Skip to main content

Topological Design of Hinge-Free Compliant Mechanisms Using the Node Design Variables Method

  • Conference paper
Book cover Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8918))

Included in the following conference series:

  • 3421 Accesses

Abstract

The designs of compliant mechanisms using topology optimization typically lead to de facto hinges in the created mechanisms which can cause high stress concentration and are difficult to manufacturing. Topology optimization of hinge-free compliant mechanisms using the node design variables method is proposed. Within defined sub-domain, the projection function independent on element mesh is adopted to represent the relationship of node design variables and node density variables, which can achieve the minimum length scale constraint of the topological solution to avoid generating the de facto hinges. The method of moving asymptotes is adopted to solve the topology optimization problem. The numerical examples are presented to show the feasibility of the approach. It can obtain hinge-free compliant mechanisms which is convenient for manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howell, L.L.: Compliant mechanisms. John Wiley & Sons, New York (2001)

    Google Scholar 

  2. Tian, Y., Shirinzadeh, B., Zhang, D., Zhong, Y.: Three flexure hinges for compliant mechanisms designs based on dimensionless graph analysis. Precis. Eng. 34, 92–100 (2010)

    Article  Google Scholar 

  3. Zhan, J.Q., Zhang, X.M.: Topology optimization of compliant mechanisms with geometrical nonlinearities using the ground structure approach. Chin. J. Mech. Eng. 24, 257–263 (2011)

    Article  Google Scholar 

  4. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidisc. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  5. Zhou, H.: Topology optimization of compliant mechanisms using hybrid discretization model. J. Mech. Design. 132, 111003(1–8) (2010)

    Google Scholar 

  6. Zhou, H., Mandala, A.R.: Topology optimization of compliant mechanisms using the improved quadrilateral discretization model. J. Mech. Robot. 4, 021007(1–9) (2012)

    Google Scholar 

  7. Luo, J.Z., Luo, Z., Chen, S.K., Tong, L.Y., Wang, M.Y.: A new level set method for systematic design of hinge-free compliant mechanisms. Comput. Methods. Appl. Mech. Eng. 198(2), 318–331 (2008)

    Article  MATH  Google Scholar 

  8. Chen, S.K., Wang, M.Y., Liu, A.Q.: Shape feature control in structural topology optimization. Comput. Aided. Design 40, 951–962 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wang, M.Y., Chen, S.K.: Compliant mechanism optimization: analysis and design with intrinsic characteristic stiffness. Mech. Based. Design. Struct. 37, 183–200 (2009)

    Article  Google Scholar 

  10. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phy. 229, 2697–2718 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhu, B.L., Zhang, X.M., Wang, N.F.: A new level set method for topology optimization of distributed compliant mechanisms. Int. J. Numer. Methods. Eng. 91, 843–871 (2012)

    Article  Google Scholar 

  12. Zhu, B.L., Zhang, X.M., Wang, N.F.: Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method. Struct. Multidisc. Optim. 47, 659–672 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Matsui, K., Terada, K.: Continuous approximation of material distribution for topology optimization. Int. J. Numer. Methods. Eng. 59, 1925–1944 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guest, J.K., Prevos, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods. Eng. 61, 238–254 (2004)

    Article  MATH  Google Scholar 

  15. Chau, H.L.: Achieving minimum length scale and design constraint in topology optimization: A new approach. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana (2006)

    Google Scholar 

  16. Zhou, M., Rozvany, G.: The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput. Methods. Appl. Mech. Eng. 89, 197–224 (1991)

    Article  Google Scholar 

  17. Svanberg, K.: The method of moving asymptotes: A new method for structural optimization. Int. J. Numer. Methods. Eng. 42, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  18. Nishiwaki, S., Frecher, M.I., Min, S., Kikichi, N.: Topology optimization of compliant mechanisms using the homogenization method. Int. J. Numer. Methods. Eng. 42, 535–559 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhan, J., Yang, K., Huang, Z. (2014). Topological Design of Hinge-Free Compliant Mechanisms Using the Node Design Variables Method. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8918. Springer, Cham. https://doi.org/10.1007/978-3-319-13963-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13963-0_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13962-3

  • Online ISBN: 978-3-319-13963-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics