
Aggregates Caching in
Columnar In-Memory Databases

Stephan Müller and Hasso Plattner

Hasso Plattner Institute
University of Potsdam, Germany

{stephan.mueller, hasso.plattner}@hpi.uni-potsdam.de

Abstract. The mixed database workloads found in enterprise applica-
tions are comprised of short-running transactional as well as analyti-
cal queries with resource-intensive data aggregations. In this context,
caching the query results of long-running queries is desirable as it in-
creases the overall performance. However, traditional caching approaches
are inefficient in a way that changes in the base data result in invalidation
or recalculation of cached results.
Columnar in-memory databases with a main-delta architecture are well-
suited for a novel caching mechanism for aggregate queries that is the
main contribution of this paper. With the separation into read-optimized
main storage and write-optimized delta storage, we do not invalidate
cached query results when new data is inserted to the delta storage.
Instead, we use the cached query result and combine it with the newly
added records in the delta storage. We evaluate this caching mechanism
with mixed database workloads and show how it compares to existing
work in this area.

1 Introduction

The classic distinction between online transactional processing (OLTP) and on-
line analytical processing (OLAP) is no longer applicable in the context of mod-
ern enterprise applications [1],[2]. Instead of associating transactional or analyt-
ical queries with separate applications, a single modern enterprise application
executes both – transactional and analytical – queries. Within the available-to-
promise (ATP) application, for example, the OLTP-style queries represent prod-
uct stock movements whereas the OLAP-style queries aggregate over the product
movements to determine the earliest possible delivery date for requested goods
by a customer [3]. Similarly, in financial accounting, every financial accounting
document is created with OLTP-style queries, while a profit and loss statement
needs to aggregate over all relevant documents with OLAP-style queries that
are potentially very expensive [1].

To speed-up the execution of long-running queries, techniques such as query
caching and the introduction of materialized views have been proposed [4]. How-
ever, the inherent problem with query caching and materialized views is that
whenever the base data is modified, these changes have to be propagated to
ensure consistency. While a database query cache can simply flush or invalidate
the cache, a process known as materialized view maintenance, is well established



2 Stephan Müller and Hasso Plattner

in academia [5],[4],[6] and industry [7],[8] but with focus on traditional database
architectures and data warehousing [9],[10],[11]. For purely analytical applica-
tions, a maintenance downtime may be acceptable, but this is not the case in a
mixed workload environment as transactional throughput must always be guar-
anteed. Also, the recent trend towards columnar in-memory databases (IMDBs)
that are able to handle transactional as well as analytical workloads on a single
system [12],[13],[14] has not been considered.

A columnar IMDB for transactional and analytical workloads has some unique
features and preferred modes of operating [1],[2]. To organize the attributes of a
table in columns and to encode the attribute values via a dictionary into inte-
gers, known as dictionary encoding [15], has many advantages such as high data
compression rates and fast attribute scans. But this organization comes at a
certain price. In transactional workloads we have to cope with high insert rates.
A permanent reorganization of the attribute vectors (columns) would not allow
for a decent transactional performance, because new values appear and have to
be included in the encoding process which complicates the request to keep the
attribute dictionaries sorted. A way out of this dilemma is to split the attribute
vectors of a table into a read-optimized main storage and a write-optimized delta
storage. All new inserts, updates, and deletes are appended to the delta storage
with separate unsorted dictionaries. At certain times the attribute vectors are
merged with the ones in the main storage and a new dictionary (per attribute)
is established [16]. Since the main storage is significantly larger than the delta,
the insert performance becomes acceptable and the analytic performance is still
outstanding [17].

The fact that we can handle transactional and analytical workloads in one
system has tremendous benefits to the users of the system. Not only the freedom
of choice what and how to aggregate data on demand but the instant availabil-
ity of analytical responses on even large operational data sets will change how
business will be run. A consequence of this desirable development will be a signif-
icant increase in the analytical workload with aggregate queries on the combined
system.

To cope with the increase of analytical queries on transactional data, we
propose an aggregate query caching mechanism that leverages the main-delta
architecture of columnar in-memory databases. Because of the separation into
main and delta storage, we do not invalidate cached aggregate queries when new
records are inserted to the delta storage. Instead, we use the cached results of
the aggregate queries in the main storage and combine them with the newly
inserted records in the delta storage.

After discussing related work in Section 2, we outline the algorithm and
architecture of our implementation in Section 3. In Section 4 we evaluate our
caching mechanism and conclude with an outlook on future work in Section 5.

2 Related Work

The caching of aggregate queries is closely related to the introduction of material-
ized views to answer queries more efficiently. To be more precise, a cached query
result is a relation itself and can be regarded as a materialized view. Gupta gives



Aggregates Caching in Columnar In-Memory Databases 3

a good overview of materialized views and related problems in [4]. Especially,
the problem of materialized view maintenance has received significant attention
in academia [18],[5],[6]. Database vendors have also investigated this problem
thoroughly [7],[8] but to the best of our knowledge, there is no work that evalu-
ates materialized view maintenance strategies in columnar in-memory databases
with mixed workloads. Instead, most of the existing research is focused on data
warehousing environments [9],[10],[11] where maintenance downtimes may be
acceptable.

The summary-delta tables concept to efficiently update materialized views
with aggregates comes close to our approach as the algorithm to recalculate the
materialized view is based on the old view and the newly inserted, updated,
or deleted values [19]. However, their approach updates the materialized views
during a maintenance downtime in a warehousing environment and does not
consider the newly inserted operational data during query processing time which
is necessary in a transactional environment. Further, it does not take the main-
delta architecture and the resulting merge process into account.

3 Aggregates Caching

In this section, we describe the basic architecture of our aggregate query caching
mechanism and the involved algorithms. The cache is implemented in a way that
is transparent to the application. Consequently, the caching engine has to ensure
data consistency by employing an appropriate maintenance strategy.

While aggregate functions can be categorized into distributive, algebraic and
holistic functions [20] we limit our implementation to distributive functions with-
out the distinct keyword, such as sum, min, max, or count as they are most
commonly found in analytical queries [17] and because they are self-maintainable
with respect to insertions [19]. Updates and deletes require an extension of our
algorithm as explained in Section 3.5. Since algebraic functions can be com-
puted by combining a constant number of distributive functions, e.g., avg =
sum / count, they can also be supported given the assumption that a cached
aggregate query with an avg function is rewritten to include both the sum and
count functions.

3.1 Architecture and Algorithm

The basic architecture of our aggregates caching mechanism is illustrated in
Figure 1. With the columnar IMDB being divided into main and delta storage,
the aggregates caching manager component can distinguish between these and
read the delta storage explicitly and combine this result with the cached query
result. The relations of cached aggregate queries are each stored in a separate
database table. Further, a global cache management table (CMT) stores the
meta data for each cached aggregate query including access statistics. Also, it
maps the hash of the normalized SQL string to the database table that holds
the cached results of the aggregate query.

Every parsed query with supported aggregate functions, is handled through
the aggregates caching manager. To check if the query already exists in the



4 Stephan Müller and Hasso Plattner

SanssouciDB

Storage

Query 
Processor

Main

Aggregates Caching 
Manager

Cached Queries

Q 1
Q 2

Q n

● ● ●

SQL

Delta
Cache 

Management 
Table (CMT)

Fig. 1. Aggregates query caching architecture

cache, the hash value of the normalized SQL string is computed and looked
up in the CMT. If the aggregates caching manager does not find an existing
cache entry for the corresponding SQL query, it conveys the query without any
changes to the underlying main and delta storage. After query execution, it is
checked whether the query is suitable for being cached depending on the cache
admission policy (cf. Section 3.6). If this is the case, the query result from the
main storage is cached for further reuse. This is done by creating a separate table
that only contains the results of the specific query. The name of the table equals
the generated hash value of the SQL string and is referenced by the CMT.

Listing 1.1. A simple aggregate query

SELECT month , account , SUM( amount ) FROM s a l e s
WHERE year =2013 GROUP BY month , account

In case, the query is already cached, the original aggregate query (an example
is shown in Listing 1.1) is executed on the delta storage. Listing 1.2 shows
how the result from the delta storage is combined with the cached query result
as persisted in the table agg08f15e (assuming that agg08f15e is the hash of
the example query sql string) and returned to the query processor. We use a
UNION ALL query to not eliminate duplicates, but aggregate them by applying
the original aggregate query on the combined results.

Listing 1.2. Combining the cached aggregate query with results from the delta storage

SELECT month , account , SUM( amount ) FROM
(SELECT ∗ FROM agg08f15e
UNION ALL
SELECT month , account , SUM( amount )
FROM s a l e s d e l t a
WHERE year =2013 GROUP BY quarter , account )

GROUP BY month , account



Aggregates Caching in Columnar In-Memory Databases 5

3.2 Aggregates Maintenance Strategies

To ensure consistency, cached aggregates have to be maintained accordingly.
The timing of existing materialized view maintenance strategies can be distin-
guished between eager and lazy. While eager strategies immediately propagate
each change of base tables to the affected materialized views [5], lazy (or deferred)
strategies maintain materialized views no later than the time the materialized
view is queried [8]. Independently of the timing, one can divide maintenance
strategies into full and incremental ones. Full strategies maintain the aggregate
by complete recalculation using its base tables. Incremental strategies store re-
cent modifications of base tables and explicitly use them to maintain the views.
Based on the fact that an incremental calculation of aggregates is always more
efficient than a full recalculation [6], we focus on incremental strategies, despite
the fact that some aggregate functions cannot be maintained incrementally [19].

The proposed aggregate query caching mechanism does neither maintain the
cached aggregate at insert time nor at query time. Instead, it is done incre-
mentally during the delta merge process. Since it is possible to predict the query
execution time of in-memory databases very accurately [21], we create cost mod-
els for each maintenance strategy. The costs are based on a simplified workload
model that consists of a number of writes Nw into the base table and a number
of reads Nr of the cached aggregate query.

Eager Incremental Update (EIU) Since the cached aggregate query is main-
tained after each insert, the cost for accessing the aggregate query is just a single
read. The maintenance costs are tied to a write into the base table. As it is an
incremental strategy, the costs consist of the read time TRA to retrieve the old
value and the write time TW for the new value into the cached aggregate table.

Lazy Incremental Update (LIU) All maintenance is done on the first read
accessing the cached aggregate query. The maintenance costs Nwk

· (TRA + TW )
and cost to read the requested aggregate TRA are combined into one function.
The maintenance costs depend on the number of writes with distinct grouping
attribute values per read Nwk

which is influenced by the order of the queries in
a workload and the distribution of the distinct grouping attributes.

Merge Update (MU) The costs of a read Trk is the sum of an access to the
cached aggregate query TRA and an on-the-fly aggregation on the delta table
whereas TRDk

defines the costs for the aggregation for the kth read. The merge
update strategy updates its materialized aggregate table during a merge process.
Therefore, the tuples in delta storage have to be considered. The merge time Tm
for the number of cached aggregates NA is the sum of a complete read of the
cached aggregate query tables NA ·TRA, a read of the delta TRDk

, and the write
of the new aggregate (NA +NnewWD) ·TW . Equation 1 shows the calculation of
the total execution time based on the time for reads and the merge.

Ttotal = Nm · Tm +Nr · Trk (1)



6 Stephan Müller and Hasso Plattner

3.3 Optimal Merge Interval

The costs of our aggregates caching mechanism and the MU maintenance strat-
egy mainly depend on the aggregation performance on the delta storage which
decreases linearly with an increasing number of records [22]. However, the merge
operation also generates costs that have to be considered. In the following, we
propose a cost model which takes the costs for the merge operation and the costs
for the aggregation on the delta storage into account. Similarly to the cost model
for the merge operation introduced by Krüger et al. [16], our model is based on
the number of accessed records to determine the optimal merge interval for one
base table of a materialized view.

Equation 2 calculates the number of records Coststotal that are accessed
during the execution of a given workload. A workload consists of a number
of reads Nr and a number of writes Nw. The number of merge operations is
represented by Nm. The first summand represents the accesses that occur during
the merge operations. Firstly, each merge operation has to access all records of
the initial main storage |CM |. Secondly, previously merged records and new
delta entries are accessed as well [16]. This number depends on the number of
writes Nw in the given workload divided by two (since the number of records
in the delta increases linearly). The second summand determines the number of
accesses for all reads Nr on the delta. As before, the delta grows linearly and is
speed-up by the number of merge operations Nm.

Coststotal = Nm · (|CM |+
Nw

2
) +Nr ·

Nw

2

Nm + 1
(2)

Costs′total = |CM |+
Nw

2
− Nr ·Nw

2 ·N2
m + 4 ·Nm + 2

(3)

Nm =

√
2 · |CM | ·Nw ·Nr +N2

w ·Nr − 2 · |CM | −Nw

2 · |CM |+Nw
(4)

The minimum is calculated by creating the derivation (Equation 3) of our
cost model and by obtaining is root (Equation 4). Nm represents the number
of merge operations. Dividing the total number of queries by Nm returns the
optimal merge interval.

3.4 Join Operations

When processing aggregate queries with join operations, the complexity of the
caching mechanism and the involved MU maintenance strategy increases. Instead
of combining the cached result with the query result on the delta storage, the join
of every permutation has to be computed before these results can be combined. In
Figure 2, we have illustrated the involved tables in the main and delta partition
of a simple aggregate query including a join of two tables. While the cached
query result is based on a join of the header and line items table in the main
partition, we have to compute the joins of header’ and line items’ tables in
the delta partition, and additionally the joins between header’ and line items
as well as line items’ and header. When the cached aggregate query consists



Aggregates Caching in Columnar In-Memory Databases 7

Row	
   ID	
   Year	
   Currency	
  

1	
   101	
   2012	
   EUR	
  

2	
   102	
   2012	
   EUR	
  

3	
   103	
   2013	
   USD	
  

Row	
   ID	
   Header	
   Account	
   Amount	
   Tax	
  

1	
   3101	
   101	
   160000	
   1240.00	
   1	
  

2	
   3105	
   101	
   204000	
   1240.00	
   1	
  

3	
   3107	
   101	
   352600	
   1240.00	
   1	
  

4	
   3136	
   102	
   204000	
   4234.00	
   1	
  

5	
   3137	
   102	
   410300	
   124.19	
   7	
  

6	
   3141	
   103	
   154000	
   4912.01	
   2	
  

7	
   3142	
   103	
   302600	
   532.07	
   1	
  

Header	
   Line_Items	
  

Main	
  Storage	
  

Row	
   ID	
   Year	
   Currency	
  

1	
   106	
   2013	
   EUR	
  

2	
   107	
   2013	
   EUR	
  

Row	
   ID	
   Header	
   Account	
   Amount	
   Tax	
  

1	
   3144	
   103	
   167000	
   2540.00	
   1	
  

2	
   3153	
   106	
   204600	
   1570.00	
   4	
  

3	
   3154	
   106	
   353600	
   7840.00	
   2	
  

4	
   3155	
   107	
   247000	
   4234.00	
   1	
  

Header’	
   Line_Items’	
  

Delta	
  Storage	
  

SELECT	
  Header.Year,	
  SUM(Line_Items.Amount)	
  FROM	
  Header	
  INNER	
  JOIN	
  Line_Items	
  GROUP	
  BY	
  Header.Year	
  

Header’	
  INNER	
  JOIN	
  Line_Items	
   Line_Items’	
  INNER	
  JOIN	
  Header	
  

Header’	
  	
  
INNER	
  JOIN	
  
Line_Items’	
  

Fig. 2. Aggregate queries with join operations

of three or more joined tables, the necessary join operations between delta and
main storage increase exponentially. The number of necessary joins based on the
number of tables t in the aggregate query can be derived as JoinOps = t2 − 1.

After analyzing enterprise workloads, we found out that aggregates for ac-
counting, sales, purchasing, stocks etc. always need a join of the transaction
header and the corresponding line items. Interestingly, new business objects such
as sales orders or accounting documents are always inserted as a whole, therefore
the new header and the new line items are persisted in the delta storage. Using
these semantics of the business objects can reduce the number of necessary join
operations from three to just one (a join of header and line items in the delta). In
case a business object can be extended after the initial insert, the header entry
could already be merged into the main storage. Consequently, we would need an
additional join of the line items’ table in the delta with the header table in
the main.

3.5 Updates and Deletes

The presented algorithm is valid for an insert-only approach which handles logi-
cal updates or deletes by inserting differential values to the delta storage. When
updating a tuple, and only inserting the new, updated value to the delta storage,
the algorithm needs to be extended. We have identified two possible solutions:
We can either retrieve the old value from main storage, calculate the differential
value and insert this value in the delta storage and flag it accordingly, so that



8 Stephan Müller and Hasso Plattner

the merge process does not consider this tuple. Or, to avoid an adaption of the
merge process, we could also maintain a separate data structure that holds the
differential values for all updates or deletes and include these values in the delta
aggregate query.

Min and max functions are not self-maintainable and therefore, for every up-
date or delete, we have to perform additional checks. For deletes, we have to
check if the deleted tuple is a min or max tuple. For updates, we have to check if
the updated value is higher than a cached max aggregate or lower than a cached
min aggregate. If that is the case, the cached min or max aggregate has to be
invalidated and recalculated from the main and delta storage.

Despite the inherent overhead, we believe that this process is viable, because
the percentage of updates and deletes is very low in enterprise applications [16].

3.6 Cache Management Strategies

In order to limit the needed memory space and reduce the inherent compu-
tational overhead of the caching algorithm, we only want to admit the most
profitable aggregate queries to the cache. The query cache management takes
place at query execution time for cache admission and replacement, and dur-
ing the merge process to determine which aggregate queries to incrementally
maintain or to evict from the cache.

We have identified two approaches to determine whether to cache an aggre-
gate query after it has been executed: The first way is to measure the execution
time of the aggregate query and only cache queries that are above a system-
defined threshold. Another way is to calculate the profit of using a cached query
over an on-the-fly aggregation. The definition of the profit for query Qi can
be described with the execution time for the aggregation on the main storage
AggMaini and delta storage AggDeltai divided by the time to access a cached
aggregate query AggCachedi and the execution time of the aggregation on the
delta storage AggDeltai.

profit(Qi) =
AggMaini +AggDeltai
AggCachedi +AggDeltai

(5)

This profit metric will change when the delta storage grows, but it is a good
initial indicator to decide which queries to admit to the cache. When the cache
size reaches a system-defined size limit, we can replace queries with lower profits
or execution times by incomings queries with higher profits or execution times.

During the merge process, it has to be decided which cached aggregate query
to incrementally update or evict from the cache. For this process, we can use
another metric that includes the average frequency of execution λi of query Qi

which is calculated based on the Kith last reference and the difference between
the current time t and the time of the last reference tK :

λi =
Ki

t− tK
(6)

The profit of a query Qi can then be extended as follows:

profit(Qi) =
λi · (AggMaini +AggDeltai)

AggCachedi +AggDeltai
(7)



Aggregates Caching in Columnar In-Memory Databases 9

4 Evaluation

We implemented the concepts of the presented aggregates caching mechanism in
SanssouciDB [17] but believe that an implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [12] or Hyrise [14] will lead
to similar results. Instead of relying on a mixed workload benchmark such as
the CH-benchmark [23], we chose an enterprise application that generates a
mixed workload to the database with real customer data. The identified financial
accounting application covers OLTP-style inserts for the creation of accounting
documents as well as OLAP-style queries to generate reports such as a profit
and loss statement. The inserts were generated based on the original customer
data set covering 330 million records in a denormalized single table. We then
extracted 1,000 OLAP-style aggregate queries from the application and validated
these with domain experts. The query pattern of the aggregate queries contain
at least one aggregate function with optional group by clauses and predicates.
Further, nested subqueries are supported. Mingling both query types according
to the creation times (inserts) and typical execution times (aggregate queries)
yielded a mixed workload which our evaluations are based upon.

4.1 Aggregates Caching

The strength of a caching mechanism is to answer reoccurring queries. To com-
pare our approach to a standard query cache that gets invalidated whenever the
base data changes, we have created a benchmark based on a mixed workload of
10,000 queries with 90% analytical queries and 10% transactional insert queries.
The 9,000 analytical aggregate queries were randomly generated from the 1,000
distinct queries. The average execution time on a 40 core server with 4 Intel
Xeon E” 7 4870 CPU each having 10 physical cores and 1 TB of main memory
when using no cache was 591ms which dropped down to 414ms with a standard
query cache. The average execution time of the aggregates cache was at 74ms,
outperforming the standard query cache by nearly a factor of six.

With an increasing number of distinct aggregate queries, the performance of
the proposed aggregates caching mechanisms decreases linearly. With a work-
load of 100% distinct aggregate queries, where no cache reuse takes place, we
measured the overhead of the aggregates caching mechanism. When caching ev-
ery incoming aggregate query, this overhead was at 7% compared to not using
the cache, mainly due to the execution time of creating the table that holds the
results of the cached aggregate query.

4.2 Aggregates Maintenance Strategies under Varying Workloads

To compare the aggregates caching mechanisms and the involved maintenance
strategy to the strategies described in Section 3.2, we have changed the bench-
mark to varying read/write ratios and a workload of 1,000 queries. A read rep-
resents an analytical query with an aggregation and a write represents an insert
to the base table which contains one million records. The results as depicted
in Figure 3 reveal that when using no materialization (NoMat), the time to
execute the workload decreases with an increasing ratio of inserts because an



10 Stephan Müller and Hasso Plattner

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e 
in

 m
s

Percentage of insert queries

NoMat
EIU
LIU

MU 

Fig. 3. Measuring the total time of a workload with a varying ratio of inserts.

on-the-fly aggregation is more expensive than inserting new values. The EIU
and LIU strategies use materialized aggregates to answer selects and perform
much better with high select ratios than no materialization. EIU and LIU have
almost the same execution time for read-intensive (less than 50% inserts) work-
loads. Reads do not change the base table and the materialized aggregates stay
consistent. Hence, maintenance costs do not dominate the execution time of the
workload and the mentioned strategies perform similarly. With an increasing
number of inserts, the performance of EIU decreases nearly linearly while LIU
can condense multiple inserts within a single maintenance step. The MU main-
tenance strategy, which the proposed aggregates query caching mechanism is
based on, outperforms all other strategies when the workload has more than
40% insert queries. The low performance for read-intensive workloads is based
on the fact, that both, the cached aggregate and the delta storage have to be
queried and even an empty or small delta implies a small overhead with the
current implementation.

4.3 Merge Interval

To validate the cost model for the optimal merge interval, introduced in Sec-
tion 3.3, we have created a benchmark and compared it to our cost model. The
benchmark executed a workload of 200,000 queries with 20% selects and a vary-
ing base table size of 10M, 20M, and 30M records. We have used different merge
intervals with a step size of 3,000 queries starting with 1,000 and compared the
best performing merge interval to the one predicted by our cost model. The re-
sults reveal that the values predicted by our cost model have a mean absolute
error of 10.6% with the remark that our approximation is limited by the chosen
step size.



Aggregates Caching in Columnar In-Memory Databases 11

4.4 Object-Aware Join Operations

To evaluate the overhead of joining two tables when using the aggregates caching
mechanism, we have split the single, denormalized table into a table that con-
tains 30M header records and a table with 311M item records. The workload
as presented in Section 4.1 was adjusted accordingly so that the queries contain
a join operation of the header and items table. With the aggregates caching
mechanism, the time needed to join these two tables, divided in main and delta
partitions, increases with a growing number of records in the delta storage, as
shown in Table 1. Leveraging the business semantics of the chosen financial ap-
plication which states that header and belonging item records are always inserted
together, we can employ the object-aware join which reduces the number of nec-
essary joins from three to one (cf. Section 3.4). This reduces the execution times
significantly by a factor of up to 15.

Table 1. Aggregate cache execution times with join queries

Records in delta Execution times in ms Speedup factor
No join Join Object-aware join

0 2.69 4.01 2.95 1.36
1,000 3.24 61.87 4.39 14.10
10,000 5.32 112.89 7.81 14.46
25,000 8.79 247.29 15.65 15.80
50,000 14.58 362.40 23.85 15.20

5 Conclusions

In this paper, we have proposed a novel aggregate query caching strategy that
utilizes the main-delta architecture of a columnar IMDB for efficient materialized
view maintenance. Instead of invalidating or recalculating the cached query when
the base data changes, we combine the cached result of the main storage with
newly added records that are persisted in the delta storage. We have compared
and evaluated the involved materialized view maintenance strategy to existing
ones under varying workloads. Also, we have created a cost model to determine
the optimal merge frequency of records in the delta storage with the main stor-
age. To optimize the caching mechanism, we have discussed cache admission and
replacement strategies, and an object-aware join mechanism. Further, we have
outlined how physical updates and deletes can be handled efficiently. For evalu-
ation, we have modeled a mixed database workload based on real customer data
and the financial accounting application, revealing that our aggregates cache
outperforms a simple query cache by a factor of six.

One direction of future work is the investigation of transactional properties
when handling updates and deletes. Also, we plan to examine ways to persist the
business semantics for object-aware join operations and to evaluate additional
enterprise applications.

Acknowledgements The authors would like to thank the SAP HANA team
for the cooperation including many fruitful discussions.



12 Stephan Müller and Hasso Plattner

References

1. Plattner, H.: A common database approach for OLTP and OLAP using an in-
memory column database. In: SIGMOD. (2009)

2. Plattner, H.: Sanssoucidb: An in-memory database for processing enterprise work-
loads. In: BTW. (2011)

3. Tinnefeld, C., Müller, S., Kaltegärtner, H., Hillig, S., Butzmann, L., Eickhoff, D.,
Klauck, S., Taschik, D., Wagner, B., Xylander, O., Zeier, A., Plattner, H., Tosun,
C.: Available-to-promise on an in-memory column store. In: BTW. (2011) 667–686

4. Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views: Problems,
techniques, and applications. Data Engineering Bulletin (1995)

5. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.
In: SIGMOD. (1986)

6. Agrawal, D., El Abbadi, A., Singh, A., Yurek, T.: Efficient view maintenance at
data warehouses. In: SIGMOD. (1997)

7. Bello, R.G., Dias, K., Downing, A., Feenan, J., Finnerty, J., Norcott, W.D., Sun,
H., Witkowski, A., Ziauddin, M.: Materialized views in oracle. In: VLDB. (1998)

8. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB. (2007)

9. Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a
warehousing environment. In: SIGMOD. (1995)

10. Agrawal, D., El Abbadi, A., Singh, A., Yurek, T.: Efficient view maintenance at
data warehouses. In: SIGMOD. (1997)

11. Jain, H., Gosain, A.: A comprehensive study of view maintenance approaches in
data warehousing evolution. SIGSOFT (2012)

12. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. In: SIGMOD. (2011)

13. Kemper, A., Neumann, T.: Hyper: A hybrid oltp & olap main memory database
system based on virtual memory snapshots. In: ICDE. (2011)

14. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. In: VLDB. (2010)

15. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: SIGMOD. (2006)

16. Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast Updates on Read-Optimized Databases Using Multi-
Core CPUs. In: VLDB. (2012)

17. Plattner, H., Zeier, A.: In-memory data management: an inflection point for en-
terprise applications. Springer Verlag (2011)

18. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM
Transactions on Database Systems (1979)

19. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary
tables in a warehouse. In: SIGMOD. (1997)

20. Gray, J., Bosworth: Data cube: a relational aggregation operator generalizing
GROUP-BY, CROSS-TAB, and SUB-TOTALS. In: ICDE. (1996)

21. Schaffner, J., Eckart, B., Jacobs, D., Schwarz, C., Plattner, H., Zeier, A.: Predicting
in-memory database performance for automating cluster management tasks. In:
ICDE. (2011)

22. Manegold, S., Boncz, P., Kersten, M.: Generic database cost models for hierarchical
memory systems. In: VLDB. (2002)

23. Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., Kuno,
H., Nambiar, R., Neumann, T., Poess, M., Sattler, K.U., Seibold, M., Simon, E.,
Waas, F.: The mixed workload CH-benCHmark. In: DBTest. (2011)


