Skip to main content

Breast Cancer Detection Using Haralick Features of Images Reconstructed from Ultra Wideband Microwave Scans

  • Conference paper
  • First Online:
Clinical Image-Based Procedures. Translational Research in Medical Imaging (CLIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8680))

Included in the following conference series:

Abstract

Microwave scanning of the breast would provide a technology for cancer detection and screening that is significantly safer than current methods involving radiation. This research focuses on finding the best way for accurate characterization of cancerous signals and normal signals using clinical data collected from a previously developed ultra wideband (UWB) antenna, BRATUMASS (Breast Tumor Microwave Sensor System). BRATUMASS which detects changes in dielectric constants within the breast. The signals collected from the microwave scanning procedure are reconstructed into a single, informative representation of the breast via diffraction tomography. This representation contains the information of the breast’s conductivity and the change in dielectric constants. We illustrate the feasibility of using Haralick features to make distinctions among breasts with a malignant tumor present and breasts with no malignancy in data collected from Shanghai Sixth People’s Hospital and Shanghai First People’s Hospital.

B.D. Fleet—This work is supported by the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE-0802267, NSF grant OCI-1122617 and the MSU Beacon Center. Any opinions, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aroquiaraj, I.L., Thangavel, K.: Feature extraction analysis using mammogram images: a new approach. J. Comput. Sci. Appl. 3(1), 33–44 (2011)

    Google Scholar 

  2. Bond, E., Li, X., Hagness, S., Van Veen, B.: Microwave imaging via space-time beamforming for early detection of breast cancer. IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003)

    Article  Google Scholar 

  3. Chen, Y., Craddock, I., Kosmas, P.: Feasibility study of lesion classification via contrast-agent-aided UWB breast imaging. IEEE Trans. Biomed. Eng. 57(5), 1003–1007 (2010)

    Article  Google Scholar 

  4. Conceicao, R., O’Halloran, M., Glavin, M., Jones, E.: Support vector machines for the classification of early-stage breast cancer based on radar target signatures. Prog. Electromagnet. Res. B 23, 311–327 (2010)

    Article  Google Scholar 

  5. Cruz, C., Costa, J., Fernandes, C.: Hybrid UHF/UWB antenna for passive indoor identification and localization systems. IEEE Trans. Antennas Propag. 61(1), 354–361 (2013)

    Article  Google Scholar 

  6. Haralick, R., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  MathSciNet  Google Scholar 

  7. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr., P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography. Computational Imaging and Vision, vol. 13, pp. 457–460. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Klemm, M., Craddock, I., Leendertz, J., Preece, A., Gibbins, D., Shere, M., Benjamin, R.: Clinical trials of a UWB imaging radar for breast cancer. In: 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–4. IEEE (2010)

    Google Scholar 

  9. McGinley, B., O’Halloran, M., Conceicao, R., Morgan, F., Glavin, M., Jones, E.: Spiking neural networks for breast cancer classification using radar target signatures. Prog. Electromagnet. Res. C 17, 79–94 (2010)

    Article  Google Scholar 

  10. Nie, K., Chen, J., Yu, H., Chu, Y., Nalcioglu, O., Su, M.: Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad. Radiol. 15(12), 1513–1525 (2008)

    Article  Google Scholar 

  11. Nikolova, N.: Microwave imaging for breast cancer. IEEE Microwave Mag. 12(7), 78–94 (2011)

    Article  MathSciNet  Google Scholar 

  12. Slaney, M.: Imaging with diffraction tomography. Ph.D. thesis, Purdue University (1985)

    Google Scholar 

  13. Tao, Z., Pan, Q., Yao, M., Li, M.: Reconstructing microwave near-field image based on the discrepancy of radial distribution of dielectric constant. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 717–728. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Viani, F., Meaney, P., Rocca, P., Azaro, R., Donelli, M., Oliveri, G., Massa, A.: Numerical validation and experimental results of a multi-resolution SVM-based classification procedure for breast imaging. In: 2009 IEEE International Symposium on Antennas and Propagation Society, APSURSI’09, pp. 1–4. IEEE (2009)

    Google Scholar 

  15. Wilson, C., Lammertsma, A., McKenzie, C., Sikora, K., Jones, T.: Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res. 52(6), 1592–1597 (1992)

    Google Scholar 

  16. Winters, D., Shea, J., Kosmas, P., Van Veen, B., Hagness, S.: Three-dimensional microwave breast imaging: dispersive dielectric properties estimation using patient-specific basis functions. IEEE Trans. Med. Imaging 28(7), 969–981 (2009)

    Article  Google Scholar 

  17. Yao, M., Tao, Z., Han, Z.: The detection data of mammary carcinoma processing method based on the wavelet transformation. In: Wavelet Transforms and Their Recent Applications in Biology and Geoscience. InTech, pp. 77–92 (2012)

    Google Scholar 

  18. Yao, M., Tao, Z., Han, Z., Yao, Y., Fleet, B., Goodman, E.D., Wang, H., Deller, J.: Breast tumor microwave sounding, imaging and system actualizing. Adv. Inf. Sci. 1(1), 1–21 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair D. Fleet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fleet, B.D., Yan, J., Knoester, D.B., Yao, M., Deller, J.R., Goodman, E.D. (2014). Breast Cancer Detection Using Haralick Features of Images Reconstructed from Ultra Wideband Microwave Scans. In: Linguraru, M., et al. Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2014. Lecture Notes in Computer Science(), vol 8680. Springer, Cham. https://doi.org/10.1007/978-3-319-13909-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13909-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13908-1

  • Online ISBN: 978-3-319-13909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics