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Abstract. Coronary computed tomography angiography (CCTA) al-
lows for non-invasive identification and grading of stenoses by evaluating
the degree of narrowing of the blood-filled vessel lumen. Recently, meth-
ods have been proposed that simulate coronary blood flow using com-
putational fluid dynamics (CFD) to compute the fractional flow reserve
non-invasively. Both grading and CFD rely on a precise segmentation
of the vessel lumen from CCTA. We propose a novel, model-guided seg-
mentation approach based on a Markov random field formulation with
convex priors which assures the preservation of the tubular structure of
the coronary lumen. Allowing for various robust smoothness terms, the
approach yields very accurate lumen segmentations even in the presence
of calcified and non-calcified plaques. Evaluations on the public Rotter-
dam segmentation challenge demonstrate the robustness and accuracy
of our method: on standardized tests with multi-vendor CCTA from 30
symptomatic patients, we achieve superior accuracies as compared to
both state-of-the-art methods and medical experts.
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1 Introduction

Coronary artery disease (CAD) is a leading cause of death in the western world
according to the American Heart Association [2]. CAD is indicated by the build-
up of coronary plaque which is accompanied by an inflammatory process in the
vessel wall. It may result in a local narrowing of the lumen, known as stenosis,
which in turn may cause an ischemic heart failure.

The diagnostic standard in current clinical practice is invasive coronary an-
giography (ICA) which requires catheterization. Besides the degree of stenosis,
pressure differences across lesions can be measured under induced hyperemia.
Fractional flow reserve (FFR) is computed as the pressure ratio and has been
shown to be indicative for ischemia-causing stenoses. However, the procedure is
costly and involves considerable risks and inconvenience for the patient.

∗The author has been with Siemens Corporate Technology for this work.
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Alternatively, with coronary computed tomography angiography (CCTA) a
volumetric image of the contrasted coronary vessels is acquired which allows for
a non-invasive identification and analysis of coronary stenoses. Usually, stenoses
with grades (degree of anatomical obstruction) above 50% are considered hemo-
dynamically relevant. Recently, the non-invasive computation of FFR has been
proposed as an alternative to ICA. This is achieved by simulating coronary blood
flow using computational fluid dynamics (CFD) based on lumen geometry ex-
tracted from CCTA. Latest studies show that CFD provides a better accuracy in
identifying ischemia-causing stenoses than the anatomical grade [8]. Both grad-
ing and CFD heavily depend on the accuracy of the extracted coronary lumen.
As manual segmentation is very time-consuming and prone to high variability
among medical experts, automatic and robust methods are desirable.

There exists a substantial body of research on vessel extraction and segmenta-
tion algorithms [5]. For brevity, we only mention related methods and approaches
that have been applied to coronary artery segmentation using the standardized
evaluation framework proposed by Kirişli et al. [4]. Previous approaches tend to
focus on healthy vessels and often fail to correctly segment the lumen in diseased
vessels, i.e. in the presence of calcified, non-calcified and mixed plaques. This can
be partially accounted for by explicitly modeling or suppressing calcified plaque
before segmentation [7,9,10]. Many of the proposed approaches also involve post-
processing and refinement of the segmentation results for fixing artifacts. Shazad
et al. [10], for example, propose a voxel-based graph-cut segmentation followed
by a radial resampling and smoothing which patches non-tubular segmentation
results (e.g. dissected lumen segmentations) and artifacts due to the voxel-level
accuracy. A shape prior as included in the model-based level set approach pro-
posed by Wang et al. [12] helps to avoid leakages and allows for a robust lumen
extraction even in low contrast (ambiguous) regions. Similarly, Mohr et al. [9]
employ a level-set approach based on results from a tissue classification and cal-
cium segmentation step. Lugauer et al. [7] apply boundary detection and calcium
removal within the segmentation approach of Li et al. [6] which strictly enforces
topological constraints. However, this closed-set formulation only allows to apply
a particular (“ε-insensitive”) smoothness prior, which is not well-suited for sup-
pressing the high amount of noise encountered in coronary lumen segmentation.
Post-smoothing of the segmentation results is thus suggested in [7].

For an optimal accuracy, all prior information should be considered by the
segmentation approach and post-processing should not be required. We propose
a method that addresses the above mentioned issues by (1) explicitly accounting
for calcified-plaque, (2) enforcing tubular structure, and (3) providing robust
surface regularization suitable for coronary lumen segmentation by adopting a
general Markov random field (MRF) [3] formulation to tubular segmentation.

2 Method

A set of centerlines (CTLs) approximately describing the curve of the coronary
artery tree initializes the proposed surface extraction method. The lumen ge-
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Fig. 1: (a) Radial candidate positions along rays in cross-sectional slices orthogonal to
the given centerline. (b) Associated boundary probabilities for rays within a slice. (c)
Cylindrical element of a tubular MRF graph where each node represents the selection
of a candidate position along a certain ray and edges implement smoothness priors.

ometry is modeled on the basis of generalized cylinders with radially varying
contours along the given centerline for each vessel segment. A discrete number
of radial candidate positions along equiangular rays in orthogonal slices (Fig. 1a)
are constructed and represented as random variables of a corresponding MRF
graph (Fig. 1c). Using learning-based boundary detectors (Fig. 1b) and robust
semi-convex regularization terms, this formulation allows for an optimal sur-
face segmentation within polynomial time using well-known min-cut/max-flow
solvers. We first describe the learning-based boundary detection model, followed
by details on the MRF-based optimal surface generation.

2.1 Detection Model

The probability of a lumen wall is estimated in every cross-sectional slice for a
vessel segment comprising Z slices using a fixed number of A equiangular rays
with R equally-spaced (δr) radial candidate positions. While fixed terms based
on image gradient and structural information could be used [6], we propose a
learning-based probabilistic estimate based on steerable features. These are a
collection of low-level image features sampled on a ray-oriented pattern [13].
Probabilistic boosting trees [11] are trained on manually segmented lumen con-
tours by bootstrap aggregation and tested at every of the Z · A · R candidate
positions to estimate the probability PB(z, a, r) of lying on the lumen boundary.
In order to improve the detection of boundaries from diseased lumen, the same
amount of training samples were randomly selected from healthy and diseased
(calcified or soft-plaque) lumen tissue. A calcium removal step, as proposed in [7],
ensures the exclusion of calcified plaque from the segmented lumen by modify-
ing the boundary probabilities. Essentially, every ray is analyzed for intersections
with calcium and, if found, boundary probabilities are exponentially damped at
these positions in outbound direction.

Since vessel segments were processed in parallel for performance reasons, en-
forcing matching contours at vessel furcation points would require a tree topology
scheduled processing which has been omitted for simplicity.
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2.2 Optimal Surface Generation

Finding the lumen surface is now cast as a combinatorial optimization problem:
for every ray an optimal candidate position has to be selected. The trade-off
between image-based likelihood (w.r.t. the boundary probabilities) and the prior
assumption that the true lumen surface is smoothly varying, is best expressed
with a first order Markov random field.

MRF Formulation. Let G = (V,E) denote an undirected graph with a set of
vertices V and undirected edges E ⊂ V × V . Each vertex v ∈ V is associated
with a multivariate random variable Xv = Xz,a = r where r ∈ [1 . . . R] describes
its state while a and z denote the angular position and the slice of a certain
ray. Edges are constructed according to the generalized cylinder model within
and across contour slices as depicted in Fig. 1c. For computational efficiency, we
propose to use a first order MRF energy formulation as in Ishikawa [3]

E(X) =
∑

(u,v)∈E

γuvg(Xu −Xv) +
∑
v∈V

h(v,Xv), (1)

where g(·) is a convex function of the label difference of vertex u and v. The first
sum represents the smoothness prior, whereas the second sum, the data term,
incorporates the observations (i.e. the boundary likelihood). The constant edge
weight factors γuv have been used to trade between intra-slice γa and inter-slice
smoothness γz. Energy functions of this form can be minimized exactly within
polynomial time by a min-cut/max-flow algorithm [3]. As convex priors that
penalize label differences d = Xu −Xv across edges, we considered

g(d) = β|d| (L1-norm) (2)

g(d) = β

{
0 |d| ≤ α
(|d| − α) |d| > α

(ε-insensitive for β � 1) (3)

g(d) = β

{
(d/α)2 |d| ≤ α
2|d/α| − 1 |d| > α

(Huber) (4)

with threshold and slope parameters α and β (see Fig. 4a). While any kind of
convex function could be used, the above three are especially well suited due to
their robust nature and computational advantages which will be discussed later.

Flow Graph Construction. As shown in [3], a transformation of the undi-
rected graph G into a directed graph H (flow graph) results in an s-t min-cut
problem which can be solved exactly by min-cut/max-flow algorithms. The flow
graph H = (VH , EH) is derived from G such that for any vertex v ∈ V , R − 1
vertices Vz,a,r ∈ VH are created. Two special vertices s, t mark the source and
the sink of the flow graph summing up to Z ·A · (R− 1) + 2 vertices in total. H
consists of directed edges (u, v) ∈ EH (from vertex u to v) with positive capacity
c(u, v).



5

The graph is constructed in a way such that every s-t cut in H (a cut sep-
arating source and sink) corresponds to a configuration (variable assignment)
X ∈ X of the MRF and the cost of the cut—sum of all edge capacities c(u, v) in
the cut—is the cost of this configuration according to (1). Note that, differing
from [3], we omit a layer of superfluous vertices in our description (by merging
data- and constraint-edges of the first of R layers which connects the source and
Z ·A vertices).

Vertex
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Fig. 2: Exemplary 2D flow graph for a single slice (a = 6 rays, r = 4 radial can-
didates) using the L1-norm prior(2). The cut represents an MRF configuration and,
thus, uniquely describes a particular contour (xz,1−3 = 2, xz,4−5 = 3, xz,6 = 4). By
analogy, a cut plane in the 3D flow graph defines a vessel surface geometry.

Potentials of the MRF are incorporated using three types of edges. Data
Edges implement the observations h(v,Xv) by sink-directed (vertical) edges with
capacities equal to the negative log-likelihood of the boundary probabilities,
while Constraint Edges impose a unique assignment by source-directed edges
with infinite capacities. Prior Edges incorporate the prior terms γuvg(Xu−Xv)
of (1). Their capacities are second-order differences of the convex prior function
(2)-(4) and are computed as

cap(d) =
g(d+ 1)− 2g(d) + g(d− 1)

2
, (5)

where d = r1−r2 is the radial offset between vertices that represent the variables
Xz,a1

= r1 and Xz,a2
= r2, i.e. the edge (Vz,a1,r1 , Vz,a2,r1) in H (see Fig. 2 for

an exemplary construction in 2D). Prior edges must be considered in two direc-
tions and potentially between all pairs of vertices in two neighboring columns.
But since edges with capacity cap(d) = 0 can be omitted, prior terms with
linear ranges result in fewer flow graph edges and, ultimately, in a faster min-
cut/max-flow computation. The proposed prior functions (2)-(4) exhibit linear
ranges (Fig. 4a) of varying extent. That means, the computational complexity of
the proposed priors tends to increase from L1-norm over ε-insensitive to Huber
dependent on the function parametrization (α).
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Fig. 3: Prior edges are only added for label differences with non-zero second-order
differences of the prior function. Using the L1-norm and ε-insensitive functions yields
flow graphs with varying complexity. The resulting costs for label variations (difference
of 0 and 2) are visualized by two example cuts. For clarity, only prior edges are drawn.

Fig. 3 compares the flow graphs resulting from the L1-norm (2) and the ε-
insensitive (3) priors for an MRF edge between Xz,6 and Xz,1. The L1-norm
prior induces costs that grow linearly with the label difference. While there is no
penalty difference for the ε-insensitive (ε = 2) prior between a label difference
of d = 2 (blue) and d = 0 (green), higher label differences would induce higher
costs. Thus, choosing the slope parameter β sufficiently large (to dominate any
data likelihood term) yields a regularizer like the one implicitly assumed by Li
et al. [6]. The impact of that choice on the segmentation result is visualized
in Fig. 4. While the L1-norm and Huber priors yield smooth, nearly circular
contours, applying the ε-insensitive prior results in contours which are highly
varying and more susceptible to noise (data-affine).
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Fig. 4: (a) Different convex penalty functions can trade noise-robust (b) & (c) for data-
affine (d) segmentations (right half colored with the boundary likelihood in blue-to-red).

3 Experimental Results

The segmentation accuracy of the proposed method was tested using the pub-
licly accessible standardized coronary artery evaluation framework which allows
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(a) (b)

Fig. 5: (a) Surface visualization of the segmented left main coronaries with the LCX
and LAD branch of the training dataset #10. (b) The upper part of the LAD is affected
by mild mixed plaque while the lower end is narrowed by moderate soft-plaque (CPR,
top). (b) Cross-sectional views with expert annotations in green, red and yellow along
with our segmentation (blue) through mixed (1,2) and soft plaque (3,4). The proposed
method effectively minimizes the variability within expert annotations.

for the comparison with current segmentation algorithms on 48 multi-protocol/-
vendor CTA image volumes [4]. Annotations by three medical experts were pro-
vided for the first 18 training datasets which were used for training of the bound-
ary detectors. The hyper-parameters were empirically chosen and in particular
the Huber function parameters were a trade-off between graph-cut-induced com-
putation time and accuracy w.r.t. an independent set of reference annotations:
slice distance 0.3 mm, A = 64 rays with R = 50 candidates at δr = 0.1 mm,
Huber prior (4) with α = β = 1 and γa = 0.5, γz = 0.1. The graph-cut solver
was implemented in C++ as described in the original work [1]. We used CTLs
obtained from the automatic tracking algorithm described by Zheng et al. [14].

Qualitative results are presented for pathological data from the training set
in Fig. 5 and from the testing dataset in Fig. 6. Fig. 5a shows a surface geometry
view of the left coronaries using the proposed segmentation while Fig. 5b shows a
CPR of the—by mixed and soft plaque affected—LAD along with cross-sectional
views through these lesions. The expert contours which were annotated from
the same set of centerlines vary considerably while our contours (blue) rather
minimizes the variability towards a consensus segmentation (as all annotations
were used for training). In Fig. 6 segmented vessels of two patients with calcified
and non-calcified plaques are shown. The lumen is smoothly segmented while
calcified plaques are precisely circumscribed.

In Table 1, the maximum/mean surface distance (MAXSD/MSD) and the
volumetric overlap (DICE) report the accuracies separately for healthy (H) and
diseased (D) arteries averaged over the 30 testing/18 training datasets (hereafter
we refer to testing results). The evaluation framework computes these measure-
ments separately w.r.t. annotations of the three medical experts and averages
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Fig. 6: Segmented lumen of calcified arteries for two patients as obtained by the pro-
posed algorithm visualized from different projections (left: CPR, right: cross-section).

them [4]. The proposed method achieves the best rank1 compared to all other
automatic methods and ranks higher than two of the three medical experts.
Among the automatic methods it performs best (results marked bold) on dis-
eased vessel segments for all error measures2. Since only the main vessels (LM,
LAD, RCA, LCX) were compared with the reference, a labeling mismatch be-
tween our applied CTL tracing and the reference causes a large error bias for
datasets (20, 28, 30, 31, 32, 41, 47) (can partly be seen in Fig. 7) and deteriorates
the MSD and MAXSD error measures in particular for the healthy vessels. Our
training results are consistent (only slightly better) with those for testing which
indicates that no over-fitting occurred.

While manual segmentation requires substantial expertise and time and is
prone to high inter- and intra-user variability, our automatic method yields a
robust segmentation in under a minute per patient. The box-and-whiskers plots
in Fig. 7 show that our method performs equal or even better than the best
medical expert on most datasets. Apparently, the consensus learned from the
annotations of the three experts yields superior performance when compared on
the testing data. Our method effectively averages individual annotation biases
during training and, thus, avoids the considerable inter-user variability seen in
the expert annotations.

1Rank denotes the performance in comparison to all other participants where a rank
of 1.0 means that this method yields the best measures for all subjects and vessels.

2Latest results can be found at: http://coronary.bigr.nl/stenoses/results/results.php



9

Table 1: Three error measures are reported separately for diseased (D) and healthy
(H) vessels (boldface marks best among automatic methods). Rank lists the overall
segmentation ranking compared to all participating methods (w.r.t. testing results).
Measures are averaged over 30 testing (18 training) datasets (listed testing/training).

Method Rank DICE DICE MSD MSD MAXSD MAXSD
avg. ⇓ D [%] H [%] D [mm] H [mm] D [mm] H [mm]

Expert3 3.5/4.5 79/76 81/80 .23/.24 .21/.23 3.00/3.07 3.45/3.25

Proposed 3.8/4.0 76/75 75/77 .32/.27 .51/.32 2.47/1.96 3.67/2.79

Expert1 4.4/5.4 76/74 77/79 .24/.26 .24/.26 2.87/3.29 3.47/3.61

Lugauer [7] 4.5/5.2 74/72 73/74 .35/.28 .55/.35 2.99/2.02 3.73/2.88

Mohr [9] 4.5/5.6 70/73 73/75 .40/.29 .39/.45 2.68/1.87 2.75/3.73

Expert2 6.1/7.3 65/66 72/73 .34/.31 .27/.25 2.82/2.70 3.26/3.00

Shahzad [10] 6.4/7.9 65/66 68/70 .39/.37 .41/.32 2.73/2.49 3.20/3.04

Wang [12] 6.9/9.0 69/68 69/72 .45/.43 .55/.56 3.94/4.06 6.48/5.23

4 Conclusion

A novel method for segmenting the lumen of the coronary arteries in computed
tomography angiography has been proposed. While enforcing a tubular struc-
ture of the segmentation, the approach allows for a flexible choice of robust
smoothness priors. Combined with a learning-based boundary detection, excel-
lent performance is achieved on public challenge data [4]. Our analysis shows
that the automatic segmentation results are as accurate as those from medical
experts. While the proposed method is evaluated for coronary vessels only, it
is readily applicable to other tubular structures. An extension to evolving arbi-
trary surfaces under local smoothness constraints is easily possible. The precise
segmentation of our new approach will improve automatic stenosis detection and
enable an improved non-invasive simulation of coronary blood flow, which is left
to be evaluated in future work.
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