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Abstract. Task-based programming models are becoming increasingly
important, as they can reduce the synchronization costs of parallel pro-
grams on multi-cores. Instances of the same task type in task-based
programs consist of the same code, which leads us to the hypothesis
that their performance should be regular and thus their execution time
should be predictable. We evaluate this hypothesis for a set of 12 task-
based programs on 4 different machines: a high-end Intel SandyBridge,
an IBM POWER7, an ARM Cortex-A9 and an ARM Cortex-A15. We
show, that predicting execution time assuming performance regularity
can lead to errors of up to 92%. We identify and analyze three sources
of execution time impredictability: input dependence, multiple behav-
iors per task type and resource sharing. We present two models based
on linear interpolation and clustering, reducing the prediction error to
less than 12% for input dependent task types and to less than 2% for
task types with multiple classes of behavior. All in all, this work invali-
dates the assumption that performance is always regular across instances
of the same task type and quantifies its variability on a wide range of
benchmarks and multi-core systems.

Keywords: Execution Time Predictability, Task-Based Programming
Models, Multi-Core.

1 Introduction

Multi-core systems are integrating an increasing number of processor cores on
a single chip. This makes it difficult for programmers to exploit the available
on-chip thread-level parallelism.

Task-based programming models allow the programmer to specify program
parts called tasks. Tasks may execute concurrently and are typically instantiated
many times during execution. A runtime environment dynamically maps task
instances to threads. The intuitive program partitioning improves programma-
bility. At the same time, dynamic task scheduling reduces the inherent synchro-
nization costs of other shared memory programming models thanks to a better
load balancing [1].

The fact that all instances of the same task type consist of the same static code
suggests that they should exhibit similar performance and execution time and,
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therefore, execution time should be predictable. In this paper, we investigate
the execution time predictability of task-based programs based on performance
regularity. We carry out an analysis on four different state-of-the-art multi-core
machines, two based on ARM Cortex-A9 MPCore and Cortex-A15 MPCore mo-
bile CPUs, and the other two based on high-end Intel Sandy Bridge and IBM
POWER7 CPUs. This allows us to investigate if performance regularity depends
on the architecture. We expect performance variability to increase when increas-
ing the number of execution threads competing for shared resources. Therefore,
we analyze performance variability on a per-task-instance basis for thread counts
ranging from one to the number of cores on each machine. We reach similar
conclusions for the different machines, but find that architectures with more
aggressive performance optimizations show a higher performance variability.

We identify three sources of variability across instances of the same task
type: input dependence, multiple classes of behavior and contention on accessing
shared resources. For programs suffering from resource contention, we investi-
gate how sharing decreases performance and increases performance variability.
We also present a model based on linear interpolation to predict execution time
of input dependent task types. Furthermore, we use a clustering algorithm to
identify different behaviors in the same task type. Using our interpolation model
and clustering algorithm, we dramatically increase the accuracy of execution
time prediction. Prediction errors over 80% are reduced to less than 12% for
input dependent cases and less than 2% on the presence of multiple behaviors.

The contributions of this paper are the following:

– An analysis of performance variability across instances of the same task type
in task-based programs running on multi-core systems. This analysis shows
the variability on an instance by instance basis.

– A classification of sources of execution time variability on instances of the
same task type.

– A low-complexity model based on linear interpolation for predicting the ex-
ecution time of a task instance as a function of its instruction count.

– The use of a clustering algorithm to identify different classes of behavior in
the same task type. In our example, we successfully classify task instances
into clusters that exhibit, each of them, regular performance.

2 Related Work

To the best of our knowledge, this is the first analysis of execution time pre-
dictability on task-based programs. However, there are other performance anal-
yses of task-based programs focusing on other aspects.

Duran et al. [4] present a benchmark suite consisting of task-based OpenMP
programs. They give examples for different kinds of performance analyses of
these benchmarks. They evaluate total execution time as a function of various
parameters such as processor count and task creation cut-off parameters. Other
works [14,15] investigate task granularity and task creation cost as performance-
limiting factors in task-based programs. However, these works neither analyze
performance on a per-task-instance basis nor task execution time predictability.



220 T. Grass et al.

There are other works that use analytical models to predict execution
time [8,10,6]. These works use mathematical models to compute the delays of
certain events during execution. Most past works compute delays for events at
the instruction-level, such as instruction issue and commit, branch mispredic-
tions and cache misses. Our model works at a coarser granularity by computing
the delay of whole individual tasks.

Performance predictability of parallel applications on large HPC systems has
been explored from many perspectives. Some approaches combine the efficiency
of analytical models with the accuracy of simulation to generate accurate and
fast performance predictions [16]. Other approaches [9] explore performance pre-
dictability by developing application-specific performance models, which are for-
mulated from an analysis of the code, inspection of key data structures, and
analysis of traces gathered at runtime. While this methodology provides fast
and accurate predictions, it is application specific and it requires a deep under-
standing of the scientific codes. These works target MPI applications while the
work in this paper focuses on shared memory task-based programs.

3 Execution Time Predictability of Task-Based Programs

Many parallel implementations of numerical algorithms decompose the problem
domain into sub-domains called blocks or tiles. In task-based programming mod-
els the programmer specifies parts of a program as work units called tasks, each
one to perform a different operation. A task is usually instantiated many times,
each instance performing the common operation of the task on a separate block
or tile. Task instances can be scheduled to threads whenever they have their
dependencies satisfied. Typically, a thread executes many task instances before
reaching a synchronization point.

The fact that instances of the same task type consist of the same code leads us
to the assumption that they consist of similar numbers of instructions, exhibit
similar performance and therefore their execution time is predictable. However,
this assumption turns out to be wrong in some cases. Fig. 1 shows the total
execution time prediction error for a set of task based programs, assuming the
time of the first or the second executed instance for all instances of a task type.
The error is calculated according to Eqn. 1, with T the set of task instances of
the same task type, CSample the cycle count of the sample task instance and
Ci the cycle count of task instance i. We only investigate time spent in task
execution and ignore operating system and runtime system overheads.

Err =

(
1−

∣∣∣∣
∑

i∈T CSample∑
i∈T Ci

∣∣∣∣
)
· 100% (1)

Before conducting our detailed analysis, we envision three potential sources
of performance variability that potentially degrade performance predictability:

– Input dependence: The behavior of a task instance is input dependent. An ex-
ample is sparse algorithms in which task instances perform different amounts
of computation or exhibit different memory access patterns.
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Fig. 1. Percent error when assuming the execution time of the first / second executed
task instance for all task instances to predict total execution time. Results shown for
four different machines (see Tab. 2) and different thread counts.

– Several types of behavior per task type: Task instances of the same type
perform one out of several possible types of computation. An example is
recursive algorithms in which some task instances create more child tasks,
while others perform the actual computation when the recursion terminates.

– Shared resources contention: Multiple threads interfere with each other when
accessing shared resources. Different instances of the same task type may
suffer from different degrees of interference caused by other threads running
in the system and accessing shared resources. This includes shared caches,
interconnect structures and memory bandwidth.

4 Experimental Setup

In this section we present the experimental setup used for the performance anal-
ysis in this paper. First, we give a brief overview of OmpSs [5], the task-based
programming model used for our analysis. Afterwards, we explain how we mea-
sure the performance of OmpSs programs on a per-task basis. We present the
investigated benchmarks and explain how we configured them to obtain mean-
ingful results. Finally, we present the platforms on which we run our experiments.
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Programming Model: OmpSs is an extension of OpenMP 3.0. It consists of
the Mercurium compiler and the NANOS++ runtime environment. In addition
to the features of OpenMP 3.0, it allows to annotate tasks with data inputs and
outputs. The NANOS++ runtime system automatically manages inter-task data
dependencies and schedules and synchronizes task instances accordingly. These
OmpSs features were included in the recent OpenMP 4.0 specification.

Measuring the Performance of Tasks: We measure cycle count, instruction
count and numbers of L1 (data), L2 (data) and L3 cache misses using hardware
performance counters. We modify Mercurium to insert calls to a low-overhead
instrumentation library at the beginning and the end of each task instance. This
instrumentation library is an interface to the PAPI library [3]. Since NANOS++
can suspend a task instance before it completes, we also instrument NANOS++
to pause the performance measurement if a task is suspended.

Benchmarks: In this paper we investigate a set of 12 parallel benchmarks.
They are task-based programs implemented in the OmpSs programming model.
The benchmarks and their key characteristics are listed in Tab. 1. They cover a
wide range of algorithms that are widely used in HPC scientific applications and
include programs with different compute-to-memory ratios, different memory
access patterns and different amounts of parallelism and synchronization. The
first ten benchmarks have been successfully used in previous works to evaluate
HPC clusters [12,13], while fluidanimate and swaptions are part of the PARSEC
benchmark suite [2]. As we conduct this work, these are the only benchmarks of
the PARSEC suite for which there is an OmpSs implementation available. We
perform ten executions of each benchmark for each configuration and choose the
fastest one for our evaluation to minimize OS noise.

Application Tuning: We classified the benchmarks according to whether they
are compute-intensive or not. Because the working sets of all concurrently
executing task instances fit into the last level cache, we considered the follow-
ing benchmarks as compute-intensive: 2d-convolution, 3d-stencil, atomic-monte-
carlo-dynamics, merge-sort, dense-matrix-multiplication, fluidanimate and
swaptions.

We optimized compute-intensive benchmarks by adjusting the task working
set to fit into the on-chip last-level cache. This is one of the most straightforward
optimizations applied by programmers in blocked numerical algorithms. The
most cache constrained configuration is the Cortex-A9 running with four threads.
Therefore, we adjusted the task working set to fit a fourth of the last-level cache
in the Cortex-A9 chip. We use the same configuration for all platforms to have
the same basis for comparison.

For the remaining benchmarks, we configured the task working set for the
resulting task instances to be at least 100 000 instructions long. By doing so,
we ensure that the time spent in task execution is significantly larger than the
time spent in performance measurement code. The number of task instances per
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Table 1. Investigated benchmarks

Benchmark Properties

2d-convolution Strided accesses

3d-stencil Strided accesses

atomic-monte-carlo-dynamics Embarrassingly parallel

dense-matrix-multiplication High data reuse, compute bound

histogram Atomic operations

merge-sort Recursion, many synchronizations

n-body Irregular memory accesses

reduction Parallelism decreases over time

sparse-matrix-vector-multiplication Load imbalance, memory bound

vector-operation Regular, memory bound

fluidanimate Variable task instance size

swaptions Regular, computation bound

Table 2. Investigated machines

Micro-
arch.

Cores L1 size L2 size L3 size Memory

ARM Cortex-A15
MPCore

2 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-1600

ARM Cortex-A9
MPCore

4 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-15001

Intel
Sandy Bridge

8 32KB+32KB
per core

256KB
per core

20MB
shared

32GB 64-bit
DDR3-1600

IBM
POWER7

8 32KB+32KB
per core

256KB
per core

32MB
shared

64GB 64-bit
DDR3-1600

application is adjusted to a large enough number so there is enough parallelism
to use all threads at all times.

Investigated Platforms: Tab. 2 gives an overview of the characteristics of the
four machines used for the evaluation in this paper. The first two platforms are
based on low-power mobile systems-on-a-chip, while the other two are high-end
machines used in HPC environments. This selection of machines covers three of
the most important ISAs nowadays: x86-64, POWER ISA, and ARMv7. Even

1 DDR3L-1600 connected to a 750MHz interface.
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though ARM microprocessors are not used in HPC environments yet, there
is an increasing interest in integrating ARM chips in future server and HPC
machines [7,13]. Besides, these four machines cover a wide range of performance
levels as well as different ISAs, CPU, cache and memory technologies.

5 Evaluation

The results of the experiments conducted in the scope of this paper show that,
despite the obvious intuition, performance can be irregular across the instances
of the same task type. This directly affects execution time prediction (shown
in Fig. 1). In this section, we first show the results of our performance analysis
on a per-task-instance basis. Afterwards, we present a case of input dependent
task behavior and present a model to estimate the execution time of a task in-
stance as a function of its instruction count. We also show a case of multiple
classes of behavior within a single task type. We use a clustering technique to
distinguish different classes of behavior and improve execution time predictabil-
ity. Finally, we explain how resource sharing affects performance regularity and
analyze contention on different resources in the memory hierarchy.

5.1 Per-Task-Instance Performance Analysis

Fig. 2 shows boxplots of the measured instructions per cycle (IPC) per task
type. Each chart corresponds to one task type and shows the measured results
on four different platforms. Only one thread per core is executed in each experi-
ment, which limits the configurations to two threads (Cortex-A15), four threads
(Cortex-A9), and eight threads (Intel Sandy Bridge and IBM POWER7). The
solid box contains the interquartile range of the measured IPC values of all in-
stances of the respective task type, i.e., 50% of the observations are within this
range. The horizontal line within the box indicates the median. The whiskers
extend from the 5th to the 95th percentile. The lower and upper 5% of the
measured IPC values are treated as outliers.

Most of the investigated benchmarks only have one task type, whereas merge-
sort, n-body and reduction have two and fluidanimate has eight. The different
task types of fluidanimate show similar performance variability. Therefore, we
limit our evaluations to the task type ComputeForcesMT which accounts for
40% of fluidanimate’s total instruction count.

In our results we observe two general classes of behavior. The first class con-
sists of benchmarks for which IPC does not significantly degrade when increasing
the number of execution threads. This behaviour is exposed by the benchmarks
2d-convolution, atomic-monte-carlo-dynamics, merge-sort (both tasks), n-body
(both tasks), reduction (both tasks), fluidanimate (all task types) and swaptions.
We make the important observation that 2-d convolution, atomic-monte-carlo-
dynamics and n-body (task type 1) present a nearly constant IPC with very low
variability. This behavior is persistent across the different platforms.

The second class of behavior consists of the benchmarks for which IPC de-
grades when increasing the number of execution threads. This phenomenon is
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Fig. 2. IPC variation per task type on four different platforms (ARM Cortex-A9 and
A15, Intel Sandy Bridge and IBM POWER7)

known as work time inflation [11]. In our benchmark suite, this behavior is
exposed by the benchmarks 3d-stencil, histogram, sparse-matrix-vector-multipli-
cation and vector-operation. For these benchmarks, we also observe an increasing
performance variability. Note that the variability shown in Fig. 2 directly relates
to the prediction error shown in Fig. 1.
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5.2 Predictability of Irregular Behavior

In this subsection we identify three sources of irregular behavior, namely input
dependence, multiple classes of behavior per task type and resource sharing.
We predict execution time of task types with input dependent behavior using
an interpolation-based model. For task types with several classes of behavior
we use a clustering algorithm to detect clusters of similar behavior and predict
execution time on a per-cluster basis. Finally, we analyze the impact of resource
sharing on performance predictability.

Input Dependence: Input dependence is the dependence of the control flow
of a task instance on the input data. Fig. 3 shows heatmaps of the programs flu-
idanimate and merge-sort. Heatmaps are a representation of a two-dimensional
histogram. The colours indicate how many task instances have a certain instruc-
tion count and a certain IPC.

In the case of fluidanimate, the instruction count of task instances varies be-
tween 1 million and 70 million instructions, while IPC tends to be higher for
higher instruction counts. This results in different numbers of execution cycles.
Assuming the same cycle count for all task instances leads to the prediction error
shown in Fig. 1 which reaches over 80%. The instruction count and IPC variation
is caused by the fact that all task instances perform an index computation that
is highly inefficient for high indexes. We want to emphasize that this index com-
putation is part of the default implementation of the fluidanimate benchmark
and is not caused by porting the benchmark to the OmpSs programming model.

For the programs fluidanimate and merge-sort (task type 1) we apply a
sampling-based model to predict execution time as a function of instruction
count for all task instances. This model assumes that the instruction count of
each task instance is known apriori and works as follows. First, we add instruc-
tion count and execution time of the first executed task instance to the (empty)
set of support points. Afterwards, for each encountered task instance we check
if its instruction count is less than 90% of the smallest or more than 110% of
the largest instruction count in the set of support points. If this is the case, we
add it to the set of support points. Otherwise, we predict the execution time
by linear interpolation within the set of support points or by constant extrap-
olation in the range outside the support points. Fig. 4 shows that the error of
the total execution time prediction based on this model stays below 12% for all
configurations on the Intel Sandy Bridge machine.

Multiple Behaviors Per Task Type: For merge-sort (task type 2) we observe
two clusters in the heatmap plot, indicating two different behaviors. Strictly
speaking, this is also a case of input dependence. However, the difference to
the type of input dependence covered in the previous section is that there are
multiple classes of behavior. This is caused by the recursive implementation of
the merge sort algorithm. A task instance either creates two child instances,
resulting in the cluster on the left, or it performs a sorting operation, resulting
in the cluster on the right. Predicting execution time based on the assumption
of regular execution time and IPC leads to the error shown in Fig. 1.
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Fig. 3. Instruction count vs. IPC histogram of benchmarks fluidanimate (task type
ComputeForcesMT) and merge-sort (task type 2)

For the aforementioned case, we perform a k-means clustering of all task
instances into two clusters, according to their instruction count. For each cluster,
we determine the centroid and chose the task instance closest to the centroid as a
representative of the respective cluster. Finally, we estimate the total execution
time of each cluster by multiplying the execution time of the representative by
the number of task instances in the cluster. Fig. 4 shows that the error of the
total execution time prediction based on this method is smaller than 2% for all
configurations on the Intel Sandy Bridge machine.

Resource Sharing: The third source of irregular behavior we identified is
resource sharing. In the following, we present four examples of resource sharing.
These examples have in common that contention on shared resources affects the
performance of task instances of the same task type to a different extent. This
increases performance variability and thus decreases performance predictability.
Fig. 5 shows boxplots of L2 data cache and L3 cache misses per 1000 executed
instructions (misses per kilo-instruction, MPKI) of the benchmarks for which we
observed a decrease of IPC for increasing thread counts. The measured number
of L3 cache misses includes misses caused by L2 data cache misses due to the
limitations of the available hardware performance counters.

For 3d-stencil we observe an increase of L2 MPKI when increasing the number
of threads. However, L3 MPKI stays nearly constantly low. Our theory is that
the increased L2 MPKI is caused by invalidations of data residing in the private
L2 caches by other threads.

The histogram benchmark shows not only an increase of L2 MPKI for increas-
ing thread counts, but also an increase in L2 MPKI variability. For increasing
thread counts there might be several threads competing to execute an atomic op-
eration, resulting in higher contention. Furthermore, the execution of the atomic
operation itself can invalidate data in other threads’ private caches.
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Fig. 4. Execution time prediction error using interpolation model (fluidanimate and
merge-sort, task type 1) and clustering (merge-sort, task type 2)
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Fig. 5. L2 data and L3 cache misses per 1000 instructions (MPKI) for 3d-stencil,
histogram, sparse-matrix-vector-multiplication and vector-operation, executed on Intel
Sandy Bridge with 1, 2, 4 and 8 threads

In case of sparse-matrix-vector-multiplication, L2 MPKI and L3 MPKI are
nearly constant for increasing thread counts. Since the benchmark does not use
shared data, the decrease in IPC has to occur due to the limited capacity of
shared resources, e.g. memory bandwidth or cache bandwidth.

For vector-operation we observe a decrease of L2 MPKI when increasing the
number of execution threads. As memory bandwidth saturates for increasing
thread counts, threads progress at a slower rate and thus cause less demand
misses in the L2 cache.

6 Conclusions and Future Work

The analysis in this paper shows that the naive assumption of regular perfor-
mance within a task type is not always valid. However, we show that accurate
performance predictions can be derived from detailed performance information
of a relatively small number of task instances.
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We present techniques to improve prediction accuracy for task types with
irregular performance. These techniques are based on linear interpolation and
clustering. The prediction error is reduced from over 80% to less than 12% for
input dependent cases and less than 2% when having multiple classes of behavior.
Further research is needed to improve execution time predictability of task-based
programs experiencing contention on shared resources.

We envision a potential application of the insights in this paper in the fields of
multi-core architecture simulation and dynamic task scheduling on multi-cores.
If the performance of a task type is predictable it is only necessary to simulate
a subset of all task instances, and smart scheduling techniques can be applied
with apriori-knowledge of the execution time of a task instance.
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B., Wolf, F.: Performance analysis techniques for task-based openMP applications.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 196–209. Springer, Heidelberg (2012)

16. Snavely, A., et al.: A Framework for Performance Modeling and Prediction. In:
Supercomputing 2002, pp. 1–17 (2002)


	Evaluating Execution Time Predictability of Task-Based Programs on Multi-Core Processors
	1
Introduction
	2
Related Work
	3
Execution Time Predictability of Task-Based Programs
	4
Experimental Setup
	5
Evaluation
	5.1
Per-Task-Instance Performance Analysis
	5.2
Predictability of Irregular Behavior

	6
Conclusions and Future Work
	References




