Skip to main content

Automated Assessment of Pulmonary Arterial Morphology in Multi-row Detector CT Imaging Using Correspondence with Anatomic Airway Branches

  • Conference paper
Book cover Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

Abstract

Multi-row detector CT (MDCT) provides high resolution structural and functional imaging that has been helpful in studying altered physiology, making early diagnosis, and evaluating treatments in pulmonary research. There is growing evidence suggesting that pulmonary vascular dysfunction plays a major role in progression of centrilobular emphysema, a component of chronic obstructive disease (COPD). Few studies have attempted to quantify central pulmonary vessel morphology and to compare these measurements across COPD groups. However, the scope of vascular structures examined in such studies has been limited, primarily, due to lack of an automated and standardized method of comparing matching vessel branches. In this paper, we present a fully automated method, using a novel arc skeletonization and a local correspondence analysis, to identify matching pulmonary arteries by linking those with anatomically defined specific airway branches. This method provides a standardized way of establishing correspondence between matched pulmonary arteries for intra- and inter-subject scans. The accuracy and repeatability of the method was examined on non-contrast MDCT scans of 10 normal subjects. It was observed that 83% of the arteries classified by our automated method agree with “true” arteries as labelled by an interactive manual artery-vein separation tool. Repeat scan intra-class correlation of arterial morphological measures over six anatomic airway branches was observed as 91%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santos, S., Peinado, V.I., Ramirez, J., Melgosa, T., Roca, J., Rodriguez-Roisin, R., Barbera, J.A.: Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur. Respir. J. 19, 632–638 (2002)

    Article  Google Scholar 

  2. Barr, R.G., et al.: Percent emphysema, airflow obstruction, and impaired left ventricular filling. N. Engl. J. Med. 362, 217–227 (2010)

    Article  Google Scholar 

  3. Wells, J.M., et al.: Pulmonary arterial enlargement and acute exacerbations of COPD. N. Engl. J. Med. 367, 913–921 (2012)

    Article  Google Scholar 

  4. Wells, J.M., Dransfield, M.T.: Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD. Int. J. Chron. Obstruct Pulmon. Dis. 8, 509–521 (2013)

    Article  Google Scholar 

  5. Matsuoka, S., Washko, G.R., Dransfield, M.T., Yamashiro, T., San Jose Estepar, R., Diaz, A., Silverman, E.K., Patz, S., Hatabu, H.: Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad. Radiol. 17, 93–99 (2010)

    Article  Google Scholar 

  6. Liu, Y.H., Hoffman, E.A., Ritman, E.L.: Measurement of three-dimensional anatomy and function of pulmonary arteries with high-speed x-ray computed tomography. Invest. Radiol. 22, 28–36 (1987)

    Article  Google Scholar 

  7. Büelow, T., Wiemker, R., Blaffert, T., Lorenz, C., Renisch, S.: Automatic extraction of the pulmonary artery tree from multi-slice CT data. In: SPIE: Medical Imaging, San Diego, CA, vol. 5746, pp. 730–740 (2005)

    Google Scholar 

  8. Pisupati, C., Wolff, L., Mitzner, W., Zerhouni, E.: Tracking 3-D pulmonary tree structures. Math. Methods Biomed. Image Anal., 160–169 (1996)

    Google Scholar 

  9. Tschirren, J., McLennan, G., Palagyi, K., Hoffman, E.A., Sonka, M.: Matching and anatomical labeling of human airway tree. IEEE Trans. Med. Imaging 24, 1540–1547 (2005)

    Article  Google Scholar 

  10. Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33, 190–197 (1973)

    Article  Google Scholar 

  11. Marshall, G.B., Farnquist, B.A., MacGregor, J.H., Burrowes, P.W.: Signs in thoracic imaging. J. Thorac. Imaging 21, 76–90 (2006)

    Article  Google Scholar 

  12. Tschirren, J., Hoffman, E.A., McLennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Med. Imaging 24, 1529–1539 (2005)

    Article  Google Scholar 

  13. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Comput. Vis. Image Und. 77, 145–174 (2000)

    Article  Google Scholar 

  14. Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33, 709–720 (2011)

    Article  Google Scholar 

  15. Jin, D., Saha, P.K.: A new fuzzy skeletonization algorithm and its applications to medical imaging. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 662–671. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Patt. Anal Mach. Intel. 16, 1028–1032 (1994)

    Article  Google Scholar 

  17. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Imag Und. 86, 171–190 (2002)

    Article  MATH  Google Scholar 

  18. Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biology Medicine 36, 974–996 (2006)

    Article  Google Scholar 

  19. Saha, P.K., Chaudhuri, B.B., Majumder, D.D.: A new shape preserving parallel thinning algorithm for 3D digital images. Patt. Recog. 30, 1939–1955 (1997)

    Article  Google Scholar 

  20. Saha, P.K.: Tensor scale: a local morphometric parameter with applications to computer vision and image processing. Comput. Vis. Image Und. 99, 384–413 (2005)

    Article  Google Scholar 

  21. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Proc. 34, 344–371 (1986)

    Article  Google Scholar 

  22. Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comput. Vis. Image Und. 63, 418–429 (1996)

    Article  Google Scholar 

  23. Liu, Y., Jin, D., Li, C., Janz, K.F., Burns, T.L., Torner, J.C., Levy, S.M., Saha, P.K.: A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging. IEEE Trans. Biomed. Eng. 61, 2057–2069 (2014)

    Article  Google Scholar 

  24. Saha, P.K., Gao, Z., Alford, S.K., Sonka, M., Hoffman, E.A.: Topomorphologic separation of fused isointensity objects via multiscale opening: separating arteries and veins in 3-D pulmonary CT. IEEE Trans. Med. Imag. 29, 840–851 (2010)

    Article  Google Scholar 

  25. Jin, D., Iyer, K.S., Hoffman, E.A., Saha, P.K.: Reconstruction of pulmonary central artery volume in MDCTimaging using airway correspondence at different anatomic branches. Am J. Respir. Crit. Care. Med., 189, A4311 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jin, D., Iyer, K.S., Hoffman, E.A., Saha, P.K. (2014). Automated Assessment of Pulmonary Arterial Morphology in Multi-row Detector CT Imaging Using Correspondence with Anatomic Airway Branches. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics