allow us to describe actions on network messages—
including eavesdropping, injection, and dropping—and
account for cyber attacks.

The node statements are

e destroy(nodelD, t) removes node nodeld from the
network at time t.

e move(nodelD, pos, t) moves node nodelD to posi-
tion pos at time t.

e spoof(nodeld, sensorld, value, t) returns the spoofed
value value to sensor sensorlD of node nodelD at
time t.

The message statements are

e drop(pkt) discards the packet pkt.

e create(pkt, fld, content) creates a new packet pkt
and fill its field fld with content.

e clone(srcPkt, dstPkt) clones packet srcPkt into
packet dstPkt.

e change(pkt, fld, newContent) writes newContent
into field fld of packet pkt.

o retrieve(pkt, fld, var) copies the content of the field
fld of packet pkt into variable var.

e put(pkt, dstNodes, TX | RX, delay) puts packet pkt
either in the TX or RX buffer of all nodes in the
dstNodes list after a delay delay.

ADL provides other statements that allow delayed and
periodical occurrence of events. For instance

schedule time = T; nodes = <list of nodes >
{<list of events >}

and,

schedule delay = D; nodes = <list of nodes >
{<list of events >}

specify that the list of events takes place on the list
of nodes at time T or after delay D, respectively. In
contrast

schedule time = T; period = P; nodes = <list of nodes >
{<list of events >}

and

schedule delay = D; period = P; nodes = <list of nodes >

{<list of events >}

specify that the list of events takes place periodically,
with period P, on the list of nodes since time T or a
delay D, respectively.

Finally, ADL allows us to describe the conditional
occurrence of events. For instance

schedule time = T; nodes = <list of nodes >
if(<condition >) {<list of events >}

specifies that the list of events takes place on the list
of nodes if condition evaluates to TRUE.

The ADL makes it is possible to describe complex
attacks in a concise although clear way. Let us consider
a wormhole attack starting at time 200 s, and that
tunnels MAC packets sent by node 3 to a remote
area of the network containing nodes 15, 17, and 18.
It follows that these nodes believe that node 3 is a
neighbour of theirs whereas it is actually not. This
attack may have severe implications on the integrity
of the network because, if the tunnel stops delivering
packets, the network gets partitioned. This attack can
be described as follows

dstList=15,17,18;
schedule t = 200; nodes = "*"
if(packet. MAC.source==3 &&
packet. MAC.type==DATA)
put(packet,dstList,RX,0);

It is worthwhile to notice that in the boolean condition
we have used the dot notation packet.layer.field in order
to specify the field field of packet packet in the header
of layer layer. This means that, in general, the user
must be aware of the actual specific network protocols
that are in use at each communication layer, for
each of them the packet header structures and fields,
and finally the capabilities possibly offered by the
simulator. For instance, the OMNeT++ platform [7]
and the WSNs simulator Castalia [3] provide a set of
objects, called descriptors, aimed at handling packets
of a given communication layer and accessing their
header fields.

3.2 The Attack Simulator Architecture

[e)

> — I .
)

N ——
=

(e | e | | §
T — X] g
e ——

iswenas |

Wireless
Channel

Figure 2: Attack Simulator: the Enhanced Node

module.

With reference to Figure 2, the Attack Simulator
considers every node as implemented by a Enhanced
Node module which, in its turn, is composed of an
Application Module, a Sensing Module, a Network
module, and a Local Event Manager (LEM) module.
All sub-modules but the LEM module can be off-the-
shelf. The Application and Sensing modules may be
composed of different sub-modules, which model the
actual node application as well as physical sensing
processes. Similarly, the Network module may include
an arbitrarily complex combination of communication
layers, e.g. routing and MAC.

The LEM module is devoted to the management of
events related to attacks. LEM operates transparently
with respect to the other components of the Node
module. The LEM module intercepts all sensed data as
well as network packets traveling through the commu-
nication stack. LEM may inspect and alter sensor data
and packets content, add new ones, or even discard
them. Also, it can alter the node behavior at different
layers, change the node position in space, or even
remove the node from the network.

Application
Ay [)

' VI B ® B
--- g £ g —--
— 5 2 g al—
= =
— 2 & E — —
| PP Y 3 = [PR Y
3 2 k] al—
[

a—
|

. . ‘Wireless

nwironment Channel

Figure 3: Attack Simulator: the Global Event Man-
ager.

Wireless . R
Sistael nviranment

=+

A system composed of several autonomous systems
(also called nodes) is simulated by instantiating an
Enhanced Node module for each node and a Global
Event Manager (GEM) module that connects all the
Enhanced Node modules. The GEM module is con-
nected with every LEM module and allows them to
communicate and synchronize in order to implement
complex distributed attacks such as a wormhole at-
tack, for example. Figure 3 shows the architecture of
the simulator for a system composed of two intercon-
nected nodes.

3.2.1 Reproducing events

A node may appear as argument of a node statement.
In this case we say that the event specified by the
statement occurs at the node. Similarly, a node may
appear in the node clause of a delayed or periodical
statement. In this case we say that the events listed in
the delayed/periodical statement occur at the node.

At simulation startup, the simulator receives the at-
tack configuration file, parses the attack statements
and creates an event list for each node in the system.
Let el; be the event list of node 7. The list contains all
the events that occur at node 7 sorted in cronological
order. We denote by el! the j-th element in the event
list el; of node ¢. The simulator associates a timer to
each element of the list. We denote by 77 the timer
associated to elg. A timer is responsible to schedule
the associated event.

Each element in the list specifies an amount of in-
formation that depends on the type of the associated
event. If a list element is associated to a node event, the
element stores the event type and the related actual
arguments. If a list element is associated to a delayed
event, then the element specifies the scheduling time,
the associated node/message event and the related

actual arguments. If an element is associated to a peri-
odical event, the element specifies the scheduling time,
the scheduling period, the associated node/message
event and the related actual arguments. If conditional
occurrence of events is present, the condition is stored
in the element as well.

Whenever, a timer expires, the simulator consumes the
associated event. In doing this, the simulator takes
into account the possible associated condition. The
simulator evaluates the condition to determine if the
event has to be consumed or not. Furthermore, if the
statement specifies a periodical event, the event is
rescheduled according to the period.

3.3 A framework prototype for WSNs

We implemented a preliminary prototype of the frame-
work for wireless sensor networks (WSNs). With ref-
erence to Figure 2, as to the Application, Sensing
and Network modules we used Castalia [3], an off-the-
shelf simulator for WSNs based on the discrete-event
simulation platform OMNeT++ [7]. Castalia considers
the network as a collection of nodes, which sense values
according to a given physical process, and communi-
cate through a commonly shared wireless channel.

To/from Physical Process

Application

Radio

Tolfrom Wireless Channel T I

To/from Global Event
Manager

|

Jsbeueyy Jusaz (007

Figure 4: A Castalia-based prototype.

In the original architecture of Castalia, nodes are
composed of different sub-modules. A sensor node ap-
plication interacts with the physical process through
a sensor manager module, and retrieves physical in-
formation from the environment. Furthermore, nodes
are provided with a full communication stack, com-
posed by a routing, a MAC, and a Radio layer.
Thanks to such communication modules, the applica-
tion sends/receives packets to/from the wireless chan-
nel. Also, Castalia provides the implementations of
different routing and MAC layers.

In our implementation we integrated the Local Event
Manager and the Global Event Manager within
Castalia. With reference to Figure 4, in our prelimi-
nary implementation the Local Event Manager only

intercepts incoming and outgoing packets traveling
through the communication stack, between every pair
of layers. In other words, the Local Event Manager
does not intercepts sensor data and thus the simula-
tion framework for the moment does not support the
statement spoof.

4 A Case Pollution

Monitoring

Study:

4.1 Application scenario

Cluster Head

O Smokestack O
® Sensor Node A

Sink Node

Cluster 3

Cluster 1

Figure 5: The industrial plant.

We consider a wireless sensor network (WSN) that
monitors the pollution level of an industrial plant.
With reference to Figure 5, we consider a plant com-
prising three independent smokestacks S1, S2, and S3,
that release pollutant into the air.

A WSN has been deployed in the field, in order to mon-
itor pollution levels. The WSN is organized in three
clusters, C1, C2, and C3, one for each smokestack,
respectively. Each cluster is composed of three sensor
nodes and one cluster head. We denote by CH1, CH2,
and CH3, respectively, the cluster heads of the three
clusters. In each cluster, every sensor node periodi-
cally senses pollution emissions of the corresponding
smokestack, and sends a report to its cluster head.
This node periodically computes an average pollution
level, and delivers it to a sink node.

The sink checks whether a single report exceeds a
given threshold. The sink also aggregates reports from
cluster heads to detect possible infringements of pol-
lution limits at the level of the whole plant. So doing,
possible anomalies, malfunctioning, or even conscious
illegal deeds can be signaled to competent authorities.

Figure 6 shows the behaviour of the plant in an attack-
free situation. Smokestack S1 infringes the pollution
level limit, that we have supposed to be fixed at
37 pg/m?3. The dashed line depicts the pollution level

44

" Smokestack | ——
Smokestack 2 —x—
“ 53— |
i Threshold -----
E 40 oot . —) ’
E R TR IR R R R R GRIR RL AR
-
3 38
=
£ . : i -
2 a6 [T et
by
5
<
. N
30
0 100 200 300 400 500 500

Time (s)
Figure 6: Attack-free system.

that smokestacks are supposed not to exceed. The
other curves represent the average pollution levels over
time for smokestack S1, S2, and S3. The graph shows
that emissions from S1 exceeds the threshold.

Thanks to the WSN, it is possible to detect anomalies
in pollutant emissions and react promptly. This of
course assumes that sensor nodes and cluster head
nodes work correctly, i.e. collected data are genuine
and report delivery occurs regularly.

However, an adversary might have an interest to attack
the WSN in order to tamper with the data collection
process, alter the monitoring process, and mask the
misbehavior of S1. In the next section, we discuss
possible attacks against the WSN, specifically cluster
C1, and evaluate their impact on the WSN overall
monitoring capability.

4.2 The Threat Model

With reference to the application scenario described
in Section 4.1, an adversary may compromise the
monitoring service by altering reports produced by
sensor nodes before being collected by cluster heads.
In particular, an adversary might be interested in
altering the computation of average pollution levels on
cluster head CH1 in order to bring average pollution
levels below the fixed threshold so that pollutant
emissions from smokestack S1 would appear as regular,
so concealing an actual limit infringement. In the
following, we consider three possible attacks against
the WSN, namely injection attack, misplace attack,
and wormhole attack. The first attack is purely cyber,
the second one is purely physical, whereas the third
one is a cyber-physical one. Therefore, this attack
selection provides the full range of attack types that
can be launched against the WSN.

In an injection attack, the adversary creates fake re-
port packets, and inject them into cluster C1, pre-
tending they have been sent by a legitimate sensor
node belonging to C1. Of course, fake values carried by
such reports alter the computation of average pollution
levels on cluster head CH1. This attack is quite hard to

get detected. However, comparisons with other nodes’
reports may help to contrast its effectiveness.

In a misplacement attack, the adversary captures one
sensor node in cluster C1, and moves it from its
original position to a new one. By properly choosing
the new position, e.g. farther from smokestack S1 than
the original, it is possible to make the sensor node
measure a smaller value of the pollutant and thus alter
the computation of average pollution levels on cluster
head CHI1. This attack is far more difficult to detect,
since cluster head nodes assume that all sensor nodes’
original positions remain unchanged over time.

In a wormhole attack, the adversary operates in two
steps. First, the adversary captures one sensor node
u from cluster C1, and places it in a different cluster
in order to make the sensor node to measure pollu-
tant emissions from a different but regularly emit-
ting smokestack. Second, the adversary tampers the
misplaced node wu, in order to make it perform a
wormhole attack. That is, node u does not send its
report to the cluster head of the cluster where it has
been moved to. Rather, node u forwards its report
to cluster head CH1 through a dedicated low-latency
channel. Therefore, as values reported by node u refer
to a regular smokestack, the computation of average
pollution levels of smokestack S1 by cluster head CH1
gets inevitably altered. It is well-known that wormhole
attacks are particularly difficult to contrast.

4.3 Quantitative analysis of impact of
attacks

In this section we report on the use of our simulation
framework to quantitatively evaluate the impact of the
attacks described in Section 4.2. We consider a WSN
where each sensor node is equipped with a CC2420
radio chipset and runs the Multipath Rings routing
protocol and the the T-MAC link-level protocol. We
also assume that sensor nodes collect pollution mea-
surements every 70 ms, while cluster heads compute
average pollution levels every 10 s. Report packets
transmitted by sensor nodes are 39 bytes in size, and
include a payload whose size is 4 bytes. Finally, we
assume the pollution level threshold is set to 37 jg/m?3.
The adopted pollutant propagation model is based
on the Customizable Physical Process provided by the
Castalia simulator.

Simulation results has been obtained by means of 30
simulation runs, whose length was 600 seconds each.
Each attack occurs at time ¢t = 200 s.

4.3.1 Injection attack

In this attack, we consider an adversary injecting
fake report packets into cluster C1. Specifically, the
adversary creates fake report packets as follows. First,

the value 4 is written in the source node ID field of each
layer header. So doing, every forged packet appears
originated from node n4 of cluster C1. Then, the report
packet payload is set to 33 ug/m?. Such a value is quite
close to the average pollution level detected in cluster
C2 (Figure 6) and thus results plausible from a cluster
head CH1 standpoint. As a consequence, the attack is
not easy detectable.

44

T T
Injection interval 25 ms ——
Injection interval 35 ms ——
Injection interval 50 ms —*—
Injection interval 70 ms —=—
42 Threshold ====-

40 Fpmatoi

: \

g, R PR a BgBga e 8 By A e8gA
F\ i, PR A

Average pollution level (ug/m’)

R SHSSRGRY e

WWWM&

36 R R PR R S R R P RRE

34

0 100 200 300 400 500 600
Time (s)

Figure 7: Pollution level reported under injection
attack.

An important parameter of this attack is the adversary
throughput. Of course the higher the throughput the
higher the impact, but also the higher the visibility
and therefore the risk of being detected. In order
to evaluate the impact of the adversary throughput,
we consider different injection intervals P;. Figure 7
shows the effects of the injection attack for different
values of P;. As we can see, the larger the injection
interval, the less effective the attack is. However, if
P; < 50 ms, the attack is successfully performed, and
the average pollution level goes beyond the threshold.
Furthermore, it is evident that the adversary has no
reason to perform the attack with an injection period
smaller than 35 ms. In fact, it would require a great
energy expenditure by the adversary, and could even
be perceived as a Denial of Service, with increased
chance of being detected.

4.3.2 Misplacement attack

In this attack, the adversary physically shifts n5 of
cluster C1 away from smokestack S1. For the sake of
simplicity, we assume that the node is only shifted
along the y-axis only, towards cluster head CHI.

An important parameter of this attack is the displace-
ment distance L. Figure 8 shows the impact of the
attack for different values of L. As it turns out, shifting
node nb5 2 m away from its original position is insuffi-
cient to mask over-emissions. Instead, if L > 5 meters,
the adversary manages to achieve her objective. Of
course, the farther sensor nodes are misplaced, the
more effective the attack is.

Finally we observe that further simulative results
showed us that the misplace attack is slightly less effec-

44 T T
No displacement —+—
2 meter displacement —*—
2 5 meter displacement —»— |
10 meter displacement —&—
Threshold ===~
£ 40 pumn e - R A
E] Sea™ R R IR RN
£ 38 ‘jﬁ T e it
= I
S - -
El [NSOU SR I ———
] 36 &
o
&
I bagEetea soe Ny PocPan Muag oanevesy
z
32
30

0 100 200 300 400 500 600
Time (s)

Figure 8: Pollution level reported under misplace
attack.

tive if it is sensor node n4 that gets misplaced. We omit
these simulation results for the sake of brevity. How-
ever, we observe that without the simulation frame-
work it might be difficult to estimate the attack impact
by simply observing how sensor nodes are positioned
in the field.

4.3.3 Wormbhole attack

In this attack the adversary shifts node n5 from
cluster C1 into cluster C2, close to node n7. By
doing so, node nb5 measures pollutant emissions of
smokestack S2 which, unlike smokestack S1, stays
within an acceptable pollution level (see Figure 6).
Then, sensor node nb is reprogrammed in order to
tunnel sensed data to cluster CH1 through a dedicated
communication channel. Each sensed data is tunneled
two times. Since the sample interval of nb is 70 ms,
and each sample is transmitted twice, we have an
equivalent wormhole period, P, equal to 35 ms.

44

T T
Smokestack 1 —+—
Smokestack 2 ——

42 3 —— |

- Threshold ===~

40 P R PR

Average pollution level (ug/m®)

\eoel, Seed RIS N2l N Peel A

0 100 200 300 400 500 600
Time (s)

Figure 9: Pollution level reported under wormhole
attack.

Figure 9 shows the effects of the wormhole attack
on pollution monitoring. As we can see, the average
pollution level in cluster C1 appears equal to about
31 ug/m?3, i.e. far below the threshold. This means the
wormhole attack results to be even more effective than
the injection attack discussed in Section 4.3.1. In fact,
in case of injection attack with injection interval equal
to 35 ms, cluster C1 displays an average pollution level

comprised between 36 and 37 pug/m3, that is closer to
the threshold (see Figure 7).

4.4 Attack ranking

In this section, we describe a possible way to rank
security attacks according to their impact.

4.4.1 A metric for integrity

In this section, we define a security metric aimed at
measuring the respective impacts of the three attacks
described and analyzed in Sections 4.2 and 4.3. Since
the three deception attacks are against integrity, for
the sake of brevity we limit ourselves to a metric that
quantifies the level of deception of an attack. In the
most general case, we should define metrics also for
the levels of disclosure and denial of service. However,
it is worthwhile to notice that wrong data is generally
worse than no data, and therefore integrity is often
given more priority than availability [2].

Notice also that computing security metrics requires
to collect specific information, including the number
and type of packets received by recipient nodes, the
expiration of real-time deadlines, and the occurrence
of packet interception by compromised nodes. In the
most general case, application level information only
might not be sufficient to compute security metrics.
In other words, we also need information related to
the network behavior and the actual communication
among nodes. Therefore, unless the considered system
model relies on very strong, and possibly unrealistic,
assumptions, we believe that network and attack sim-
ulation is a valuable and essential approach to gather
essential information, and perform the attack ranking
process.

Let x4 denotes the level of deception of an attack
A. That is, 4 indicates how information v’ in the
presence of attack A differs from information v when
the system is attack free. Such metric is an extension
of those described by Cardenas et al. in [2]. Formally,

Si 12
Z]W r.- Zj:l ij_vjll
1=1"1 S

raA = M (1)

where M denotes the number of devices handling
forged samples; r; the weight of the i-th device; S;
the number of samples considered on the i-th device,
and, finally, v; and v}- the expected and the forged
j-th sample, respectively. Notice that although the
adversary has no particular restrictions on the choice
of v}, however she has to be careful that v’ is still valid
from a system standpoint.

4.4.2 Attack severity evaluation

With reference to Equation 1, for each attack A, we
compute two values: 1) Jig, which refers to the impact
of the attack on cluster Cl1, i.e. it takes into account
the average values computed by cluster head CHI;
and ii) xi which refers to the impact on the system
as a whole, i.e. it takes into account average values
computed by the sink node. In both cases, we assume
M = 1,71 = l,and S7 = 60.. As to the injection
attack, we consider several injection intervals, namely,
25, 35, 50, and 70 milliseconds. As to the misplacement
attack, we consider several displacement distances,
namely 2, 5, and 10 meters. Finally, as to the wormhole
attack, we consider several wormhole intervals, namely,
23.3, 35, and 70 milliseconds.

Position .LE\ Attack Attack parameter
#1 57.203 | Wormhole | Py, = 23ms
#2 47.159 | Wormhole | Py, = 35ms
#3 31.655 | Wormhole | P, = 70ms
#4 19.735 Misplace L =10m
#5 10.493 Injection P; = 25ms
#6 7.751 Injection P; = 35ms
#7 7.048 Misplace L =5m
#8 5.297 Injection P; = 50ms
#9 3.504 Injection P; =70ms
#10 1.332 Misplace L =2m

Table 1: Rank of attacks at cluster level.

Position I’Z Attack Attack parameter
#1 7.056 | Wormhole | P, = 23ms
#2 5.906 | Wormhole | P, = 35ms
#3 4.168 | Wormhole | P, = 7T0ms
#4 1.135 Injection P; = 25ms
#5 0.921 Misplace L=10m
#6 0.833 Injection P; = 35ms
#7 0.564 Injection P; = 50ms
#8 0.499 Misplace L=2m
#9 0.389 Misplace L=5
#10 0.369 Injection P; = T70ms

Table 2: Rank of attacks at system level.

Table 1 and 2 report the attack rank according to the
computed value of :ci and xf,, respectively. Since the
adversary thwarts cluster C1 activities, the impact of
each attack is more severe from a cluster standpoint
rather than from a whole system point of view. Also,
the wormhole attack always displays the most severe
impact against integrity. This is because the misplaced
node reports a value that is genuinely small although
belonging to another cluster. Of course, the higher
the wormhole transmission rate, the higher the attack
impact. Finally, integrity in cluster C1 is more affected
by the misplacement attack, while the injection attack
results to be more effective from a whole system
standpoint.

4.4.3 Discussion

Unfortunately space prevents us from discussing coun-
termeasures to the above attacks. However, we would
like to give at least a few intuition about how the

simulation framework may help a designer to choose
countermeasures that implement the best trade-off
between cost and efficacy.

As to the injection attack, we can envision two possible
countermeasures. The first one consists in authenti-
cating packets. While it is highly effective against an
injection attack, it has two disadvantages. First, it
introduces the problem of key management. Further-
more, it requires to update the software onboard sensor
nodes in order to support this security control. Second,
it causes an enlargement of packets because of the
attached authenticator. Such an enlargement would
increase communication overhead. The other possible
countermeasure consists in increasing the redundancy
by deploying additional sensor nodes. Intuitively, fake
packets would weight less in percentage. The advan-
tage of this solution is that it does not require to install
any software, does not require any key management,
and does not cause any packet enlargement. On the
other hand, by increasing the number of nodes, the
overall network traffic would increase as well. The
simulation framework could be used to evaluate the
cost in terms of additional network traffic of each
countermeasure.

Notice also that the application has a reporting period
of 7T0ms whereas an injection attack has a meaningful
impact at the cluster level (Table 1) if the attack
injection period is comprised between 35 and 50ms.
This information could be useful to setup an intrusion
detection system to suspect anomalous traffic rates
that are 1.4 <+ 2. times as expected.

As to the misplacement attack, possible solutions
could be secure data aggregation or secure localiza-
tion. Another possible solution could be some form
of physical protection of nodes, in order to physically
prevent an adversary from shifting a sensor node from
its established position. However, the analysis carried
out by means of the simulation framework allows us
to realize that it is not necessary to physically protect
all the sensor nodes. As it turns out from Figure 8,
physical protection is only necessary for those sensor
nodes that are close to smokestack S1 (say, less than
30m).

As to the wormhole attack we state that packet au-
thentication would be useless. Actually, the misplaced
node nb would use the correct keying material to
authenticate packed carrying data sensed in another
cluster. Notwithstanding, increasing node redundancy
would remain an option. The simulation framework
would allow us to evaluate both the efficacy of this
options as well as its cost in terms of traffic incre-
ment. This option should be compared to alternative
options based on secure localization and/or physical
protection.

5 Conclusions

Security is an important design dimension in cyber-
physical systems including autonomous systems, be-
cause it is conducive of safety infringements. However,
in practice it is not possible to address all possible
attacks. For this reason, we need a tool that allows
a designer to determine the most “important” ones.
We have presented a simulation framework especially
conceived to support the designer in this task. The
framework allows a designer to describe and simulate
attacks, quantitatively evaluate their effects, and, fi-
nally, rank them according to such effects. The frame-
work provides a simulation description language that
makes it possible to define reusable attack descriptions
in a relatively simple way. Furthermore, the frame-
work support and promotes reusing of off-the-shelf
simulators. For the moment the framework has been
integrated in Castalia, a WSN simulator based on
Omnet++.

Acknowledgements

This work has been partially supported by the EU FP7
Project PLANET, “Platform for the Deployment and
Operation of Heterogeneous Networked Cooperating
Objects” (www.planet-ict.eu), and by the Italian
PRIN Project TENACE, “Protecting National Crit-
ical Infrastructures From Cyber Threats” (www.dis.
uniromal.it/~tenace/).

References

[1] K.D. Akdemir, D. Karakonunlu, T. Padir, and B.
Sunar: An Emerging Threat: Fve Meets A Robot
Proceedings of the Second International Confer-
ence on Trusted Systems (INTRUST 2010), LNCS
6802, pp. 271-289, 2011.

[2] A.A. Cardenas, T. Roosta, and S. Sastry: Re-
thinking security properties, threat models, and the
design space in sensor networks: A case study in
SCADA systems. Ad-Hoc Networks, vol.7, no.8,
pp-1434-1447, November 2009.

[3] National ICT Australia: Castalia. Available at
http://castalia.npc.nicta.com.au/.

[4] R. Daidone, G. Dini, M. Tiloca: A solution to
the GTS-based selective jamming attack on IEEE
802.15.4 networks, Wireless Networks, 2013.

[5] European Telecommunications Standard Institute:
Telecommunications andf Internet converged Ser-
vices and Protocols for Advanced Networking
(TISPAN); Methods and protocols; Part 1: Method
and proforma for Threat, Risk, Vulnerability Anal-
ysis, ETSI TS 102 165-1 V4.2.3 (2011-03), 2011.

[6] C. Gorog: Protect Firmware from Counterfeat-
ing, http://www.embeddedintel.com/special_
features.php?article=1265, 2011

OMNeT++ Network Simulation Framework Avail-
able at: http://www.omnetpp.org/.

L.K. Shade: Implementing Secure Firmware Up-
dates Proceedings of the Embedded Systems Con-
ference Silicon Valley, 2011.

M. Tiloca, D. De Guglielmo, G. Dini and G. Anas-
tasi: SAD-SJ: a Self-Adaptive Decentralized solu-
tion against Selective Jamming attack in Wire-
less Sensor Networks. In Proceedings of the IEEE
International Conference on Emerging Technol-
ogy & Factory Automation (ETFA 2013), Cagliari
(Italy), 2013

[10] J.S. Warner and R.G. Johnston: GPS spoof-

ing countermeasures Homeland Security Journal,
2003.

[11] A.M. Wyglinski, X. Huang, T. Padir, L. Lai, T.R.

Eisenbarth, and K. Venkatasubramanian: Secu-
rity of Autonomous Systems Employing Embedded
Computing and Sensors IEEE Micro, vol.33, no.1,
pp. 80-86, January/February, 2013.

