Dynamic Query Prioritization for In-Memory Databases

Johannes Wust!, Martin Grund?2, Hasso Plattner?

1Hassso Plattner Institute, D-14440 Potsdam
2University of Fribourg, CH-1700 Fribourg

johannes.wust@hpi.uni-potsdam.de, grund @exascale.info
hasso.plattner @hpi.uni-potsdam.de

Abstract: In-memory database management systems have the potential to reduce the
execution time of complex operational analytical queries to the order of seconds while
executing business transactions in parallel. The main reasons for this increase of per-
formance are massive intra-query parallelism on many-core CPUs and primary data
storage in main memory instead of disks or SSDs. However, database management
systems in enterprise scenarios typically run a mix of different applications and users,
of varying importance, concurrently. As an example, interactive applications have a
much higher response-time objective compared to periodic jobs producing daily re-
ports and should be run with priority. In addition to strict prioritization, enforcing a
fair share of database resources is desirable, if several users work on applications that
share a database. Solutions for resource management based on priorities have been
proposed for disk-based database management systems. They typically rely on multi-
plexing threads on a number of processing units, which is unfavorable for in-memory
databases on multi-cores, as single queries are executed in parallel and numerous
context switches disrupt cache-conscious algorithms. Consequently, we propose an
approach towards resource management based on a task-based query execution that
avoids thread multiplexing. The basic idea is to calculate the allowed share of execu-
tion time for each user based on the priorities of all users and adjust priorities of tasks
of incoming queries to converge to this share.

1 Introduction

In-memory database management systems (IMDBMS) that leverage column-oriented stor-
age have been proposed to run analytical queries directly on the transactional database
schema [P1a09]. This enables building analytical capabilities on top of the transactional
system, leading to reduced system complexity and reduced overall operating cost. How-
ever, running multiple, potentially different applications on a single database instance that
records business events leads to a mix of heterogeneous queries that may have different
response time objectives.

With TAMEX [WGP13], we have proposed a task-based framework for multiple query
class execution on IMDBMS. TAMEX allows to statically prioritize classes of work-
loads, for example transactional queries over analytical queries to achieve almost constant
response-time of transactions independent of the analytical workload. However, static pri-

Q1(100ms) - Dynamic —— Q1(100ms) - Static —=—
Q2(300ms) - Dynamic —— Q2(300ms) - Static ——

1
0.8

T
0.6
s "
s
0

Resource Share

0.2
0

200 400 600 800 1000

Timeins

Figure 1: Comparing static and dynamic query priorities for a single priority class

oritization falls short on enforcing a fair share of database resources among sessions with
different query execution times, since users with similar priorities are scheduled strictly
first-in-first-out, independent of the execution time. Enforcing a fair share is desirable in
many scenarios, where many users work concurrently on a shared database system.

We further illustrate the shortcoming of static priority-based scheduling using a simple
example: Assuming that two concurrent sessions are connected to the database and si-
multaneously issue queries. As both sessions are connected as analytical clients they will
be assigned the same static priority for executing their queries. Now, the first session is-
sues queries that are executed in 100ms and the second session issues queries against the
database that take on average 300ms. If all queries are executed without think time and
sequentially, for simplicity we assume a single processing unit, they will basically inter-
leave. As long as the difference in query execution time between these two sessions is not
too big, this will not result in any performance degradations. However, in the above case
the average response time of the query will be dominated by the wait latency for the longer
query and quickly approach 400ms. For the heavier query the additional latency does not
have as big an impact and it will account for close to 75% of the consumed resources.

We analyzed this motivating use-case with a scheduling simulator to compare dynamic
and static query priorities. Figure 1 shows the result of this simulation. As expected, in the
case of the static priorities the second longer query consumes the majority of the resources
thus violating the fair- share scheduling. Using dynamic priorities as proposed in detail
in this paper, the scheduler will distribute the available resources equally among the two
queries independent of the actual run-time of the query.

To summarize the above simulation, we can derive that traditional queue-based scheduling
for fair-share scheduling works only well for such scenarios, where the independent time
quanta that are executed, are roughly equal or the tasks can be preempted. Both proper-
ties do not hold true for task-based scheduling in in-memory databases as tasks can have
varying sizes and can be typically not be preempted.

In this paper, we propose an extension of TAMEX that enforces a fair share of database
execution time by dynamically adjusting priorities of queries. The remainder of the paper
is structured as follows: In the next section, we give a brief overview of the assumed
system model and in Section 2.2 the task-based query execution with TAMEX. Section 3

describes our model for dynamic query prioritization and Section 4 the architecture of our
extension to TAMEX. In Section 5, we evaluate our proposed solution with an enterprise
typical query workload. The next section discusses related work and the last section closes
with some concluding remarks and directions for future work.

2 System Model and Task-based Query Execution

This section gives a brief overview of the underlying system model of an IMDBMS, as
well as the task-based query execution framework TAMEX [WGP13], which we use for
implementing dynamic query prioritization.

2.1 System Model

We assume an IMDBMS following the system model described in [Plal1], where data is
physically stored decomposed in a column-oriented structure. To achieve high read and
write performance, an insert-only approach is applied and the data store is split in two
parts, a read optimized main partition and a write optimized differential store [KKG™11].
We apply a multi version concurrency control (MVCC) based on transaction IDs (TID)
to determine which records are visible to each transaction when multiple transactions run
in parallel. See [Plal1] for more details. As our proposed approach for dynamic query
prioritization is largely agnostic to specific architectural details of the database. it can
be easily generalized and applied to other architecture. However, our approach assumes
that the execution of queries can be split in small atomic tasks, which can be executed in
parallel, as we will explain in the next section.

2.2 Task-based Query Execution with TAMEX

This section gives an overview of the task-based query execution framework TAMEX,
which is implemented based on HYRISE [GKP'10].

We understand task-based query execution as the transformation of the logical query plan
into a set of atomic tasks that represent this plan. These tasks may have data dependen-
cies, but otherwise can be executed independently. We consider such an atomic task as
the unit for scheduling. Compared to scheduling whole queries, a task-based approach
provides two main advantages: better load balancing on a multiprocessor system, as well
as more control over progress of query execution based on priorities. The second advan-
tage is achieved as splitting queries into small units of work introduces natural scheduling
intervals during query execution, where lower priority queries can be paused to run higher
priority queries without the need of canceling or preempting the low priority query. As-
suming a sufficiently small task size, processing units can be freed quickly to execute
incoming high priority queries. With the advent of modern many-core processors, the ef-
ficient splitting of monolithic queries becomes more and more important as for example
stated in [BTA13].

TAMEX adopts this concept by transforming incoming queries into a directed acyclic
graph of tasks and schedules these tasks based on priorities. For TAMEX, we extended
HYRISE to support parallel execution of queries, as well as intra-query parallelism, based
on multi-threading. Figure 2 provides an overview of the main components of TAMEX
and the extensions for dynamic query execution, which are explained later in Section 4.2;
a more detailed description of TAMEX is provided in [WGP13]. An incoming query is
compiled and transformed into a task graph. The task scheduler assigns all ready tasks
to a priority queue; all tasks with unmet dependencies are placed into a wait set until
they become ready. Worker threads of a threadpool take the tasks from the queue and
execute them. Each thread is assigned to a physical processing unit and executes one and
only one task. That way, incoming high priority tasks can start immediately executing
on all processing units, once the currently running tasks have finished. While this static
scheduling approach can effectively prioritize a query class over another, it cannot enforce
a fair share of resources if queries with similar priorities are issued. In this paper, we build
on TAMEX by setting these priorities dynamically to enforce a given resource share for
query classes.

3 Dynamic Shared Query Execution

As motivated in the Introduction, fair resource sharing is of great importance in systems
with heterogeneous workloads. In this section, we will introduce the concept of Dy-
namic Shared Query Execution with the goal to approximate a fair resource usage between
database sessions on a single system.

In the following, we will describe a new dynamic shared query scheduler with the ob-
jective of scheduling queries from independent session on a fair distribution of the avail-
able computing hardware. We achieve a good scheduling performance by dynamically
re-calculating priorities of the different queries of independent sessions so that resources
consumption is better distributed. Since scheduling of queries is a time-critical operation
we take special care in optimizing these operations to minimize the impact of dynamically
adjusting the priorities. In addition, it is possible to manually decide whether or not dy-
namic priority adjustments should be made available for the different priority classes. As a
result, we maintain high throughput for transactional queries without additional scheduling
overhead, but achieve a better flexibility for medium and long running queries.

3.1 Work-share Definition

We consider a database management system running on a server with N processing units
and S open database sessions during an interval 7". Each session s; € S has an assigned
priority p; and a set of executed queries Q;(t) at any point in time ¢ during 7'. Each time
a query s finished, it is added to ;. We consider online arrival of queries, meaning that
the database has no knowledge about the future arrival of queries. Each query ¢; ; € Q;
is defined by a set of tasks O; ; and an arrival time ¢; ;. Each task o; ;, is executed
sequentially on one processing unit n; € NN and has an assigned amount of work w;_; »

processed by the database. In our model, a task has exclusive access to a single processing
unit and cannot be preempted.

For each session s; we determine the work w; that the database has executed on behalf of

this session at a time t, by

wilt) = Y > wijm ey

4 ;EQi(t) 0i,j,n€0; ;
and the total work W processed by the database by
W) =3 wit) o)
s; €S

The share of work ws; of a session s; at time ¢ is calculated by
w;(t)
W (t)

Based on the provided priorities p; for each session, each query has a target share ts;,
defined by

ws;(t) = 3)

ts; = b @
ZSJ' €es pJ
We define the relative share deviation of ws; from ts; as
ts; —ws;(t
Asi(t) = Stiwsﬂ)
Sq

Based on the provided definition, we can formulate the problem of shared query execution
as:

Definition 1 Ler S = {s1, ..., s} be the set of active sessions in an interval T with prior-
ities p; and queries Q;, executed on a database with N processing nodes. The problem to
solve is to provide an assignment of processing units to tasks o; ; ,, during T that minimizes
the overall deviation of the work share from the target share over an interval T:

T
AS = / D [tsi — wsi(t))| (6)
0

s; €S

Due to the online arrival of queries, a scheduling algorithm that assigns processing nodes
to tasks of queries cannot guarantee optimal schedules. As we assume non-preemptiveness
of tasks, it is possible to find examples for which an online algorithm produces results far
from optimal [LKAO4]. A competitive-analysis or worst-case analysis will produce largely
meaningless results. Therefore, we provide a heuristic approach and experimentally vali-
date its effectiveness.

4 Architecture

This section introduces our heuristic approach for approximating the problem described in
Section 3 and a brief overview of the implementation.

4.1 Approximation of Shared Query Scheduling

The basic idea of our approach is to measure the actual work spent on of query processing
for each session and calculate the relative share deviation As;(¢) for each session s;(t)
between certain points in time ¢. Based on the ranking of the relative share deviation, we
assign priorities to queries with the objective of minimizing the relative share deviation.

To approximate the overall work share deviation for each user, we have implemented mov-
ing average and exponential smoothing [Bro04], both first and second order, as heuristics.
As we found it hard to justify the choice of parameters for exponential smoothing and as
we obtained more predictable results with the moving average, we limit our discussion
here on the moving average. To calculate the work shares, we accumulate the work pro-
cessed for each user, after a task has been completed. In fixed time intervals, we calculate
the work share defined in Equation 3. For the moving average, we take the average work
share over the last n intervals to calculate the average work share deviation of Equation 5:

A wi(t)
wsi(t) = — {t_; W0)

In Equation 7, w;(t) defines the accumulated work of session 4 over the last observed
period. To assign the dynamic priorities to the session, we use the work share deviation
to sort the sessions and map the priorities accordingly. This approach introduces two
parameters that can be modified to adjust the scheduler to the current workload. The
first parameter is the window size n of the moving average, as it defines the impact of the
currently observed workload compared to the past, and the second parameter is the interval
that is used to evaluate a possible change in priorities.

4.2 Architecture for Shared Query Scheduling

We have implemented our approach to approximatively solve the dynamic shared query
execution problem described in Section 3 based on our database storage engine HYRISE [GKPT10]
and our task-based execution framework TAMEX [WGP13], introduced in Section 2.2.

Figure 2 shows an overview of the extension to TAMEX. For each session, we keep track
of the target share calculated by Equation 4, the work processed for each session in the
current time interval (indicated as Accumulated Work), the average work share and the
dynamic priorities. After a task is completed, the execution time of this task is added to
the accumulated work for the corresponding session. At the end of an interval, an update
process calculates the relative work share deviation and assigns the dynamic priorities
accordingly to minimize the deviation in the next interval.

The update process consists of the following steps: we calculate the work share as defined
in Equation 3 by dividing the accumulated work for a session by the total work of all ses-
sions during the considered interval. Once read, the accumulated work is reset. Next, we
incrementally calculate the average work share using Equation 7 and determine the relative
work share deviation for each user using Equation 5. As a last step, we sort all sessions in
descending order by this deviation and assign dynamic priorities accordingly, giving the

l Database Connection Service ‘
Query Task lExecution | | -Concurrencv
Compiler Scheduler Read i Engine - ' Control
eady 1 Thread Pool '
Queue | I !
$ (Priority 1 |
|
Queue) H +—>f Main Memory
Query Wait \ Worker Thread |
Transfor- Set | !
mation H ~ |
| tﬂﬁﬁﬁﬁj
Accumulated Average Work
Target Share Work Sr?are Dynamic Priorities
TAMEX /
HYRISE s1 0.5 s1 34273 st 0.53 s1 2
s2 |0.25 s2 | 56432 s2 | 032 s2 1
s3 0.25 s3 16754 s3 0.15 s3 3

Figure 2: Dynamic query prioritization based on TAMEX

highest priority to the session with the highest relative work share deviation. It is important
to mention, that the worker threads executing tasks are not disrupted by the update process.
Figure 2 illustrates the recorded data and the resulting dynamic priorities. Session s3 gets
the highest priority as it has the largest work share deviation. If the task scheduler places a
new task, or one from the Wait Set that becomes ready, in the ReadyQueue, it updates the
priority of the task according to the dynamic priority of the session.

To achieve the highest possible accuracy the task scheduler would have to provide global
state information about the actual work of each session that is then updated by the indi-
vidual execution threads as soon as a single task is finished. A drawback of this global
work share calculation is the global dependency to accumulate the total work. To alleviate
this dependency, we use an atomic hash-map that maps the individual sessions to a local
counter value. Now, this state is not shared among all execution threads, but only the
threads working on tasks of the same session access a unique storage location.

This situation can be additionally improved by keeping a copy of this session map in
the thread-local storage of each execution thread that is only lazily collected from the
scheduler once it detects a recalculation of the priorities for the tasks. Using the thread-
local approach basically avoids contention for the session based work share completely as
all manipulations are performed thread-local and only a single consumer will retrieve the
individual items.

The adjustment of the dynamic priorities is triggered by the worker threads notifying the
task scheduler when a task is finished. If the time interval for calculating an average work
share has been passed, the update process, as described above, is initiated. As we need
to sort the list of sessions by relative share deviation, the complexity is O(nlogn), with n
being the number of sessions. In practice we have compared the performance of TAMEX
with and without our extension and could not determine significant performance penalty
for up to a 1000 concurrent users.

Since user sessions can be inactive during a period of time when we reevaluate priorities,
we only consider those sessions that have issued work over this period of time. As long
as the session is inactive, it will not bias the priority calculation; when the session is
reactivated, we start the calculation of the moving average again, without considering the

share prior to the inactivity.

5 Evaluation

This section provides an experimental evaluation of our approach towards dynamic query
prioritization, which we described in Section 4. Our test machine is equipped with 2 In-
tel(R) 5670 CPUs with 6 cores each and 144GB RAM. The first two experiments demon-
strate the effectiveness of our approach to dynamically adjust priorities to converge to a
desired target share. In the third experiment, we evaluate parameters for calculating the
moving average and derive recommendations for choosing them appropriately.

Motivated by the introductory experiment illustrated in Figure 1, we have set up an experi-
ment with two sessions, each consisting of a number of equivalent users that issue a stream
of queries to the database without think time. Each query consists of two table scans and a
join, whereas each operator runs in parallel up to a degree of intra-operator parallelism of
12, corresponding to the number of threads running in parallel. Due to a different size of
input tables, the query issued by the users of session 1 (S=1) takes 40ms processing time
in the database kernel and the query of session 2 (S=2) 160ms. Each query has 154 tasks,
with a maximum task runtime of about 50ms for the longer query. We ran the experiment
with these two sessions using a round robin scheduler, as well as our fair share scheduler
that enforces an equal resource share for both sessions. Each time, the experiment ran for
60s, whereas the second session started after 10s and ended after 50s. We have chosen the
window size n of Equation 7 to be 50 and the interval for updating priorities to 0.2s.

Figure 3(a) shows the result for the round robin scheduler. For each second, we have
plotted the resource share of the last second. As we take the point of view of a user
outside of the database, we count work processed for a session at the point of time when
an entire query is finished, as opposed to single tasks. In line with our expectations from
the simulation, applying a round robin scheduler leads to a share equal to the ratio of the
runtime of both queries. In Figure 3(b), we see that the dynamic prioritization of queries
leads to a varying resource share of each queries averaging to a fair share over the interval
between 10 and 50s. While the round robin fails to distribute the resources equally among
the two sessions, it becomes possible to efficiently schedule queries with different runtimes
and to distribute the resources equally when applying dynamic query prioritization.

Figure 4 demonstrates the applicability of our approach to a larger number of sessions and
different priorities. This time, all sessions S consist of a single user issuing a stream of the
query described above with 160ms processing time when executed as a single query on
the system. When scheduling all incoming tasks with a round robin scheduler, each query
gets approximately the same share of the system resources (Figure 4(a)). In Figure 4(b),
we assigned User 1 a priority of 4 (P=4) and the remaining users a priority of 1 (P=1)
with the objective of enforcing a share of 50% of the total resources for User 1 and 12.5%
for each of the other users during the interval when all users issue queries in parallel. In
this experiment, our dynamic query prioritization is able to schedule the queries of all the
different sessions according to the assigned priorities.

Choosing the window size for the moving average and the interval length of updating

S=1(40ms) —— $=2(160 ms) —— S=1(@40ms) —— S=2(160ms) —<—

1
0.8 r 0.8 r
(o] o
2 2
n 0.6 7] 0.6 r
(] j53
g g
2 04r ‘ 2 04t
E | A A | &’j
02} V_J */\«_fu\ﬁfw) 02}
0 L L L L 0
0 10 20 30 40 50 60 0 60
Time in s Time in s
(a) Round robin scheduler wihout priorities (b) Enforcing a fair share
Figure 3: Two sessions issuing queries with different execution times
S=1,P=4 —— S=4,P=] —o— S=1,P=4 ——— S=4 P=] —o
S=2,P=1 —— S=5,P=1 —— S=2,P=1 —— S=5,P=1 ——
S=3,P=1 —— S=3,P=1 ——
1 1
o 08 o 08
< <
= =
v 0.6 @ 0.6
8 3
3 04 5 04t
3 g
~ 0.2 ~ 0.2
0 L L L L 0
0 10 20 30 40 50 60 0 60
Time in s Time in s
(a) Round robin scheduler without priorities (b) Enforcing a fair share

Figure 4: Five sessions issuing queries (160ms) with different priorities

priories is a trade-off between overall accuracy and adaptation time to react on changes in
the workload. To illustrate this, we have tested five sessions with equal priorities, issuing
a constant stream of queries. One session issues a query with 160ms runtime, the other
users a query with 40ms run time. We start all users at the same time and measure the
cumulated work share since the start for 60s. Figure 5 shows the results for the calculation
of the relative share deviation with moving average for different window sizes (w) and
interval lengths (i) for one of the five sessions with query length 160m:s.

In Figure 5(a), we have changed the window size for the moving average and kept the
size of the observation interval constant at 1s. As expected, a larger window size leads to
a smoother curve that converges to the target share of 20% without major deviations. A
smaller window size shows more spikes, as intervals with above or below average have a
larger impact on calculated work share, but also adapts faster to workload changes. How-
ever, if the window size is chosen too small, as it is here the case for size 5, the scheduler
cannot enforce the overall target share anymore, as the sample size is too small.

In Figure 5(b), we changed the interval lengths for the moving average and kept the win-
dow size constantly at 20. For small interval lengths of 0.1s, the total time interval of
window size multiplied with interval lengths that is considered becomes so small, that the
scheduler cannot systematically decrease the performance of the user with the long run-

round robin —— i=1s, w=20 —— round robin —— i=1s, w=20 ——
i=1s, w=5 —— i=1s, w=50 —— i=0.1s, w=20 —— i=5s, w=20 ——
i=1s, w=10 —— i=0.5s, w=20 ——

0.55)
0.5

Accumulated Resource Share

Accumulated Resource Share

0.2
0.15 ~_
0 10 20 30 40 50 60
Timeins Timeins
(a) Changing the window size (b) Changing the interval length

Figure 5: Comparing parameters for calculating work share deviation with moving average

ning query to enforce the target share. The share of this user is closer now to the share of
the round robin scheduler. A large window size leads to less adjustments of priority and
therefor takes longer to converge, but is more robust to changes in the workload.

Choosing the parameters depends on the number of concurrent connections and task sizes
and is thus workload dependent. To adapt to changing workloads the scheduler has to
observe these parameters and adjust accordingly. The goal for the scheduler is then to
chose the interval to be large enough to include a significant number of tasks from each
active session, allowing to determine a trend of the work share applying the current set of
priorities. It is important to mention, that it does not dependent on the entire runtime of the
issued queries. The window size has to be chosen based on the average number of tasks a
session executes per interval and the average execution time per task. For shorter sessions,
e.g. occurring in interactive applications, a smaller window size helps to quickly balance
the load and avoid that one session gets too many resources.

6 Related Work

Workload management for heterogeneous queries has been frequently in the context of

web requests [BSUKO07, MSAHbBO03, SHBI™ 06] and business intelligence applications [BCD 192,
KDW™10]. In contrast to our research, most work on workload management was specific

to disk-based DBMS and considered a query as the level for scheduling. In general, we

can divide the proposed approaches for managing workloads of different query classes into

two classes: external and internal. The general idea of external workload management is

to control the number of queries that access the database (admission control). Internal
workload management systems typically control available resources, such as CPU or main
memory, and assign them to queries. Niu et al. [NMPO09] give a more detailed overview of
workload management systems for DBMS.

Early work on internal workload management has been published by Carey et al. [BCD 92,
CJL89]. The simulation studies are specific to disk-based DBMS, as they extensively
model disk-based DBMS characteristics such as disk rotation time or buffer manage-

ment. A more recent work by McWherter et al. [MSAHbO03] shows the effectiveness of
scheduling bottleneck resources using priority-based algorithms in a disk-based DBMS.
Narayanan et al. [NW11] propose a system for dynamic prioritization of queries to meet
given priorities for query classes. In contrast to our work these approaches rely on multi-
plexing threads on a number of processing units and achieve a targeted resource share ei-
ther centrally, by prioritizing threads on OS-level or collaboratively, by letting each thread
check its consumed resources regularly and sleeping if a certain quota has been met. These
strategies are unfavorable for in-memory databases on multi-cores, as execution time is
largely dominated by cache locality which is disrupted by context switches.

More recent work has proposed solutions for adaptive admission control based on query
response time. Schroeder et al. [SHb06, SHBI*06] propose an external queue manage-
ment system that schedules queries based on defined service-levels per query-class and
a number of allowed queries in the database, the so-called multiprogramming level. Niu
et al. [NMPOQ9] propose a solution that manages a mixed workload of OLTP and OLAP
queries by controlling the resources assigned to OLAP queries depending on the response
times of OLTP queries. Krompass et al. [KKW™10] extended this approach for multiple
objectives. The work of Kuno et al. [KDWT10] and Gupta et al. [GMWD09] propose
mixed workload schedulers with admission control based on query run-time prediction.
Although external workload management systems are applicable to in-memory databases,
they fall short in our scenario, as queries need to get access to a large number of processing
units quickly, e.g. to answer complex interactive queries.

Until recently, scheduling in operating systems and query scheduling in database manage-
ment systems were working very differently since queries in DBMS cannot be as easily
preempted and were typically very monolithic. With modern many-core systems, task-
based decomposition gives the scheduler in DBMS more flexibility and we are able to
adapt concepts like [XWYT12] to allow fair scheduling of tasks in IMDBMS.

7 Conclusion and Future Work

In this paper, we have shown that a dynamic priority-based query scheduling can be effec-
tively applied for IMDBMS to fairly schedule mixed enterprise workloads. We are plan-
ning to further evaluate the performance of our scheduling approach and extend TAMEX
to leverage further information about task characteristics in scheduling decisions. We are
further planning to take resource requirements besides CPU, such as cache and memory
bandwidth into account to place tasks in a way that will minimize resource conflicts.

References

[BCD™92] K Brown, M Carey, D DeWitt, M Mehta, and F Naughton. Resource allocation and
scheduling for mixed database workloads. cs.wisc.edu, Jan 1992.

[Bro04] R.G. Brown. Smoothing, Forecasting and Prediction of Discrete Time Series. Dover
Phoenix editions. Dover Publications, 2004.

[BSUKO7]

[BTA13]

[CIL89]

[GKP'10]

[GMWD09]

[KDWT10]

[KKGT11]

[KKW*10]

[LKAO4]

[MSAHb03]

[NMP09]
[NW11]
[P1a09]
[Plal1]
[SHb06]

[SHBIT06]

[WGP13]

[XWYT12]

Ernst W. Biersack, Bianca Schroeder, and Guillaume Urvoy-Keller. Scheduling in
practice. SIGMETRICS Performance Evaluation Review, 34(4):21-28, 2007.

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer szu. Main-Memory
Hash Joins on Multi-Core CPUs: Tuning to the Underlying Hardware. ICDE ’13.
IEEE Computer Society, 2013.

M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS resource scheduling. VLDB,
pages 397-410, 1989.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. HYRISE: a main memory hybrid storage engine.
Proc. VLDB Endow., 4(2):105-116, November 2010.

Chetan Gupta, Abhay Mehta, Song Wang, and Umesh Dayal. Fair, effective, efficient
and differentiated scheduling in an enterprise data warehouse. EDBT *09, pages 696—
707, New York, NY, USA, 2009. ACM.

Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Kevin Wilkinson, Archana Gana-
pathi, and Stefan Krompass. Managing Dynamic Mixed Workloads for Operational
Business Intelligence. In DNIS, pages 11-26, 2010.

Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin
Chhugani, Pradeep Dubey, Hasso Plattner, and Alexander Zeier. Fast Updates on
Read-Optimized Databases Using Multi-Core CPUs. PVLDB, Volume 5, No. 1,2011.

Stefan Krompass, Harumi Kuno, Kevin Wilkinson, Umeshwar Dayal, and Alfons
Kemper. Adaptive query scheduling for mixed database workloads with multiple ob-
jectives. DBTest *10, pages 1:1-1:6, New York, NY, USA, 2010. ACM.

Joseph Leung, Laurie Kelly, and James H. Anderson. Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA,
2004.

David T Mcwherter, Bianca Schroeder, Anastassia Ailamaki, and Mor Harchol-balter.
Priority Mechanisms for OLTP and Transactional Web Applications. pages 535-546,
2003.

Baoning Niu, Patrick Martin, and Wendy Powley. Towards Autonomic Workload
Management in DBMSs. Journal of Database Management, 20(3):1-17, 2009.

Sivaramakrishnan Narayanan and Florian Waas. Dynamic prioritization of database
queries. ICDE ’11, Washington, DC, USA, 2011. IEEE Computer Society.

Hasso Plattner. A common database approach for OLTP and OLAP using an in-
memory column database. SIGMOD, pages 1-2, 2009.

Hasso Plattner. SanssouciDB: An In-Memory Database for Processing Enterprise
Workloads. In BTW, pages 2-21, 2011.

Bianca Schroeder and Mor Harchol-balter. Achieving class-based QoS for transac-
tional workloads. In Proc. of IEEE ICDE, pages 153—, 2006.

Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam Wier-
man. How to Determine a Good Multi-Programming Level for External Scheduling.
Data Engineering, International Conference on, 0:60, 2006.

Johannes Wust, Martin Grund, and Hasso Plattner. TAMEX: a Task-Based Query
Execution Framework for Mixed Enterprise Workloads on In-Memory Databases. In
Workshop on In-Memory Data Management, INFORMATIK, Koblenz (accepted for
publication), 2013.

Di Xu, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and Zhenjiang Wang. Providing
fairness on shared-memory multiprocessors via process scheduling. In ACM SIGMET-
RICS/PERFORMANCE, SIGMETRICS 12, pages 295-306, New York, NY, USA,
2012. ACM.

