
OpenCL Performance Portability for Xeon Phi

Coprocessor and NVIDIA GPUs: A Case Study
of Finite Element Numerical Integration

Krzysztof Banaś1 and Filip Krużel2

1 AGH University of Science and Technology
al. A. Mickiewicza 30, 30-059 Kraków, Poland

kbanas@agh.edu.pl
2 Institute of Computer Modelling,

Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Abstract. We present the performance analysis of OpenCL kernels for
three recently introduced many-core accelerator architectures: Intel Xeon
Phi coprocessor and NVIDIA Kepler and Fermi GPUs. We use a case
study of finite element numerical integration, a practically important and
theoretically interesting algorithm used in scientific computing. We de-
sign a single parametrized kernel for all three architectures and test the
performance obtained in numerical tests. We indicate possible further,
architecture dependent, optimizations and draw conclusions on the per-
formance portability for different accelerator architectures and OpenCL
programming model.

Keywords: OpenCL, performance portability, performance analysis,
Xeon Phi coprocessor, GPU, Kepler architecture, Fermi architecture,
finite elements, numerical integration.

1 Introduction

1.1 New Processor Architectures

Accelerated computer hardware plays increasingly important role in scientific
computing [18]. The most popular among recently introduced hybrid systems
are those equipped with cards containing either graphics processors (mainly
produced by NVIDIA) or new Intel Xeon Phi coprocessors [15]. New processor
and accelerator architectures pose several problems when porting existing nu-
merical codes. One of the most important, is the problem of programming efforts
required to reach satisfactory performance levels on different platforms, the sub-
ject thoroughly investigated in [3]. It turns out that the ”recompile and run”
approach, used successfully for classical microprocessors during the last decades
of the XXth century, either cannot be used at all, due to the differences in pro-
gramming and execution models, as is the case of graphics processors, or does
not bring expected results, as was reported for Intel Xeon Phi processors [16].

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 158–169, 2014.
c© Springer International Publishing Switzerland 2014



OpenCL Performance Portability 159

Therefore, to reach the goal of efficiently exploiting new processor designs, at
least several architecture characteristics has to be taken into account explicitly.
These characteristics correspond to the development trends in microprocessor
design, such as e.g.:

– the increasing number of processing cores
– the increasing role of SIMD scheduling
– the use of several levels of memory hierarchy
– the presence of vector registers and vector pipelines with increasing width

The first three development directions are well visible for massively multi-core
architectures of GPUs. The last direction becomes more and more indispensable
for getting the proper performance of not only special coprocessor cores [8], but
also cores of standard processors [17]. It would be then advantageous to have
a programming environment that would allow for exploiting all the mentioned
above trends in microprocessor design. The environment should also allow for
certain level of performance portability and eventually lead to performance lev-
els in the range of several tens percent of the theoretical maximum for each
considered hardware.

We choose OpenCL [6] as a programming model in order to reach the goals of
our research. On one hand, it is based on CUDA model [12] designed specifically
for GPUs and, thanks to this, capable of exploiting their possibilities. On the
other hand, due to sufficiently broad support from hardware vendors, OpenCL
software development kits exist for all popular processor and accelerator architec-
tures, and offer opportunities for relatively easy porting of developed programs.
The use of OpenCL as a tool for creating portable codes was investigated in the
context of classical processors and GPUs (see e.g. [14]). We extend this research
by considering the architecture of Xeon Phi and the problem of finite element
numerical integration.

1.2 Finite Element Software

Finite element method is one of the most popular methods for approximating
partial differential equations used in many application domains of science and
engineering. For each new computing architecture, investigations are performed
concerning the optimal mapping of finite element calculations.

Among the papers on finite elements on GPUs, several are of special interest
when considering the general problem of code portability. The first group of pa-
pers is related to efforts to create optimized versions of codes, based on abstract
specifications of weak formulations and suitable, sophisticated compilers that
transform specifications into optimized procedures [10]. The research on map-
ping of algorithms to modern computer architectures has its own significance, as
the basis for code development and further investigations concerning subsequent
architectures and new development tools. One of the most important papers in



160 K. Banaś and F. Krużel

the category of analysis of finite element solution procedures is [4], where several
strategies for global linear system assembly are investigated and compared. Our
approach is similar. We analyse the code and formulate design guidelines that
can be further used in code design for particular hardware, but also for different
approximation methods and problems solved.

1.3 Current Contribution

In the current paper we investigate the possibility of solving, at least partially,
the problem of performance portability among different processor architectures,
by using a generic OpenCL programming environment and a proper analysis
and design of the code ported to new architectures.

As an algorithm for testing the development of portable OpenCL kernels we
choose finite element numerical integration. We consider low order finite ele-
ments, the most popular in practical applications. The use of high order ap-
proximations was the subject of our papers [1] and [9] where investigations were
conducted separately for GPUs and PowerXCell processor, respectively, the lat-
ter being a representative of architectures having specialized cores with extended
vector capabilities.

In the current paper we perform an analysis of numerical integration algo-
rithm and try to design a parametrized OpenCL kernel, that can be used for
three recent accelerator architectures: Intel Xeon Phi coprocessor and NVIDIA
Kepler and Fermi GPUs. We review briefly the OpenCL programming model
and the finite element numerical integration algorithm. We describe the design
of a parametrized kernel for numerical integration and analyse and test its per-
formance in practical calculations. We draw some conclusions concerning further
possible optimizations and porting to other processor architectures.

2 OpenCL Programming Model

We do not describe here the OpenCL programming model as it is defined in the
specification [6]. Instead, we present a model that we adopt for designing the
software, in some ways simplified, but including not only abstract specification of
calculations, but also the characteristics of code execution on different processors.

We assume that each piece of OpenCL code for an accelerator is specified in
the form of a kernel (a function written in a slightly modified variant of C99),
that after compilation is run in the form of a single thread (we use the notion of
”thread”, as more intuitively obvious than ”work-item” notion used in OpenCL).

In CUDA and OpenCL GPU programming models threads are grouped to-
gether into sets that are executed in a SIMD fashion (we do not discuss here
the problem of thread divergence, the situation that we avoid in our designs).
Threads in a single set are scheduled together and each thread is executed on a
single SIMD lane and the whole group is scheduled for a single SIMD (vector)
unit.



OpenCL Performance Portability 161

This model can be useful also for looking at the execution on CPU cores
equipped with wide vector execution units. In fact, this is the perspective adopted
by creators of the OpenCL compiler for Xeon Phi coprocessors (that contain
modified Pentium CPU cores) [7]. Although the notions adopted in the com-
piler’s description are different, in our derivations and analyses we will reserve
the notion of a thread to a subsequent execution of instructions specified in the
kernel code. Hence, in our model one vector instruction executed on a CPU core
corresponds to a set of threads (contrary to a common perspective used e.g.
in OpenMP model and the perspective in [7], where it corresponds to a single
thread).

For both types of architectures, GPUs and Xeon Phi, we will use a notion
of SIMD group of threads, for a set of threads forming a unit of scheduling,
with individual threads executed on either separate scalar GPU cores or SIMD
lanes of a vector unit in CPU cores. The notion of SIMD groups is absent in the
OpenCL specification, however it is present in all CUDA and OpenCL perfor-
mance considerations (as warps for NVIDIA GPUs, wavefronts for AMD GPUs
and threads executing vector instructions for Xeon Phi).

Several SIMD groups form another level of thread organization, a workgroup.
The role of a workgroup in our model, is to provide access to the fast memory,
that is shared by all threads forming the workgroup. Apart from being units
associated with shared memory allocation, workgroups in OpenCL are used for
thread synchronization (mainly to arrange memory accesses).

The notion of fast shared memory (we use the notion of shared memory,
as reflecting its role in OpenCL programs, instead of an OpenCL notion of
local memory) is typical for GPU architectures. It is mapped to special memory
modules on GPUs. The notion of shared memory does not play an important
role in the Xeon Phi OpenCL model of execution. The documentation states
that it is mapped to a part of global memory. Nevertheless, the memory in
CPU-like architectures is cached and one may use OpenCL shared memory to
rewrite the content of data structures in global memory, so that, when properly
rewritten data are used by threads, the new data arrangement allow for lower
access times than in original storage (assuming that caching takes place). This
may resemble e.g. repackaging used for classical processors in high performance
implementations of linear algebra routines [5].

The OpenCL specification assumes that the whole workgroup is scheduled for
execution on a single compute unit. Compute units in GPUs are well defined
hardware blocks (e.g. streaming multiprocessors for NVIDIA GPUs). For the
OpenCL model of execution on Xeon Phi the hyperthreading capabilities of its
cores are utilized. Each workgroup is treated as one classical thread and, hence,
four workgroups are scheduled for concurrent execution on a single CPU core
(since Xeon Phi cores have 4-way hyperthreading).

Finally, a set of workgroups forms the whole set of threads executing a single
kernel on an OpenCL device. Workgroups are executed in a fully MIMD fashion
and no dependencies can exist between different workgroups.



162 K. Banaś and F. Krużel

Apart from shared memory discussed above, we consider two other types of
memory available to threads: registers and global memory. In OpenCL (and
CUDA as well) there is a special type of variables (local variables) designed to
be stored in registers, whenever it is possible. However, when the number of such
variables exceeds the limits imposed by the hardware or programming model,
the compiler may ”spill” the variables to global memory. In the first generations
of GPUs, such a situation resulted in serious performance deterioration, since
global memory was not cached. In recent generations (and both architectures
that we consider in our paper), the global memory is cached and one can expect
lower penalties for register spilling.

The last aspect of programming and execution model that we mention in this
brief description is the time of accesses to shared and global memory. In classical
CPU programming, when creating a single thread code, the main design guideline
is to increase spatial and temporal locality. For GPUs one more aspect appears,
the proper organization of memory accesses for a SIMD group of threads. We try
to use in our design the safest method leading to optimal memory performance
(global as well as shared). Whenever threads access memory, the slowest memory
present in the instruction is accessed in such a way that subsequent threads access
subsequent memory locations (32 or 64-bit).

This method of accessing memory, should also work well for Xeon Phi archi-
tecture. When subsequent threads in a SIMD group access subsequent memory
locations, their accesses can be grouped into a single vectorized memory access,
that in turn should speed-up code execution.

3 Finite Element Numerical Integration

Finite element codes are based on integral weak statements of the problems
solved [2]. To effectively solve the problems, finite element codes transform weak
statements into systems of linear equations. Each entry in the system matrix
is obtained as a sum of integrals, performed for individual finite elements. The
most common way of calculating integrals is to use numerical integration. Hence,
numerical integration forms one of indispensable parts of generic finite element
codes in any application domain.

In the current paper we leave the problem of designing a generic numerical
integration procedure for different approximation methods and problems solved
and concentrate on two simple test cases for which we assess the performance of
an OpenCL kernel on different processor architectures.

We assume that numerical integration is performed in a loop over finite el-
ements and for each element a small dense matrix AiE is created, that is fur-
ther used in calculations. The algorithm of finite element numerical integration
adopted for analysis in the current paper can be represented as Algorithm 1.
Its essence lies in computing the entries to subsequent matrices AiE (element
stiffness matrices), based on the values stored, separately for each element, in
arrays c (coefficients) and ψ (element shape functions with their derivatives).



OpenCL Performance Portability 163

Algorithm 1. The algorithm of numerical integration used in the study

1: read input data common to all elements processed by a thread
2: for iE = 1 to NE do
3: read input data specific to a given element (including coefficients c)
4: initialize element stiffness matrix, AiE

5: for iQ = 1 to NQ do
6: calculate derivatives of shape functions at a given integration point, ψ[iQ]
7: for iS = 1 to NS do
8: for jS = 1 to NS do
9: for iD = 1 to ND do
10: for jD = 1 to ND do
11: AiE [iS ][jS ]+ = c[iD][jD ]×ψ[iD][iS ][iQ]×ψ[jD ][jS ][iQ]
12: end for
13: end for
14: end for
15: end for
16: end for
17: store AiE in global memory
18: end for

One of the most important characteristics of Algorithm 1 is the range of its
loops. The parameters specifying the ranges are the following:

– NE - the number of finite elements, assumed to be in the order of millions
– NS - the number of element shape functions, in the order of several for low

order approximations analysed in the current paper
– NQ - the number of integration points within single element, in the order of

several for low order approximations analysed in the current paper
– ND - number of space dimensions plus one (in the algorithm it is assumed

that arrays ψ contain the values of functions and the values of their spatial
derivatives, index value 0 corresponds to the function itself, index values
different from zero correspond to its derivatives). In our investigations for
3D problems, ND is always equal to four.

Algorithm 1 takes as the input some data stored in global memory of the
device performing calculations. In the current paper we do not consider the
problem of transferring the input data from finite element data structures (that
may reside in a different memory). For each element the main input data consist
of parameters that describe the geometry of the element and the coefficients
for computing matrix entries. The geometry parameters are used for calculating
the derivatives of shape functions. In Algorithm 1 it is assumed that the input
coefficient matrices c are used in calculations without changes.

The output of the algorithm is represented as a set of element stiffness ma-
trices, that can be further assembled to the global matrix or used directly in
matrix-free linear system solvers [13].



164 K. Banaś and F. Krużel

4 Computational Aspects of Numerical Integration
Algorithm

From the computational point of view, the algorithm of finite element numerical
integration is interesting as the one that combines relative simplicity with many
ways for introducing different optimizations. The difficulty of optimizing it lies
in the fact that PDE coefficients used in final calculations usually have different
non-zero structure for different types of approximated problems and may be
(e.g. for quasi-linear or non-linear problems) computed at each integration point
based on input matrices c (the option not considered in the current paper).
Moreover, the entries of arrays ψ are computed in different ways for different
types of finite element approximations. All these facts influence significantly the
optimizations that can be applied to the algorithm and the performance that
can be achieved as a result [10,4].

4.1 Parallelization

In the form presented in Algorithm 1, the most suitable for parallelization is
the loop over elements. The number of elements for large scale problems exceeds
many times the number of threads necessary for optimal usage of computing re-
sources (even for clusters with GPUs). When considering numerical integration
alone, the algorithm is embarrassingly parallel with no dependencies between
calculations for any two different elements (when considered as a part of finite
element calculations, special techniques, such as colouring, has to be often ap-
plied to avoid dependencies).

In the current paper we consider only the parallelization of the loop over
elements. The parallel code obtained from Algorithm 1 does not change at all, the
only thing that changes is the range of element indices assigned to a thread. We
pose the question how to design a portable OpenCL kernel for Algorithm 1, that
would properly map to computing resources of different processor architectures.
We test the performance obtained when the same, simple design guidelines are
applied for different architectures.

These guidelines are the following: we try to limit the number of global mem-
ory accesses and maximize the use of registers in main calculations. We utilize
the ability, offered by the OpenCL programming model, of explicitly manag-
ing the fast shared memory. However, we use shared memory with caution. For
GPUs, despite the fact that it is usually one order of magnitude faster than
global memory, it is several times slower than registers and, when its size for a
single workgroup grows, it can limit the number of concurrently working SIMD
groups and, in consequence, slow down execution by not allowing the concur-
rent execution of multiple SIMD groups to hide instruction and memory access
latencies.

4.2 Arithmetic Operations and Register Accesses

In analysing the parallel version of Algorithm 1 we accept, in the usual way,
the numbers of operations performed and the numbers of memory accesses, as



OpenCL Performance Portability 165

the most important characteristics of code execution. The number of operations
depends on the non-zero pattern of array c (with all optimizations that it induces
taken into account) and the number of additional operations performed in line 6
of Algorithm 1. The number of global memory accesses, in the version adopted
in our study, is related only to the operations in lines 1,3 and 17 of Algorithm
1 (assuming that there is no register spilling to global memory). The number
of shared memory accesses depends on the details of operations in line 6 of
Algorithm 1, as well as the ability of the hardware to store all the data used in
main calculations in line 11 of Algorithm 1 in registers.

Typical for the situation when the number of required registers exceeds the
limits of the GPU hardware, is to consider the use of shared memory for some of
data used in calculations or even change the algorithm [1]. In the current study,
for the purpose of analysing the portability of the code, we leave to further papers
more elaborate investigations considering the optimal mapping of calculations
for different architectures and design the code assuming that all the data in main
calculations in line 11 of Algorithm 1 reside in registers and, in a manner typical
for CPU programming, relying on the compiler for the optimization of register
variable usage.

4.3 Memory Accesses

Reading input data in lines 1 and 3 of Algorithm 1 is assumed as reading from
global memory to shared memory. The accesses to global memory from different
threads in a SIMD group are organized in an optimal way with subsequent
threads accessing subsequent memory locations. In a similar way, accesses to
shared memory storing read data are organized during further calculations. The
accesses to global memory when writing output data are also performed in the
optimal manner. In that way, not optimal memory accesses are reduced to shared
memory accesses during reading of input data from global memory.

4.4 Arithmetic Intensity

Table 1 presents arithmetic intensity parameters for executing Algorithm 1 for
a single prismatic 3D finite element with linear approximation and two test
cases selected for the paper, associated with two example forms of arrays c.
The first case, corresponding to e.g. Laplace equations, has only 3 non-zero
entries, all equal to one, for all 16 combinations of indices iD and jD and lead
to 7 operations performed for calculations in lines 9–13 of Algorithm 1 (for
off-diagonal stiffness matrix entries symmetry can be taken into account). The
second case, corresponding e.g. to full convection-diffusion-reaction PDEs, has
all 16 entries non-zero and results in more than two times more operations
performed in loops over indices iD and jD in Algorithm 1. The relatively high
ratios of the number of floating point operations to the number of global and fast
memory accesses allow one to expect performance figures possible to obtain in
the range of several tens of maximum performances for floating point operations.



166 K. Banaś and F. Krużel

Table 1. The ratio of the number of floating point operations to the number of global
and fast (shared and constant) memory accesses for an implementation of Algorithm 1

Type of problem:

For single finite element: Laplace conv-diff

The number of floating point operations 2916 4806

The number of global memory accesses 60 74

The arithmetic intensity for global memory ≈48 ≈65

The number of fast memory accesses 276 276

The arithmetic intensity for fast memory ≈10 ≈17

However, the numbers in Table 1 are obtained assuming that there are no
global memory accesses due to register spilling . Another factor that can limit
the performance, especially in the case of GPUs, is the fact that large register
and shared memory requirements, related to the optimal execution of individual
statements, can induce low ”processor occupancy”, i.e. low number of concur-
rently executed SIMD groups, that in turn will not allow for fully hiding the
latency of arithmetic and memory operations.

5 Numerical Experiments

5.1 Parametrized Implementation of Numerical Integration
Algorithm

We design a single OpenCL kernel implementing a specific version of Algorithm
1, based on the OpenCL model of programming and the design guidelines and
execution performance analysis described earlier. We parametrize the kernel with
several parameters that are specified either at compile time or runtime. There
are two parameters that adapt the kernel to processor architectures. The first
is the size of workgroups. Based on recommendations in programming guides
([12,7]) we choose 64 threads for a single workgroup for NVIDIA GPUs and 16
threads for Xeon Phi. The second is the number of workgroups. We assume that
at least 8 workgroups are assigned to each compute unit of GPUs, while there
is only one workgroup for one compute unit for Xeon Phi (i.e. there are four
workgroups for each of its cores).

5.2 Hardware Used for Testing

We performed numerical tests for Intel Xeon Phi coprocessor working in 5110P
accelerator card and NVIDIA GPUs working in Tesla accelerator cards: Tesla
M2075 for Fermi GPU and Tesla K20 for Kepler GPU. All cards are connected
to systems running Linux with kernel 2.6.32. For OpenCL code development on
NVIDIA GPUs, compilers and libraries from CUDA 5.5 SDK were used, while
for Xeon Phi we employed compilers and libraries from Intel SDK for OpenCL



OpenCL Performance Portability 167

Table 2. Characteristics of accelerators used in computational experiments

OpenCL device Fermi Kepler Xeon Phi
Tesla M2075 Tesla K20m 5110P

Number of compute units 14 13 236

Number of cores per comp. unit 32 192 1/4

Total number of cores 448 2496 59

Shared (local) memory size [KB] 48 48 32

Number of registers per comp. unit 32768x32bit 65536x32bit 32x512bit

Device memory size [MB] 5375 4800 5773

Global max alloc size [MB] 1343 1200 1924

Peak DP performance [TFlops] 0.515 1.17 1.01

Benchmark (DGEMM) performance 0.36 1.10 0.84

Peak SP performance [TFlops] 1.03 3.52 2.02

Benchmark (SGEMM) performance 0.51 2.61 1.74

Peak memory bandwidth [GB/s] 150 208 320

Benchmark (STREAM) bandwidth 105 144 165

Applications XE 3.0. Table 2 presents several characteristics of the accelerators
used for testing1.

5.3 Results

Table 3 presents the results of test runs for all three accelerators, single preci-
sion and double precision calculations and two problem types introduced above:
Laplace and convection-diffusion-reaction. Several parameters are given for each
run: execution time for a single finite element, performance in GFLOPS and
as a percentage of the theoretical peak (the results are reported for the best of
several executions). Additionally for GPUs the table contains the information
provided by the nvcc compiler and concerning the number of registers used by
each thread and the size of stack frame in global memory related to spilled loads
and stores.

Several observations follow:

– the results vary significantly for both problems, different architectures and
different precision of data

– for Fermi architecture, the resources are sufficient for single precision calcu-
lations (especially for Laplace test case, for which the calculated occupancy
equals 33% and the performance reaches very high values around 60% of the
theoretical peak), but the number of registers and the size of shared memory
are too small to allow for high performance of the kernel for double precision
calculations (where small occupancy and register spilling occurs)

1 For Xeon Phi architecture the number of compute units reported by the OpenCL
compiler is four times larger than the number of cores. This is related to the ”hy-
perthreading” form of SMT for Intel x86 cores [11], where each core is seen as four
”logical processors” (and each logical processor is considered as a compute unit).



168 K. Banaś and F. Krużel

Table 3. Finite element numerical integration execution characteristics and perfor-
mance results for two test cases: Laplace equation and convection-diffusion PDE and
three accelerator architectures: Fermi, Kepler and Xeon Phi. The same OpenCL kernel
is used for all calculations, execution times are reported for one element .

M2075 – Fermi K20 – Kepler 5110P–Xeon Phi

SP DP SP DP SP DP

Laplace

Execution time [ns] 4.5 43.1 3.79 10.73 18.75 32.0

Performance [GFLOPS] 648 67 769 272 155 91

Performance [% of peak] 62.9 13.0 21.8 23.2 7.6 9.0

The number of registers used 63 63 92 158 – –

The size of stack frame [B] 40 320 0 0 – –

convection-diffusion

Execution time [ns] 13.3 119.5 4.25 11.9 18.7 32.1

Performance [GFLOPS] 361 40 1131 404 257 150

Performance [% of peak] 35.0 7.7 32.1 34.5 12.7 14.8

The number of registers used 63 63 126 196 – –

The size of stack frame [B] 120 616 0 0 – –

– for Kepler architecture the results are consistent for single and double pre-
cision, while the performance is approximately 50% higher for the test case
with higher arithmetic intensity (reaching more than 30% of the theoretical
peak)

– the same observation holds for Xeon Phi, while the obtained performance,
as the percentage of the peak, is more than two times lower than for the
Kepler architecture

– the portable kernel used in the study, turned out to be the fastest for GPUs,
but not the best for Xeon Phi, for which the kernel with no explicit usage
of shared memory performed calculations approx. 20% faster

6 Conclusions

The analyses presented in the paper show how OpenCL notions can be used
for designing a single code for such different architectures as NVIDIA GPUs
and Xeon Phi. The same code, with only two parameters adapted to different
architectures, was created for an example algorithm of finite element numerical
integration. The performance results show that, using design process based on
several simple, general optimization guidelines, it is possible to obtain for each
architecture a reasonable performance, sometimes above 50% of its theoretical
maximum. However, at the current stage, with the performance for several cases
below 10% of the theoretical maximum, it cannot be concluded that full perfor-
mance portability, if defined as obtaining high performance with a single code
for all considered architectures, has been reached.



OpenCL Performance Portability 169

Acknowledgements. This work was supported by the Polish National Science
Centre under grant no DEC-2011/01/B/ST6/00674.

References

1. Banaś, K., P�laszewski, P., Macio�l, P.: Numerical integration on GPUs for higher
order finite elements. Computers and Mathematics with Applications 67(6),
1319–1344 (2014)

2. Becker, E., Carey, G., Oden, J.: Finite Elements. An Introduction. Prentice Hall,
Englewood Cliffs (1981)

3. Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bach-
mayer, B., Kessler, C., Moloney, D., Osipov, V.: Peppher: Efficient and productive
usage of hybrid computing systems. IEEE Micro 31(5), 28–41 (2011)

4. Cecka, C., Lew, A.J., Darve, E.: Assembly of finite element methods on graph-
ics processors. International Journal for Numerical Methods in Engineering 85(5),
640–669 (2011), http://dx.doi.org/10.1002/nme.2989

5. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008),
http://doi.acm.org/10.1145/1356052.1356053

6. Group, K.O.W.: The OpenCL Specification, version 1.1 (2010),
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

7. Intel: Intel SDK for OpenCL Applications XE 2013 R3. User’s Guide (2013)
8. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-

ming, 1st edn. Morgan Kaufmann (2013)
9. Krużel, F., Banaś, K.: Vectorized OpenCL implementation of numerical integra-

tion for higher order finite elements. Computers and Mathematics with Applica-
tions 66(10), 2030–2044 (2013)

10. Markall, G.R., Ham, D.A., Kelly, P.H.: Towards generating optimised finite element
solvers for gpus from high-level specifications. Procedia Computer Science 1(1),
1815–1823 (2010); iCCS 2010

11. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, A.J., Up-
ton, M.: Hyper-Threading Technology Architecture and Microarchitecture. Intel
Technology Journal 6(1), 4–15 (2002)

12. NVIDIA: NVIDIA CUDA C Programming Guide Version 5.0 (2012)
13. Reguly, I., Giles, M.: Finite element algorithms and data structures on graphi-

cal processing units. International Journal of Parallel Programming, 1–37 (2013),
http://dx.doi.org/10.1007/s10766-013-0301-6

14. Rul, S., Vandierendonck, H., D’Haene, J., De Bosschere, K.: An experimental
study on performance portability of opencl kernels. In: Application Accelerators
in High Performance Computing, 2010 Symposium, Papers, Knoxville, TN, USA,
p. 3 (2010)

15. Top500, http://www.top500.org
16. Wienke, S., an Mey, D., Müller, M.S.: Accelerators for technical computing: Is it

worth the pain? A TCO perspective. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2013. LNCS, vol. 7905, pp. 330–342. Springer, Heidelberg (2013)

17. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009),
http://doi.acm.org/10.1145/1498765.1498785

18. Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y. (eds.): GPU Solutions
to Multi-scale Problems in Science and Engineering. Springer (2013)

http://dx.doi.org/10.1002/nme.2989
http://doi.acm.org/10.1145/1356052.1356053
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dx.doi.org/10.1007/s10766-013-0301-6
http://www.top500.org
http://doi.acm.org/10.1145/1498765.1498785

	OpenCL Performance Portability for Xeon Phi Coprocessor and NVIDIA GPUs: A Case Study of Finite Element Numerical Integration
	1
Introduction
	1.1
New Processor Architectures
	1.2
Finite Element Software
	1.3
Current Contribution

	2
OpenCL Programming Model
	3
Finite Element Numerical Integration
	4
Computational Aspects of Numerical Integration Algorithm
	4.1
Parallelization
	4.2
Arithmetic Operations and Register Accesses
	4.3
Memory Accesses
	4.4
Arithmetic Intensity

	5
Numerical Experiments
	5
.1 Parametrized Implementation of Numerical Integration Algorithm
	5.2
Hardware Used for Testing
	5.3
Results

	6
Conclusions
	References




