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Abstract. Recent evolution of supercomputer architectures toward mas-
sively multi-cores nodes equipped with many-core accelerators is leading
to make MPI-only applications less effective. To fully tap into the po-
tential of these architectures, hybrid approaches — mixing MPI, threads
and CUDA or OpenCL — usually meet performance expectations, but at
the price of huge development and optimization efforts.

In this paper, we present a programming framework specialized for
molecular dynamics simulations. This framework allows end-users to de-
velop their computation kernels in the form of sequential-looking func-
tions and generates multi-level parallelism combining vectorized and
SIMD kernels, multi-threading and communications. We report on pre-
liminary performance results obtained on different architectures with
widely used force computation kernels.

Keywords: Molecular dynamics, MPI, threads, TBB, vectorization,
OpenCL, object-oriented design, Lennard-Jones, EAM.

1 Introduction

Molecular dynamics (MD) is a method used to compute the dynamical prop-
erties of a particles system, widely spread in fields such as Materials Science,
Chemistry and Biology. With its scalable structure, MD took a substantial step
with the ever increasing computer capabilities: after starting at a few hundreds
particles [1], MD simulations have successfully coped with million particles sys-
tems in the 90s [11], before reaching one billion particles in 2005 [9].

Parallelism in most MD codes is limited to classical domain-decomposition
techniques, and the use of accelerators is still rare. In the same time, future
processor architectures are expected to feature a large number of cores with a
fair decrease of the available memory per core, and the use of a co-processor
has become quite common. The Intel® Xeon Phi™ architecture illustrates this
trend well.

Stamp is a classical molecular dynamics production code which has been de-
veloped at CEA for twenty years [18]. Its flat MPI architecture and the absence
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of vectorization will obviously not fit requirements of next generation processors.
To the best of our knowledge, no existing MD program is able to exploit clus-
ters of such hybrid nodes, potentially equipped with different accelerators, in a
uniform way. The development of a new object-oriented framework ExaStamp,
capable of fulfill these new needs, began in 2012.

Optimized for large scale simulations of solid-state materials and shock phy-
sics, this framework supports several levels of parallelization. Besides the classical
hybrid programming model, we developed a tool which enable generation of effi-
cient vectorized code and OpenCL kernels for modern CPUs, GPUs and Intel®
Xeon Phi™ accelerators. The complexity of implementing different parallelisms
has been hidden from the non-expert developer through its object-oriented de-
sign. For main algorithms, our framework contains parallelism in specific mod-
ules. In the case of compute-intensive parts, specific vectorized instructions can
be instantiated from the same sequential-looking code. Furthermore, data struc-
tures and their associated algorithms were carefully designed so as to keep the
memory footprint as low as possible, meeting the requirements of future many-
core architectures.

This paper discusses the design, implementation and performance of ExaS-
tamp framework. It is organized as follows: in Sect. 2 we introduce Molecular
Dynamics simulations and present the classical parallelization approaches. The
design and implementation of our approach are are presented in Sect. 3. Perfor-
mance results on different computers architectures are detailed and analyzed in
Sect. 4. Finally, some conclusions and perspectives are discussed.

2 Molecular Dynamics

The main principle of MD consists in numerically integrating Newton’s equation
of motion f = ma, where the force on a particle depends on the interactions
with all others [2]. Among the multiple ways to solve this equation, the Leapfrog
integrator and the Verlet integrator, which are equivalent, are the most used as
they offer greater stability, as well as other properties, for a low computational
cost [14].

update positions (4/5)

compute force

update velocities (4%/5)

update positions (4/5)

Fig. 1. Overview of a time-step in a MD simulation using the Leapfrog integrator
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In most MD simulations, particles are treated as points and the interacting
force between particles is approximated as a gradient of a potential that depends
on the distance between those particles. The force computation is obviously the
most challenging part: it contains all the physics of the simulation and can take
up to 95% of the total time. When this potential comes from quantum mechan-
ics principles, we talk about ab initio molecular dynamics; in the other case,
the term classical molecular dynamics is used. Potentials from classical MD are
empirical or semi-empirical; they are computed from an analytical formula, or
they can be interpolated from tabulated values [22]. In this paper, we will fo-
cus on short-range interactions: it means that beyond a given distance r. called
the cutoff distance, interactions will be neglected. This approximation is com-
pletely justified for solid materials, since distant atoms are “screened” by nearer
atoms. In case of systems with electrostatic or gravitational effects, long-range
interactions cannot be omitted and special algorithms have been designed [10].

Although it was first designed to study gases, the Lennard-Jones poten-
tial (LJ) [13] has been used in a large part of material science, and became
a standard benchmark for MD codes. The LJ potential is a pair potential, which
means that it describes the interaction between a pair of particles (within the
cutoff distance). For this potential, the expression of the energy on a particle ¢
is given by

&‘igvmmmmvmffnkafz(ff], (1)
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where ¢ and o are parameters which denotes respectively the well depth and the
bond length.

Yet, pair potentials remain limited when it comes to bonded interactions: as
an example, Stillinger and Weber developed a three-body potential for Silicon
crystals [19]. For the study of metals and their alloys, effects from the electron
charge density have a significant impact: the Embedded Atom Method (EAM)
provides an accurate model and an acceptable computational cost [6,8,7].

B= , 3 ota) + F [ X o) | Q

where ¢ is a simple pair potential, p; the contribution of the electron density near
atom j, and F' an embedding function representing the amount of energy required
to place atom 7 in the electron cloud. Both ¢ and p are canceled beyond the cutoff
distance. Common EAM potentials are for instance the Johnson potential, the
Sutton-Chen (SC) and the Tersoff potentials [12,20,21].

3 A Framework for Molecular Dynamics Simulations

ExaStamp has been designed to replace the production code Stamp on the next
generation of supercomputers. Targeting solid-state material and shock physics
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studies, it should be able to perform very large scale simulation of complex
systems (a billion particles with many-body potentials) on a various range of ar-
chitectures. As a future production code, all the programming refinement should
be hidden from standard developers. To this end, we chose the C++ language
and widely used C++11 standard features. With upcoming parallel architectures
in mind, we also focused on minimizing memory footprint of our data structures,
so as to handle large sets of particles.

There are three basic ways to parallelize work in a MD simulation: par-
allelization over particles, parallelization over pairs of particles and domain-
decomposition. As explained in [16], the first two proved inefficient, as they
require to many communications over the interconnection network, leaving the
third one as the only possibility despite potential load-balancing issues.

The latter method is typically used in MPI implementations: the global do-
main is split and each process is assigned to a sub-domain. To compute inter-
actions on the edges, each sub-domain will be enclosed in a ghost layer, which
consists in a copy of the boundaries with its neighboring sub-domains. In prac-
tice, the length of this ghost layer is generally the cutoff radius. The outline in
Fig. 1 is hardly modified: everything is performed in parallel, one extra step is
used to send and receive particles moving between sub-domains, and another
one to update the ghost layer.

3.1 Overall Parallelization Strategy

In our approach, the global domain is overdecomposed with respect to the un-
derlying cluster nodes (as illustrated in Fig. 2). Several domains can thus be
assigned to a single node, each being treated either by regular CPU cores or
by accelerators. We now present the main concepts and algorithms used in our
framework.

Node and Communication Manager. A Node is the top structure of the
code. We decided to use this terminology as we intend to use one Node structure
per machine node in production mode, so that we can take advantage of shared-
memory systems. Thus it contains the integration scheme, a list of one or several
domains, and a communication manager. The Node is also responsible for 1Os.

The Communication manager structure is an object-oriented framework for
communications. It allows a developer to create its own custom types and
provides wrappers to use these types in communication.

Integration Scheme. The family of integration schemes depicted in Fig. 1
reveals that they are basically made of the same elementary functions: updat-
ing a quantity (particles positions or velocities) with an explicit (first or sec-
ond order) Euler scheme, or the force computation. Therefore we can define a
NumericalScheme as an object with a function oneStep (), which contains a se-
quence of predefined elementary functions. Implementing a new scheme does not
require the knowledge of lower classes implementation, as long as the requested
elementary functions are implemented.
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Fig. 2. Overview of ExaStamp architecture: pseudo-UML diagram with main classes
of the code (left) with “physical” representation (right). The dark orange circle corre-
sponds to the area of influence of a particle, whereas the light orange zone is the set
of cells where neighbors will be looked for

Domain. Domain concept gathers an interface and its possible implementa-
tions. Domain interface contains basic accesses and elementary functions re-
quired by all NumericalScheme objects. A Domain proceeds to a reorganization
and code factorization of these requirements for their implementation in lower-
level classes.

Let us consider the force computation example. The code provides the possi-
bility to overlap communication with computation: it means that it is possible
to start updating ghost layers and compute forces inside the domain while com-
munications are processing. Once the ghost layer update is over, we can start
the force computation on the domain’s edges. A NumericalScheme object does
not need to know whether communication overlap has been enabled, it just asks
for the forces computation. In the Domain class, two different functions handled
by a strategy pattern are available.

Grid and Cells. When it comes to the force computation, each particle should
get a list of its neighbors. Let us partition the domain with a virtual cubic mesh
with a size slightly greater than the cutoff radius. Given a particle, we only have
to look for its neighbors in the cell where it lives and its neighboring cells, which
makes a total of 27 cells (in a three-dimensional space) to explore. This how
the linked-list cell method [2] starts, reducing a naive pair search in O(N?) into
a O(N) algorithm.

Though we will not use this method (linked-cell list are not well suited neither
for parallelism nor for vectorization), we will fully benefit from the cell parti-
tioning. The task of Grid object is to implement all services required by the
Domain class. In order to keep a high level of modularity without paying the
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cost of virtualization, we used a curiously recurring template pattern [5] in its
implementation. Apart from this, we could almost reduce the Grid object into
an array of Cell objects, which is where particles live.

We decided to focus the thread parallelism on this Cell array: it is roughly the
same idea than a parallelization over particles, with a bigger grain-size. To max-
imize threads efficiency, we chose to store particles as structure of arrays (SOA)
at the Cell level, which will become an array of structures of arrays (AOSOA)
at the Grid level. Indeed, this structure enable vectorization within cells and is
especially efficient when it comes to concurrent accesses: two threads working
on two different cells can add and remove particles from those cells (which po-
tentially means data reallocation). On the contrary, parallelization over one big
array of particles would have required critical regions, throwing away any goal
of performance on a many core system.

3.2 Code Specialization

Performing high performance molecular dynamics over hybrid machines requires
to use highly optimized computation kernels combining threads/tasks and vec-
torization over CPU cores or Intel® Xeon Phi™accelerators, and highly parallel
SIMD code for GPU accelerators. In our Framework, domains assigned to regular
CPU cores are parallelized using Intel®’s Threading Building Blocks (TBB) [4],
whereas domains assigned to GPU or Intel® Xeon Phi™accelerators rely on a
series of OpenCL kernels which parallelize each step of an iteration loop.

Despite progress made by compilers regarding auto-vectorization, writing code
to maximize the number of vectorization opportunities detected by the compiler
remains a delicate process. Writing efficient OpenCL code is also a delicate task,
and actually requires to perform target-specific (and even platform-specific) op-
timizations. Intel, AMD and NVIDIA programming guides, for instance, each
suggest different optimizations which can actually lower performance on other
platforms. For all these reasons, implementing a new particle interaction po-
tential would normally require to develop and optimize multiple versions of the
force computation kernel (Fig. 1), in multiple languages.

To solve this problem, our framework allows force computation steps to be
written as a set of C++ sequential-looking functions, as illustrated on Fig. 3 for
the LJ potential.

When instantiated on multi-core architectures, this code is transformed us-
ing C++ template classes to generate intrinsic vector functions instead of scalar
operations, to guarantee that the force computation kernel is fully vectorized.
A unique sequential-looking code is used, whatever the type of vectorization is
performed (no vectorization, SSE, AVX, or IMCI'). The obtained vectorized
kernel is used inside Cells and is called from within a sequential loop iterating
over particles. At the upper level, each iteration step is parallelized using a TBB
parallel for loop iterating over Cells (as described in Section 3.1).

! Intel® Initial Many Core Instructions, a set of vector instructions for the KNC.
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void lennardJones ( double *ep_i,
#fx_ i, *fy_i, *fz_1i,
*rx_i, xry_i, xrz_i ) {

double
template<...> — __-m128d
class vector_t __m256d
—-m512d

vector_t t0, tl1, t2, t3, t4, t5;

t0.load (rx_i); (a) tlxtl

t1.load (ry,+); templates<...>vector_t __ | (b) _mmmul_pd(tl, t1)

t2.load (rz_i); operator * (...) (c) _mm256_mul_pd(tl, t1)
(d) _mm512_mul_pd(tl, t1)

t3 = inv(tO*t0 + tlxtl + t2xt2);

t4 = t3 * _sigma2; b — e 6
T5 =t %t % 1 | (v b
t4 = t5 = t5; t4:(<7>
[lrsl

t5 = t4 - t5;
t4 = t5 + t4; 12 6

) . , ts = 25{ () () }
t5 = _2epsilon = t5; [lacaco: SIS > " .
t4 = _24epsilon * t4 * t3; . - i1

ta = 24e {2 (wr) -~ () } Tl
t0 = t0 x t4;
t1l = t1 x t4;
t2 = t2 * t4; . A
Flags used to select right intrinsics
X instructions (at compile time):

t0.store (fx_i); (a) <no flag>
tl.store (fy_i); (b) __vectorize sse
t2.store (fz_i); (c) __vectorize avx
t5.store (ep_i); (d) __vectorize mic

Fig. 3. Implementation of force and energy computation function using a LJ potential.
If V denotes the potential as described in (1), we have to compute e; = JV (||r;]|) and
fi=—=Vyr,1V(||r:]]). Written in a C-like way (except for the function signature which
contains templates and operator), it hides intrinsics functions enabled at compile-time
with predefined flags.

When instantiated on accelerators, the sequential version of the code (see
variant a on Fig. 3) is called from within an OpenCL force computation ker-
nel. This kernel is executed by as many OpenCL workitems as the number of
particles in the domain. The generic part of the kernel is optimized either for
GPUs (coalesced memory accesses, bank conflicts avoidance, weak code diver-
gence) or for Intel® Xeon Phi™accelerators (vectorization, cache reuse), but all
these optimizations are hidden to the end-user. In the next Section, we present
the performance achieved by our framework on various hardware platforms.

4 Performance Evaluation

All tests in this Section have been performed on CCRT’s clusters? (see Table 1 for
CPU specifications — the GPU used for OpenCL test is a NVIDIA Tesla K20c).

2 Centre de Calcul Recherche et Technologie —
http://www-hpc.cea.fr/en/complexe/ccrt.html
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Table 1. Specifications of CPU used for our different tests. Cache size displayed are L3
sizes, except for the KNC which is L2. Airain’s Ivybridge and Standard partitions are
respectively made of 360 and 594 nodes connected with an Infiniband QDR network.

Airain Cirrus
Ivybridge Standard KNC
Model Intel® Xeon® Intel® Xeon®  Intel® Xeon Phi™
CPU E5-2680 v2 CPU E5-2680 Coprocessor 5120D
Max Freq. (GHz) 2.8 2.7 1.05
Number of cores 2x10 2x8 60
Cache Size (MB) 25.60 20.48 30.00
Vectorization AVX AVX IMCI

Code was compiled using Intel® compiler (version 14.0.2) with O3 optimization
and vectorization enabled. Simulations involve a FCC lattice (¢=0.354 nm) of
copper at 600 K, using either a LJ (¢=0.583 eV, 0=0.227 nm and r.=0.227 nm)
or an analytic Sutton-Chen potential (c=33.2, ¢=2.25- 1072 eV, ap=0.327 nm,
n=9.05, m=5.01 and r.=0.729 nm).

4.1 Vectorization

On a Single CPU Core. To compare compilers auto-vectorization capabilities
against hand-vectorized code, we use the sample code presented in Fig. 3 and
generate both a naive version (variant a) and a SIMD version (variant b, ¢ or d).
Results in Table 2 clearly exhibit that hand-vectorization is mandatory to get
high performance on non-trivial computation kernels.

Fig. 4 presents vectorization performance over a full simulation, for two po-
tentials: a light one (LJ) and an expensive one (SC, with analytical functions).
As expected, the use of vector units is still quite efficient, especially for the SC
potential (which is about 40% faster). Its vectorization has been made possible

Table 2. Performances of our “SIMD” wrapper against a naive version for a LJ poten-
tial. Here we compare execution times in seconds (average on a million runs with arrays
of size 256) of both versions for different vectorization modes. Tests were performed on
an Ivybridge (first three lines) and a Intel® Xeon Phi™ (last two lines).

Mode Flags Naive Simd Speedup
Default -03 2.42 2.26 1.07
SSE -03 -mssed4.1 -D vectorize-sse 2.41 1.06 2.27
AVX -03 -mavx -D vectorize-avx 2.48 0.73 3.39
Default -03 46.80 36.24 1.29

IMCI -03 -mmic -D vectorize-mic 46.79  5.10 9.17
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Fig. 4. Effect of vectorization for different potentials on Ivybridge (Airain). Simulations
performed on 128 time-steps with one million atoms. T}, s ¢n. represents the time per
particle per iteration per thread.

thanks to Intel® Short Vector Math Library (SVML), which provides intrin-
sic instructions for advanced math functions. Issues between Intel® compiler

and C++411 standard prevented us from performing full native code simulations
on a Intel® Xeon Phi™.

4.2 Multithreading

In Fig. 3, we compared memory usage for different number of threads and MPI
processes. Memory usage was measured with the getrusage() function given
by the standard C library, and sum across processes when needed. If it remains
constant for simulations using only TBB, we observe that those which use only
MPI ones need up to 25% more memory. Differences are even more important
on a larger runs: for 4.3 billion particles on 16,384 cores, simulations with re-
spectively 1, 2 and 4 threads per MPI process need 11.5, 9.5, and 8.3 Terabytes
of memory, which make the full MPI about 40% more expensive.

Table 3. Comparison of maximum memory usage (in GB) between MPI and threads
simulations on one Ivybridge node. Simulations performed on 64 steps with a SC
potential.

Total Num. Cores 1 10 20
MPI x Threads 1x1 10x1 1x10 20x1 1x20
2-10°% atoms 3.82 435 3.85 480  3.87
5-10% atoms 9.46 10.12 951 10.82  9.59

10 - 10° atoms 18.86  19.77 18.97 20.90 19.06
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4.3 Scalability

Results from a weak scaling test up to 2,048 cores for different number of threads
are plotted on Fig. 5. If the 16 threads case is obviously out of touch, it can be
explained by NUMA accesses between sockets. From 1 to 8 threads the efficiency
drop is very well contained, with all values between 90 and 95% for 2,048 cores.
Runs with more than one thread are faster than the full-MPI one, although
efficiency values are very close. It seems tricky to establish a clear hierarchy.

1
;* 0.95
g Ny g3
€
e 0.9
= 1 thread
% —i— 2 threads
0.85 .
A~ 4 threads
8 threads
0.8 —— 16 threads
2 8 32 128 512 2048

Total number of cores

Fig. 5. Scaling tests of ExaStamp for different number of threads on Airain’s Standard
nodes. Simulations performed on 1,024 time-steps with 4.0 - 10° atoms per core using
a SC potential.

4.4 Performances on Accelerators

Fig. 6 reports results obtained with the LJ potential on a Intel® Xeon Phi™
and a GPU. We observe that the GPU needs only five millions atoms to reach its
peak performance, when the Intel® Xeon Phi™ requires around twenty. In single
precision, the Intel® Xeon Phi™ gets slightly better performances (10% faster
than the GPU), and this difference increases in double precision mode (+20%).
Memory usage is perfectly linear with the number of atoms. As expected, the
double precision mode requires twice the amount used for single precision one.

5 Related Work

Developed at Sandia National Laboratories, the LAMMPS [16] package has
become a reference in MD. It can perform simulations up to a billion atoms
on 64,000 cores (using mainly MPT), covering physics from solid-state materi-
als to soft matter. Yet, its multithreads implementation is still limited to some
modules, with no better performance than full MPI [17, Sect. 5]. Gromacs [3]
and NAMD [15] are more recent high-performance oriented codes targeting bio-
molecular systems, which is far from condensed matter physics. As a result, these
programs require a completely different coding approach than ours.
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Fig. 6. Performance of OpenCL simulations on different accelerators, using LJ poten-
tial. For both single and double precision, we compare performance in term of atom
throughput (number of atoms per second per iteration) and memory footprint.

6 Conclusion and Future Work

We presented ExaStamp, a classical molecular dynamics framework designed
for production on new generation supercomputers. Its object oriented design
allowed us to hide complexity introduced by multiple levels of parallelism. On
that point, early returns by developers are very positive. Besides, performance
results in terms of vectorization, scaling and memory usage are very promising.

We will soon be able to start testing on ExaStamp with native code on Intel®
Xeon Phi™, which will undoubtedly be an important platform to achieve “real
physics” simulations. On top of development of new potentials and numerical
modules, we will also focus on the development of a dynamic load balancing
capability on nodes level.
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project, a French FSN? cooperative project that associates academic and indus-
trial partners to design and provide building blocks for new generations of HPC
data-centers.
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