Document downloaded from:

http://hdl.handle.net/10251/72831
This paper must be cited as:

Vidal Oriola, GF. (2013). Towards Erlang Verification by Term Rewriting. En Logic-Based
Program Synthesis and Transformation. Springer. 109-126. doi:10.1007/978-3-319-14125-
17.

The final publication is available at

http://link.springer.com/chapter/10.1007/978-3-319-14125-1 7

Copyright gpringer

Additional Information

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-14125-
17

Towards Erlang Verification by Term Rewriting*

German Vidal

MiST, DSIC, Universitat Politecnica de Valencia
Camino de Vera, s/n, 46022 Valencia, Spain
gvidal@dsic.upv.es

Abstract. This paper presents a transformational approach to the ver-
ification of Erlang programs. We define a stepwise transformation from
(first-order) Erlang programs to (non-deterministic) term rewrite sys-
tems that compute an overapproximation of the original Erlang program.
In this way, existing techniques for term rewriting become available. Fur-
thermore, one can use narrowing as a symbolic execution extension of
rewriting in order to design a verification technique.

1 Introduction

The concurrent functional language Erlang [2] has a number of distinguishing
features, like dynamic typing, concurrency via asynchronous message passing
or hot code loading, that make it especially appropriate for distributed, fault-
tolerant, soft real-time applications. The success of Erlang is witnessed by the
increasing number of its industrial applications. For instance, Erlang has been
used to implement Facebook’s chat back-end, the mobile application Whatsapp
or Twitterfall—a service to view trends and patterns from Twitter—, to name
a few. The success of the language, however, will also require the development
of powerful testing and verification techniques.

In this work, we present a transformational approach to the verification of
Erlang programs. We define a stepwise transformation from (first-order) Erlang
programs to (non-deterministic) term rewrite systems that compute an overap-
proximation of the original Erlang programs. In contrast to direct approaches,
one can reuse the large body of techniques and tools for term rewriting in or-
der to design a verification tool for Erlang. The transformation, however, is far
from trivial. For instance, [16] already introduced a translation from Erlang to
rewriting logic [14], a unified semantic framework for concurrency. In this case,
though, the aim was to provide an executable specification of the language se-
mantics (as a basis for the development of verification tools). Therefore, in this
approach, Erlang programs are seen as data objects manipulated by a sort of in-
terpreter implemented in rewriting logic. In contrast, our aim is to produce plain
rewrite systems that keep the structure of the original Erlang program as much
as possible, so that they can be accurately analyzed using existing techniques.

* This work has been partially supported by the Generalitat Valenciana under grant
PROMETEO/2011/052.

To be precise, we produce a number of rewrite rules—a constant factor of the
size of the original program—that mimic the reductions of the original Erlang
programs, and only a few fixed number of state reductions rules that deal with
global concurrency actions (process spawning, message sending and receiving,
etc.), which are common to every transformed system. In particular, if an Er-
lang program contains no concurrency actions, we produce a purely functional
rewrite system so that the state reductions rules are not necessary.

The usefulness of our approach is illustrated by using it to verify safety prop-
erties with a symbolic execution extension of rewriting. Luckily, such an extension
already exists and has been extensively studied. It is called narrowing [20], and
represents a conservative extension of rewriting to deal with non-determinism
and logic variables—representing missing information. In fact, the rewrite sys-
tems produced by our transformation are steadily executable in a so-called func-
tional logic language like Curry [11], which opens up many possibilities for verify-
ing safety properties. Furthermore, there already exist well studied subsumption
and abstraction operators for guaranteeing the termination of narrowing while
still producing a sound overapproximation (see, e.g., the narrowing-driven par-
tial evaluation approach of [1]). Therefore, one could define a narrowing-based
model checker by adapting this partial evaluation framework—though reducing
the number of states to avoid a combinatorial explosion is still a challenge.

The paper is organized as follows. Section 2 presents the syntax and se-
mantics of the considered subset of Erlang. Section 3 introduces our stepwise
transformation from Erlang programs to term rewriting systems. We illustrate
the usefulness of the transformation for program verification in Section 4. Fi-
nally, Section 5 presents some related work and Section 6 concludes and points
out some directions for further research.

2 Erlang Syntax and Semantics

In this section, we present the basic syntax and semantics of a significant sub-
set of Erlang. In particular, we consider a simplified version of the language
where some features are excluded (mainly higher-order calls, predefined func-
tions, modules and exceptions) and some other features are slightly simplified.
This is similar to the language considered by Huch [12] or Noll [16], and still in-
cludes the main features of Erlang: pattern matching, process creation, message
sending and receiving, etc.

The basic objects of the language are variables (denoted by X,Y,...), atoms
(denoted by a, b, ...), process identifiers —pids— (denoted by p, p’, ...), construc-
tors (which are fixed in Erlang to lists, tuples and atoms), and defined functions
(denoted by f/n,g/m,...). The syntax for programs and expressions obeys the
rules shown in Figure 1.

Programs are sequences of function definitions. Each function f/n is de-
fined by a rule f(X3,...,X,) — s. where Xy,...,X,, are distinct variables and
the body of the function, s, can be an expression, a sequence of expressions,
a case distinction, message sending (e.g., main ! {hello, world} sends a message

pgm == f(X1,...,X5) — s. | pgm pgm
ErlangExp > s i=¢e | s1,s2 | case e of clauses end | e;!es
| receive clauses end | pat =e | pat = self
| pat = spawn(f(e1,...,en))
f

Exp 3 e = fler,.. en) | [ealen] | [] | {er,oiven} |2 | p | X
clauses ::= pat1 — S1;...;pat, — Sn
Pat > pat ::= [pati|patz] | [] | {pati,...,patn} | a | p | X
Value 3 v = [vifva] | [] | {v1,---,vn} | a | P

Fig. 1. Erlang syntax rules

{hello, world} to the process with pid main) and receiving (e.g., receive {A, B} —
A end reads a message from the process queue that matches the pattern {A, B}
and returns A), pattern matching where the right-hand side can be an expres-
sion, the primitive self (that returns the pid of the current process) or a process
creation (e.g., spawn(foo(1,2)) creates a new process! initialized to foo(1,2)).
Expressions can contain function calls, lists, tuples, atoms, pids and variables.
Patterns are made of lists, tuples, atoms, pids and variables. Values are similar
to patterns but cannot contain variables. Note that we only allow occurrences of
self and spawn in the right-hand side of pattern matching. This is not a serious
restriction since occurrences in other positions can be flattened by introducing
fresh variables and pattern matching.

The domain of pids, Pid, and that of atoms, Atom, must be disjoint. For
simplicity, we consider that pids are natural numbers starting from 1.

Ezxample 1. Consider the following program which simply creates a new process
and sends a message. The new process receives the message and does the same.
Finally, the third process receives the message and returns ok.

procl — Pidl = spawn(proc2), proc3 — receive
Pidl!a. X — ok
proc2 — Pid2 = spawn(proc3), end.
receive
X - Pid2!' X
end.

In the past, there have been several attempts to formalize the semantics of Erlang
(e.g., [5,6,12,15-17,21]). In the following, we present an operational semantics
for Erlang programs that mainly follows the approach of [12].

Erlang states are denoted by the parallel composition of their processes,
where each process (p, e, q) consists of a process identifier, an expression and a
message queue: Proc ::= Pid x ErlangExp x Value®. An initial state has the form
(p, f(v1,...,v),[]) where f is a defined function, vy, ..., v, are values, p is some

! Note that we consider spawn(foo(1,2)) rather than the original Erlang notation
spawn(foo, [1,2]) which is sensible since we do not allow higher order functions in
this paper.

(sea) (p,Clv,s],q) & IT — {(p,C|s],q) & II

(self)

(p, C[self],q) & I — (p,C[pl, q) & II

(fun) f(Xq,.., Xn) — 5. €prog
P, Clf(vi,- .., va)],a) & I — (p, C[5{X1 — v1,..., Xu > vn}],q) & 1T

do. pato = v

match
(mateh) (b, Clpat =],4) & 1T — (b, (Clolyo,a) & 1T
(case) Ji. pat;o = v for some o A Ac’. patjo’ = v for any j < i
(p, Clcase v of pat1 — s1;...;pat, — s, end],q) & II — (p, (C[s:])o,q) & II
(spawn) p’ is a fresh pid
<p7 C’[spawn(f(vh sy ’Un))L Q> &Il — <p7 C[p7]7 q>7 <p’7 f(vlv ER 71}”), H> & 1T
(send) w=p € Pid
(p, Clor tw2],q) & (p',5,¢') & I — (p, Clua], q) & (p',e,¢'++[va]) & 1T
vy, is the first message such that
(receive) (Fi. pat;oc = v for some o A Ao’. patjo’ = v for any j < 1)
receive
(p, C[receive pati — s1;...;pat, — sn end], [v1,..., V%, ..., Um]) & IT
— (p, (C[si])o, [v1, - -+, Vk—1, Vg1, - - - s Um]) & 1T

Fig. 2. Basic Erlang Semantics

initial pid and [] denotes an empty message queue; we will use lists to denote
message queues, where [] denotes an empty list and (z : xs) denotes a list with
head z and tail zs. A final state has the form (pi,v1,q1) & -+ & (Pn,Vn, Gn)
where vy, ..., v, are values and “&” denotes the parallel composition operator.
Computations start with an initial state and proceed until a final state is reached
or the computation is blocked (otherwise, it proceeds forever).

The operational semantics is formalized by a state transition relation —:
State x State. Erlang follows a leftmost innermost operational semantics. Every
expression can be decomposed into a context C[] with a (single) hole and a
subexpression s where the next reduction can take place:?

C:=1] | C/s | case C of clausesend | Cle | v!C | pat=C
| Spawn(f(vl,...,Ui,C,€i+2,...,€n)) I f(vla"'aviacaei+27~-~aen)
| [v1,...,0;,Cle] | {v1,...,0;,C ei49,...,en}

The definition of the operational semantics is shown in Figure 2. Let us briefly
explain the rules of the semantics:

— States are denoted by sequences of processes of the form I' = (p,e,q) & IT
where IT denotes a (possibly empty) parallel composition of processes. The

2 This is similar to the reduction contexts of [8] and allows us to deterministically
identify the next expression to be reduced.

(1, procl, [])
—fun (1, Pidl = spawn(proc2), Pidl ! a,[])
—pawn (1, Pidl = 2, Pidl!a,[]) & (2,proc2,[])
—match (1,2,21a,[]) & (2,proc2,[])
—eq (1,2'a,[]) & (2,proc2,[])
—n (1,214, []) & (2, Pid2 = spawn(proc3), receive X — Pid2 ! X end,[])
—epawn (1,218, []) & (2, Pid2 = 3, receive X — Pid2 ! X end,[])
& (3,proc3,)
— match (1,2'a,[]) & (2,3, receive X — 3! X end,[])
& (3,proc3, [])
—match (1,218, []) & (2,receive X — 3! X end,[]) & (3,proc3, [])
—end (1,8,[]) & (2,receive X — 3! X end, [a]) & (3,proc3,[])
T receive (17 a, H> & <27 31a, H> & <3,pTOC3, H>
—an (L, []) & (2,3 1a,[]) & (3, receive X — ok end, [])
—send (L,a,[]) & (2,a,[]) & (3, receive X — ok end, [a])
—receive <1’ a, H) & <27 a, H> & <370k’ H>

Fig. 3. Computation for the program of Example 1

order of processes is not relevant here (i.e., (p,s,q) might appear in any
position within the pool of processes I').

— Rule self reduces the predefined atom self to the process identifier of the
current process.

— Rule fun performs a function unfolding, where 5 denotes an expression s
in which the free variables of patterns (if any) have been replaced by fresh
variables to avoid name conflicts.

— Rules match and case deal with pattern matching. In both cases, we assume
o to be the minimal matching substitution and restricted to the variables of
the pattern. For case expressions, we should select the first matching branch.
Observe that we do not have rules for pattern matching failures, which are
considered program errors and left out of this work.

— Rule spawn creates a new process with a fresh pid.

— Finally, rules send and receive deal with message passing and receiving. Note
that receive should select the first message in the process queue that matches
some pattern.

The semantics is clearly deterministic in the sense that, given a single process,
there is only one applicable rule. However, we can define different strategies
for selecting processes when there are more than one reducible process. In this
paper, a fair selection strategy is assumed (e.g., a round-robin scheduling).

Ezxample 2. Consider again the program of Example 1. A computation with this
program is shown in Figure 3, where the reduced subexpression is underlined for
clarity; moreover, we label the transitions with the applied rule. Therefore, the
computation terminates and reaches a final state.

3 From Erlang Processes to Term Rewriting

In this section, we present a stepwise transformation from Erlang programs to
term rewrite systems.

3.1 Term Rewriting

Here, we recall some basic notions and notations of term rewriting (see, e.g.,
[4] for more details). A signature F is a set of function symbols. Given a set of
variables V with FNV = (), we denote the domain of terms by 7 (F, V). Positions
are used to address the nodes of a term viewed as a tree. A position p in a term ¢
is represented by a finite sequence of natural numbers, where € denotes the root
position. We let t|, denote the subterm of ¢ at position p and t[s], the result
of replacing the subterm t|, by the term s. Var(t) denotes the set of variables
appearing in t. A substitution o : V +— T(F,V) is a mapping from variables to
terms such that Dom(c) = {x € V | # o(x)} is its domain. Substitutions
are extended to morphisms from 7 (F,V) to 7(F,V) in the natural way. We
denote the application of a substitution ¢ to a term ¢ by to rather than o(¢).
The identity substitution is denoted by id.

A set of rewrite rules [— r such that [is a nonvariable term and r is a term
whose variables appear in [is called a term rewriting system (TRS for short);
terms [and r are called the left-hand side and the right-hand side of the rule,
respectively. We restrict ourselves to finite signatures and TRSs. Given a TRS R
over a signature F, the defined symbols Dx are the root symbols of the left-hand
sides of the rules and the constructors are Cr = F \ Dg. Constructor terms of
R are terms over Cr and V. We sometimes omit R from Dx and Cy if it is clear
from the context.

For a TRS R, we define the associated rewrite relation —5 as follows: given
terms s,t € T(F,V), we have s —x t iff there exists a position p in s, a rewrite
rule I — r € R and a substitution ¢ with s|, = lo and t = s[ro],; the rewrite
step is often denoted by s —, ;. t to make explicit the position and rule used
in this step. The instantiated left-hand side [o is called a redex.

A derivation is a (possibly empty) sequence of rewrite steps. Given a binary
relation —, we denote by —* its reflexive and transitive closure. Thus ¢t —% s
means that ¢ can be reduced to s in R in zero or more steps.

3.2 The Transformation
Our transformation is driven by the following principles:
— We try to keep the structure of the original Erlang programs as much as
possible. In particular, an Erlang program without concurrent features would

be mostly untouched. This is useful to keep the analyses performed on the
transformed rewrite system as accurate as possible.

— Several Erlang constructs cannot be translated with the same semantics to a
rewrite system (unless a number of complex functions are instroduced). This
is the case, for instance, of a case expression. While Erlang only considers the
first matching clause, our translation will produce an auxiliary function that
considers all matching clauses. Therefore, in general, we will produce rewrite
systems that represent overapproximations of the original Erlang programs.

— Loosely speaking, our transformation replaces every concurrent operator
with a new constructor: SPAWN, SEND, RECEIVE and SELF. Then, we de-
fine a set of rewrite rules that deal with states and take care of concurrent
actions. The challenge here is to always have these constructors in a topmost
position of a process so that a rule can be applied without requiring complex
context rules (e.g., as in [16]).

For this purpose, we introduce some auxiliary functions that can be seen as
continuations of the original functions (see below).

We formalize our transformation [| as follows. Given an Erlang program P, we
have:

[Pl = {f(z1, .. 2n) — [s]" | f(a1,...,20) — 5. € P}

where V = {x1,...,2,} N FVar(s) is used for introducing auxiliary functions
with appropriate parameters. In the following, FVar(s) denotes the free variables
of s. Now, we define the transformation function [] on every program construct.

Case Expressions. Let us first consider the transformation of case expressions.
This can easily be transformed by introducing an auxiliary function as follows:

[case e of p1 — $1,...,pn — Sp end.]]V = f(e,V)

where f is a fresh function symbol and V denotes a list with the variables of set
V. Here, the auxiliary function f is defined as follows:

F(p1V) = [s1]"

0 7) = [5]""

where V; = Var(f(p1,V)) N FVar(s;), i = 1,...,n. When the case expression is
not the last statement in the right-hand side, we proceed analogously as follows:
[case e of p1 — s1,...,Pn — Sn end,s.]]v = f(e,V)

where the auxiliary function f is now defined by

Fp1,V) = [s1,5]"

f(pnvv) = [sn, S-HVH

where V; = Var(f(p1,V)) N FVar(s;,s),i=1,...,n.

Observe that this transformation implies that, in general, the transformed
function will compute an overapprozimation of the original Erlang program when
there are overlapping patterns (since rewriting considers all matching patterns).

Message Passing. In this case, we transform an expression p ! e using a new
constructor SEND(4, p, e, vars), where i is a unique identifier and vars is a list of
variables. We distinguish the following cases:

[er!es]" = SEND(i, e1, €3, []) with send(i,v,) — v

where i is a fresh constant symbol (e.g., a number), v is a fresh variable, and
“” denotes an anonymous variable (i.e., a variable whose name is not relevant
because it does not occur in the right-hand side).

In contrast to ordinary functions and the auxiliary functions introduced when
transforming a case expression, SEND is a constructor symbol that will require
the (global) system rules to be dealt with. Roughly speaking, the system rules
will rewrite SEND(i, e1, ez, []) to send(, ez, [])—the continuation of SEND—and
will also store e in the mailbox of the process with pid e;.

When the message passing is not the last construct of the sequence, we have

[e1!es, 5] = SEND(i, 1,5, V) with send(i,_, V) — [[s]]vl

where ¢ is a fresh constant symbol and V' = VNFVar(s). In this case, the system
rules will proceed analogously but the value of es is lost (as it will happen in the
original Erlang program).

Message Reception. Here, we introduce a new constructor AREC(3, list, vars),
where i is a unique identifier, list is the list of messages already processed (ini-
tially empty), and vars is a list of variables. We transform Erlang expressions as
follows:

[receive py — s1,...,pn — s, end.]” = AREC(3,[],V)

where i is a fresh a constant symbol (e.g., a number). The following auxiliary
functions are added to the program:

brec(i,p1) — True rec(i,p1,V) — [[81.]]V1

brec(i, p,) — True rec(i,pn, V) — [[sn.]]v"

where V; = Var(rec(i,p;,V)) N FVar(s;), j = 1,...,n. When the receive con-
struct is not the last expression of a sequence, we proceed analogously as follows:

[e, receive p1 — s1,...,pn — sn end,s.]” = AREC(i,[],V)

with
brec(i,p1) — True rec(i,p1,V) — [s1,5]"
brec(i, p,) — True rec(i,pn, V) — [$n, 5.]]V"

where V; = Var(rec(i,p;, V)) N FVar(sj,s), j=1,...,n.

Loosely speaking, the system reduction rules will rewrite AREC(%,[],V) to
rec(i, m,V)—the continuation of AREC—when brec(i, m) is true, where m is the
first message in the process mailbox; otherwise, the message m is moved to the
second parameter of AREC and the traversal of the mailbox continues. When the
mailbox is empty (i.e., no message matched the patterns of the receive clause),
we restore the mailbox and move the process to the end of the list.

Similar to the case statements, the transformed TRS will compute an overap-
proximation of the original Erlang program when there are overlapping patterns.

Pattern Matching. First, we consider a pattern matching in which the right-
hand side is an expression not including calls to spawn nor self. In this case, it
is transformed analogously to a case statement with a single case:

[p=el" = f(e,V) with f(p, V) = p.

where f is a fresh function symbol. When the pattern matching is not the last
element of a sequence, we proceed as follows:

Ip= e,s.]]v = f(e,V) with f(p,V) — [[s.]]v/

where f is a fresh function symbol and V' = Var(f(p,V)) N FVar(s).

Process Creation. Process are created using the predefined function spawn.
Here, we introduce a new constructor SPAWN(i, exp, vars), where 4 is a unique
identifier, exp is the function call that starts the new process, and vars is a list
of variables. First, we distinguish the following case:

[p = spawn(e).]" = SPAWN(i, e, []) with spawn(i,p,-) — p

where i is a fresh constant. Basically, the auxiliary function spawn—the contin-
uation of SPAWN-—will be called from the system reduction rules with a second
argument that contains the pid of the new process. When the pattern matching
is not the last element in a sequence, we proceed as follows:

[p = spawn(e), s.]" = SPAWN(i, e, V) with spawn(i,p, V) — [[s]]vl

where i is a fresh constant and V' = Var(spawn(i,p,V)) N FVar(s).

The Primitive self. We replace the occurrences of self with a new constructor
SELF (4, vars), where ¢ is a unique identifier and vars is a list of variables. We
distinguish the following cases:

[p = self.]” = SELF(i,[]) with self (i,p,.) — p

where i is a fresh constant symbol. Here, the system reduction rules will check
the pid of the process and will call the auxiliary function self—the continuation

({0, k,[]) : ({3, SPAWN(n, e,vs),m) : s)) — ({(0,k+1,[]) : s)
++[(3, spawn(n, k,vs),m), (k,e, [])]

(so : ({3, SEND(n, j,e,vs), m) : s)) — (s0 : send_msg(j, e, s++[(i, send(n, e, vs), m)]))

(so : ((¢,SEND(n, j, e,vs),m) : s)) — (so : (s++[(i, SEND(n, j, e, vs), m)]))

(so : ({3, AREC(n, msz,vs),m : ms) : s)) — (fsz : s—(}—-&-[(z), rec(n, m,vs), (msz++ms))])

(so : ({¢, AREC(n, ms2,vs),m : ms) : s)) — (so : ((i,AREC(n, msa+—+[m],vs), ms) : s))
if not(brec(n,m))

(so : ({3, AREC(n,ms2,vs),[]) : 5)) — (s0 : 8)++[(¢, AREC(n, ms2, vs), [])]

(s0 : ((1,p,m) : 5)) — (s0 : (s++[(i,p,m)]))

Fig. 4. State reduction rules

of SELF—with this pid as a second parameter. When the pattern matching is
not the last element in a sequence, we proceed as follows:

[p = self,s]" = SELF(i,V) with self (i,p,V) — [s]"

where i is a fresh constant symbol and V' = Var(self (i,p, V)) N FVar(s).

Sequences Most of the sequences are transformed away using the previous
transformations. However, some of them may still remain in the transformed
program. In this case, they are transformed as follows:

[[51,52.]]V = [case s1 of _ — s9 end.ﬂv

so that all remaining sequences are removed from the transformed program.

Expressions. For the remaining expressions, we have [e.] = e. Note that we
assumed that no occurrence of the concurrency primitives: !, receive, self, etc.,
can occur in expressions.

3.3 State Reduction Rules

Processes are denoted by tuples (p, e, q), which consists of a process identifier
p, an expression e, and a message queue ¢, as introduced in Section 2. We
consider natural numbers as pids, starting from 1. Also, we have an artificial
(first) process of the form (0,n,[]) that is only used for storing the first free pid
n, so that we do not need to compute it every time spawn is called.

Basically, a system is represented by a list of processes, where the first process
is always the one that stores the current free pid number. We consider the usual

notation for lists: [] and (- : _), where ++ denotes list concatenation. We consider
a breadth-first exploration of the search space regarding concurrent actions (so
that the considered process is always moved to the end of the current list). Let
us briefly describe the rules:

— SPAWN. A process with a constructor call SPAWN(n, e, vars) is reduced by
creating a new process initialized with the expression e, and replacing the
constructor call with a call to the auxiliary function spawn(n, k, vars), where
k is the pid number of the new process (which is then updated to k+1). Note
also that both the reduced process and the newly created one are moved to
the end of the list.

— SEND. Here, and in order to explore all possible schedulings, we consider two
non-deterministic alternatives. The first rule sends the message (using the
auxiliary function send_msg), while the second rule just moves the process
to the end of the queue thus delaying the message delivery. In this way, we
can explore all possible process schedulings. The definition of the auxiliary
function send_msg is straightforward (and can be found in the next section).

— AREC. For receiving a message, we consider three possibilities. First, we
check whether the first message in the mailbox matches any of the receive
clauses. If so, we process the message using a call to the auxiliary function
rec. Otherwise, we move the first message to the second parameter of AREC
and continue inspecting the mailbox. When the mailbox is empty (either
because no message has been received or because we have already inspected
all of them), the mailbox is restored and the process is moved to the end of
the list.

— Finally, we also include a rule that just moves a finished process to the end
of the list. One could also remove it from the pool of processes, but we prefer
to keep it for analysis and debugging purposes.

Ezxample 3. Let us consider the Erlang program of Example 1. This program
is transformed into the following TRS (functions and variables start with a
lowercase letter, while constructors start with an uppercase letter):

procl — SPAWN(1, proc2,[])
spawn(1, pidl, []) — SEND(2, pidl, A, [])
send(2,e,) —e

proc2 — SPAWN(3, proc3,[])
spawn(3, pid2,[]) — AREC(4,[], [pid2])
brec(4,) — True

rec(4,z, [pid2]) — SEND(5,pid2,z,[])
send(5, e,) —e

proc3 — AREC(6,[],[])
brec(6,) — True

rec(6,x,[]) — Ok

[0,2,[1), (1, proct, [])]

— [{0,2,[]), (1, SPAWN(1, proc2, []), [])]

— [(0,3,[1), (1, spawn(1,2,[]), 1), (2, proc2, [])]

— [(0,3,[]), (1, SEND(2,2, A, []), [1), (2, proc2, [])]

— [(0,3,[]), (2, proc2, [A]), (1, send(2, A, []), [])]

— [(0,3,[]), (2, SPAWN(3, proc3, []), [A]), (1, send(2, A, []), [])]

= [0,4,[]), (1, Send@ A 1D, D), (2, spawn(3,3,[1]), [A]), (3, proc3, [1)]
= [0,4,[]), (LA, [1), (2, spawn(3, 3, []), [A]), (3, proc3, [])]

— [(0,4,[]), (2, spawn(3, 3, []), [A]), (3, proc3, []), (1, A, [])]

— [(0,4,[]), (2,AREC(4, [], [3]), [A]), (3, proc3, []), (1, A, [])]

— [(0,4,[]), (3, proc3, []), (1, A, []), (2, T68(47A7 (3)), [1)]

— [0,4,[]), 3, AREC(6 (00D, 1) (LA []), (2,rec(4, A, [3]), [])]
— [(0,4,[]), (LA, []), (2,rec(4, A, [3]),[]), (3, AREC(6, [], []), [])]
— [(0,4,[]), (2, rec(4, A, [3]), [1), (3, AREC(6, [], []), []), (1, A, [])]
— [(0,4,[]), (2,SEND(5,3, A, []), [1), (3, AREC(6, [, []), []), (1, A, [])]
— [0,4,[]), (3, AREC(6, [], []), [A]), (1, A, []), (2, send(5, A, []), [])]
= [0,4,[]), (LA, []), (2, send(5, A, []), [1), (3, rec(6, A, []), [)]

— [0,4,[]), (2 Send(5 A [])7[] (3, rec(6,A,[]), [1), (LA, [])]

— [0,4,[]), (2,A [])

— [(0,4,[]), (3, rec(6

— [0,4,[])

Fig. 5. Example of reduction

The computation shown in Example 2 for the Erlang program proceeds now as
shown in Fig. 5.3 Here, we reach exactly the same final state of Fig. 5. Note,
however, that due to non-determinism, other computations are also possible.

Proving that the transformed program computes an overapproximation (i.e., that
every computation of the original program can be mimicked in the transformed
one) is not difficult; it is left as future work.

4 The Transformation in Practice

In this section, we show the usefulness of our transformation in the context of
program verification. An implementation of the transformation has been under-
taken and can be used through a web interface that can be found here:

http://users.dsic.upv.es/"gvidal/erlang2trs/

For verifying safety properties, we consider the execution of the rewriting system
using narrowing, a conservative extension of term rewriting for dealing with non-
determinism and logic variables. Narrowing can be seen as a symbolic execution

3 We underline either the expression or the selected process involved in a reduction
step.

version of rewriting where pattern matching is replaced with unification (as in
logic programming). Narrowing has been used as the basis of a partial evaluation
framework for rewrite systems [1].

In particular, in order to produce executable programs, we consider the lan-
guage Curry [11] (a conservative extension of Haskell to deal with logic variables
and non-determinism).

Ezxample 4. Consider the following Erlang program:

main — Pid2 = spawn(proc2), procl(Pid) — receive
Pidl = spawn(procl(Pid2)), X —-Pid!X
Pidl ! hello, end.
Pid2 ! world. proc2 — receive
X — ok
end.

Our transformation tool erlang2trs returns the following program (we use a
curried notation for functions as in Curry):

main = (SPAWN 1 proc2 [])

spawn 1 pid2 [] = (SPAWN 2 (procl pid2) (pid2:[]1))

spawn 2 pidl (pid2:[]) = (SEND 3 pidl Hello (pidi:(pid2:[1)))
send 3 e (pidl:(pid2:[]1)) = (SEND 4 pid2 World [])

send 4 e fresh = e

procl pid = (AREC 5 [] (pid:[1))
brec 5 x = True

rec 5 x (pid:[]) = (SEND 6 pid x [])
send 6 e fresh = e

proc2 = (AREC 7 [1 [1)
brec 7 x = True
rec 7 x [1] =0k

together with data declarations, the system reduction rules and a few auxiliary
functions:

data State = State Int Exp [Exp]

data Exp = I Int | SPAWN Int Exp [Exp] | SEND Int Exp Exp [Exp]
| AREC Int [Exp] [Exp] | SELF Int [Exp]
| World | Hello | Ok

reduce (sO : (State i (AREC n ms2 args) (m:ms)) : s) visited
= if (brec n m)
then reduce (s0:(s++[State i (rec n m args) (ms2++ms)])) visited
else reduce (sO:(State i (AREC n (ms2++[m]) args) ms):s) visited
reduce (sO : (State i (AREC n ms2 args) []) : s) visited
= reduce ((sO : s) ++ [State i (AREC n ms2 args) []1]) visited

reduce (State o (I k) 12 : (State i (SPAWN n e args) m : s)) visited
= reduce ((State o (I (k+1)) 12 : s)
++ [State i (spawn n (I k) args) m, State k e []]) visited

reduce (sO : (State i (SEND n (I j) e args) m : s)) visited

= reduce (s0:(send_msg j e (s++[State i (send n e args) m]))) visited
reduce (sO : (State i (SEND n (I j) e args) m : s)) visited

= reduce (sO : (s ++ [State i (SEND n (I j) e args) m])) visited

send_msg _ _ [1 =[]
send_msg j e (State i bm : s)
| i==j State i b (m++[e]) : s
| otherwise = State i bm : (send_msg j e s)

brec 5 fresh = case fresh of
x => True
_ => False

brec 7 fresh = case fresh of
x -> True
-> False

The complete code of the transformed program can be found at

http://users.dsic.upv.es/“gvidal/erlang2trs/

Consider now that we are interested in verifying whether the message “World”
can arrive to proc3 before the message “Hello”. We can easily verify this property
in Curry using the following test function:

init = reduce [State 0 (I 2) [], State 1 main []] []
test = wrongState init
wrongState (s:ss) = case s of

State _ Ok [Hello]l -> True

_ —> wrongState ss

where the state reduction rules are implemented by function reduce and states
are represented using the constructor State. Here, function init denotes the
initial state and function test checks if there exists a reachable final state (i.e.,
where the main expression is reduced to 0k) with the message Hello in the
mailbox.

Of course, for more contrived examples with an infinite number of states, nar-
rowing has an infinite search space. Fortunately, there already exist techniques
for ensuring the termination of narrowing while still producing overapproxima-
tions of the original program in the context of partial evaluation (see, e.g., [1]).

Therefore, we can adapt such an approach to perform symbolic execution of
infinite-state systems.

Actually, our tool erlang2trs already produces a TRS that includes a simple
memoization to avoid reducing the same state once and again.

5 Related Work

Giesl and Arts [10] present a verification of Erlang processes by using depen-
dency pairs. They propose a similar idea—transforming FErlang programs to
(conditional) rewrite systems—but no transformation is formalized; rather, the
process is done manually. Moreover, no verification of safety properties is con-
sidered. In fact, the authors mainly focus on proposing general improvements to
the termination prover for TRSs and CTRSs.

Noll [16] introduces an implementation of Erlang in rewriting logic [14], a uni-
fied semantic framework for concurrency. Although we share some ideas with this
paper, the aim is different. Noll’s aim was to provide an executable specification
of the language semantics that is tailored to the Specification Language Compiler
Generator [13] in order to automatically translate the description into a verifica-
tion front-end that implements the transition rules. Therefore, in this approach,
Erlang programs are seen as data objects manipulated by a sort of interpreter
implemented in rewriting logic. In contrast, we aim at producing plain rewrite
systems that can be analyzed using existing technologies. Other approaches are
based on abstract interpretation (e.g., [12]) or the use of equations to define ab-
straction mappings (e.g., [17]). We can also find some approaches where Erlang
is translated to m-calculus [19] or uCRL [3].

More specific tools for Erlang verification include EVT [18], a theorem prover
that requires user intervention, and the model checker McErlang [9], which im-
plements a big-step operational semantics for dealing with concurrency as a
run-time Erlang system. In these approaches, no symbolic execution mechanism
for Erlang is introduced. Actually, we are only aware of the approach presented
in [7], though no formalization is introduced. Hence we think that our approach
is a promising step towards defining a symbolic execution mechanism for Erlang.

6 Discussion

We have introduced a novel approach to Erlang verification based on translating
the original program to a term rewriting system. By keeping the original program
structure as much as possible, we can effectively analyze the rewrite system and
infer useful information regarding the original Erlang program using standard
techniques and tools for rewrite systems.* We have illustrated the practicality
of the approach by verifying a simple safety property.

4 Nevertheless, although our syntax-directed transformation is tailored to the func-
tional language Erlang, one could also extend it to other programming languages by
using a semantics-driven transformation, similarly to that of [22].

As a future work, we would like to deal with scalability issues, e.g., defining an
appropriate partial order reduction. We would also like to extend our approach
to deal with the remaining features of Erlang (mainly higher-order functions,
guards, modules, etc). Finally, we will explore the generation of Prolog programs
instead. In this case, we would have more mature environments available as
well as a flurry of analysis techniques that could be applied to the transformed
programs.

Acknowledgements

We would like to thank the anonymous reviewers for their useful comments to
improve this paper.

References

1. E. Albert and G. Vidal. The narrowing-driven approach to functional logic program
specialization. New Generation Computing, 20(1):3-26, 2002.

2. Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming in
ERLANG. Prentice Hall, 1993.

3. Thomas Arts, Clara Benac Earle, and John Derrick. Development of a verified
Erlang program for resource locking. STTT, 5(2-3):205-220, 2004.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

5. Rafael Caballero, Enrique Martin-Martin, Adridn Riesco, and Salvador Tamarit.
A Declarative Debugger for Sequential Erlang Programs. In Margus Veanes and
Luca Vigano, editors, Proc. of the 7th International Conference on Tests and Proofs
(TAP 2013), Lecture Notes in Computer Science, pages 96-114. Springer, 2013.

6. Koen Claessen and Hans Svensson. A semantics for distributed Erlang. In Kon-
stantinos F. Sagonas and Joe Armstrong, editors, Proc. of the 2005 ACM SIG-
PLAN Workshop on Erlang, pages 78-87. ACM, 2005.

7. Clara Benac Earle. Symbolic program execution using the Erlang verification tool.
In Maria Alpuente, editor, Proc. of the 9th International Workshop on Functional
and Logic Programming (WFLP 2000), pages 42-55, 2000.

8. Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba.
A syntactic theory of sequential control. Theor. Comput. Sci., 52:205-237, 1987.

9. Lars-Ake Fredlund and Hans Svensson. McFErlang: a model checker for a distributed
functional programming language. In Ralf Hinze and Norman Ramsey, editors,
Proc. of ICFP 2007, pages 125—-136. ACM, 2007.

10. Jiirgen Giesl and Thomas Arts. Verification of Erlang Processes by Dependency
Pairs. Appl. Algebra Eng. Commun. Comput., 12(1/2):39-72, 2001.

11. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Avail-
able at http://www.curry-language.org, 2012.

12. Frank Huch. Verification of erlang programs using abstract interpretation and
model mhecking. In Didier Rémi and Peter Lee, editors, Proc. of ICFP 99, pages
261-272. ACM, 1999.

13. Martin Leucker and Thomas Noll. Rewriting Logic as a Framework for Generic
Verification Tools. FElectr. Notes Theor. Comput. Sci., 36:121-137, 2000.

14.

15.

16.

17.

18.

19.

20.

21.

22.

José Meseguer. Conditioned Rewriting Logic as a United Model of Concurrency.
Theor. Comput. Sci., 96(1):73-155, 1992.

M.R. Neuh&ufler and T. Noll. Abstraction and Model Checking of Core Erlang
Programs in Maude. Electr. Notes Theor. Comput. Sci., 176(4):147-163, 2007.
Thomas Noll. A Rewriting Logic Implementation of Erlang. FElectr. Notes Theor.
Comput. Sci., 44(2):206-224, 2001.

Thomas Noll. Equational Abstractions for Model Checking Erlang Programs.
Electr. Notes Theor. Comput. Sci., 118:145-162, 2005.

Thomas Noll, Lars-Ake Fredlund, and Dilian Gurov. The Erlang Verification Tool.
In Tiziana Margaria and Wang Yi, editors, Proc. of TACAS 2001, volume 2031 of
Lecture Notes in Computer Science, pages 582—-586. Springer, 2001.

Chanchal Kumar Roy, Thomas Noll, Banani Roy, and James R. Cordy. Towards
automatic verification of Erlang programs by pi-calculus translation. In Marc
Feeley and Philip W. Trinder, editors, Proc. of the 2006 ACM SIGPLAN Workshop
on Erlang, pages 38-50. ACM, 2006.

James R. Slagle. Automated theorem-proving for theories with simplifiers, com-
mutativity and associativity. Journal of the ACM, 21(4):622-642, 1974.

Hans Svensson and Lars-Ake Fredlund. A more accurate semantics for distributed
Erlang. In Simon J. Thompson and Lars-Ake Fredlund, editors, Proceedings of the
2007 ACM SIGPLAN Workshop on Erlang, pages 43—54. ACM, 2007.

Germén Vidal. Closed symbolic execution for verifying program termination. In
Proc. of the 12th IEEFE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2012). IEEE, 2012.

