Performance Measurement for the OpenMP 4.0
Offloading Model

Robert Dietrich!, Felix Schmitt!, Alexander Grund!, and Dirk Schmidl?

1 Center for Information Services and High Performance Computing,
Technische Universitidt Dresden, 01062 Dresden, Germany
{robert.dietrich, felix.schmitt}@tu-dresden.de,
alexander.grund@mailbox.tu-dresden.de
2 IT Center, RWTH Aachen University, 52056 Aachen, Germany
schmidl@itc.rwth-aachen.de

Abstract. OpenMP is one of the most widely used standards for enabling thread-
level parallelism in high performance computing codes. The recently released
version 4.0 of the specification introduces directives that enable application devel-
opers to offload portions of the computation to massively-parallel target devices.
However, to efficiently utilize these devices, sophisticated performance analysis
tools are required. The emerging OpenMP Tools Interface (OMPT) aids the de-
velopment of portable tools, but currently lacks the support for OpenMP 4.0 target
directives. This paper presents a novel approach to measure the performance of
applications utilizing OpenMP offloading. It introduces libmpti, an OMPT-based
measurement library for Intel MIC target devices. For host-side analysis we ex-
tended the OPARI2 instrumenter and prototypically integrated the complete ap-
proach into the state-of-the-art tool infrastructure Score-P. We demonstrate the
effectiveness of the presented method and implementation with a Conjugate-
Gradient (CG) kernel on an Intel Xeon Phi coprocessor. Finally, we visualize
the obtained performance data with Vampir.

Keywords: performance analysis, offloading, OpenMP 4.0, Intel MIC, Score-P.

1 Introduction

The directive-based programming model OpenMP is a popular way to develop multi-
threaded applications. Version 4.0 [9] of the specification introduces directives for
computation offloading; thus, taking the availability of accelerator hardware in recent
computing systems and processors into account. Although OpenMP 4.0 provides an in-
terface for programming of heterogeneous hardware, it does not ensure that the available
resources are efficiently exploited, e.g. load-balancing is getting more tedious. To iden-
tify and resolve new potential inefficiencies performance tools are challenged to support
the offloading directives.

For the simple reason that OpenMP does not provide a standardized performance
monitoring interface yet, several individual analysis approaches have emerged. Depend-
ing on the approach they come with inherent limitations and advantages. Although it
is not yet part of the specification, the OpenMP Architecture Review Board released

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 291-301, 2014.
(© Springer International Publishing Switzerland 2014



292 R. Dietrich et al.

the OpenMP Tools Interface (OMPT) as a technical report [2]. OMPT specifies an ap-
plication programming interface (API) that enables tool builders to develop portable
libraries for performance monitoring. First implementations of OMPT are available for
open-source OpenMP runtimes. However, OMPT is built on version 3.1 of the OpenMP
specification and lacks support for offloading directives.

This work presents a portable method to measure the performance of OpenMP 4.0
computation offloading. We further contribute with a prototypic implementation into
the measurement infrastructure Score-P. With regard to the OpenMP standard we build
our approach upon OMPT. As it is already a part of the Score-P infrastructure we use
the source-to-source instrumenter OPARI2 to implement features that are missing in
OMPT. We evaluate the proposed methods with an OMPT implementation in the open-
source version of the Intel OpenMP runtime [1] on the Intel Many Integrated Core
(MIC) architecture using a Conjugate-Gradient kernel.

The remainder of this paper is organized as follows: Section 2 presents related work
in the area of OpenMP performance analysis. In section 3 we depict the two OpenMP
instrumentation approaches this work is based on. Our contribution is discussed in sec-
tion 4 and the integration into the Score-P infrastructure in section 5. We demonstrate
the practicality of the proposed method by applying it to a use case in section 6. Finally,
we conclude this paper and outline future work in section 7.

2 Related Work

Score-P [6] is a unified performance measurement infrastructure for several tools like
Vampir [4] and Scalasca [3]. It supports different programming models such as MPI,
OpenMP and CUDA and it allows to generate profiles in CUBE format as well as traces
in OTF2 format. Considering OpenMP measurement, Score-P uses OPARI2 to instru-
ment application code and implements the POMP2 interface.

Scalasca [3] is a scalable performance analysis toolset which can handle Score-P
generated profiles and traces. It supports the analysis of hybrid MPI+OpenMP appli-
cations on the Intel Xeon Phi coprocessor using Intel’s symmetric execution model for
MIC [10], i.e. MPI communication is used between host and coprocessor. Our work is
different as we focus on the asymmetric offloading model based on OpenMP 4.0. Nev-
ertheless, our approach can be used for hybrid MPI+OpenMP programs on multiple
hosts and coprocessors.

Vampir [4] is a scalable visualization tool for OTF and OTF?2 trace files. It consists
of a client front end and a parallel server back end. Information is visualized in various
displays, including an event timeline, function and message statistics and call stacks.
The integration of our measurement approach into Score-P allows us to use Vampir to
display performance data for offloaded regions.

HPCToolkit [5] is a set of sampling-based tools for measuring, evaluating and vi-
sualizing performance data for MPI, OpenMP and CUDA applications. Considering
OpenMP, HPCToolkit uses the OMPT interface to query state information for OpenMP
threads. States can include for example if a thread is currently executing a parallel re-
gion, it is idle or waiting on another. As OMPT currently does not provide support for
OpenMP target devices HPCToolkit cannot gather respective state information.



Performance Measurement for the OpenMP 4.0 Offloading Model 293

The CUDA Profiling Tools Interface (CUPTI) [8] is a proprietary tools interface by
NVIDIA for their CUDA architecture, which is used by many tools like e.g. Vampir-
Trace and Score-P. It provides an API that allows tools to register for event callbacks,
measure performance counters, metrics and activity records. Since the CUPTI library
resides in the host address space, the tool is not required to transfer performance infor-
mation from the target device explicitly.

3 OpenMP Instrumentation

The OpenMP specification does not define a performance monitoring interface yet, but a
technical report (TR) which covers such an interface has been released by the OpenMP
Architecture Review Board. As upcoming OpenMP specifications will eventually in-
clude this TR we base our work on it. However, OpenMP 4.0 offloading directives are
neither defined in the current proposal nor is their implementation available in publicly
accessible OpenMP runtimes. To instrument OpenMP offloading anyway we prototyp-
ically extended the instrumenter OPARI2.

3.1 OMPT

OMPT [2] addresses two strategies for performance data collection: asynchronous sam-
pling and event-based monitoring. For tools that employ asynchronous sampling OMPT
provides routines to query information about the state of each OpenMP thread. States
are classified to be either mandatory, optional or flexible. In contrast to mandatory
states, an OpenMP implementation does not need to maintain optional states. Aside
from that it has some freedom when reporting a transition to a flexible state.

Event-based tools, like e.g. Score-P, can register function callbacks for particular
events that are triggered by the OpenMP runtime system. OMPT provides begin and end
events for most OpenMP constructs. However, the set of mandatory events is small and
allows tools to collect only basic information about the runtime behavior of OpenMP
programs. To gather more performance-critical information tools have to register for
optional events that might not be available for a given OpenMP runtime system.

OMPT is intended to be implemented by a compiler, an OpenMP runtime system or a
mixture of both. Therefore the interface defines function pointer addresses for outlined
functions of parallel regions and tasks as the only meta information on constructs. The
function pointers can be used to distinguish OpenMP constructs of the same type, re-
spectively identify regions of the same construct and to obtain source-code information
if available.

3.2 OPARI2

OPARI2 is the current version of the source-to-source instrumentation tool OPARI
(OpenMP Pragma and Region Instrumenter) [7], which inserts calls to the POMP2
monitoring interface at OpenMP pragmas and library calls. Similar to the events de-
fined in the OMPT interface the POMP2 event model provides events for the begin and



294 R. Dietrich et al.

the end of an OpenMP construct, enabling tools to gather performance information for
OpenMP programs.

As the OPARI2 instrumentation modifies the source code directly it is independent of
a specific OpenMP implementation but requires recompilation of the application. Addi-
tionally, OPARI2 creates POMP?2 region handles for OpenMP constructs, e.g. parallel
regions and tasks, which include source information such as the file and line number
of the construct. Tools can utilize these handles to correlate performance information
directly with the source code, thereby aiding developers to easily identify performance-
critical code.

4 Measuring the OpenMP 4.0 Offloading Model

The OpenMP 4.0 specification introduces several new directives. This work focuses on
the measurement of the offloading model. We use the terms host device and target de-
vice according to the specification. The host device is the system from which code within
an OpenMP rarget construct is Since applications are started from the host device, this
is furthermore where the measurement environment executes. A target device describes
an accelerator or coprocessor fo which the mentioned farget region is offloaded. Regu-
larly, host device and target device do not share a common address space, which must
be taken into account when designing adequate tool support.

4.1 OpenMP 4.0 Target Directives

OpenMP 4.0 introduces the target directives to enable computation offloading. Encoun-
tering a target construct implicitly creates a device data environment and the subsequent
statement, loop or structured block is executed on the target device. The target data con-
struct explicitly creates a device data environment which can be used to avoid implicit
data transfers between host and target device for enclosed target regions.

When a map clause is present for a rarget or target data construct and the data have
not been mapped in a surrounding data environment before, they are mapped explic-
itly, according to the specified variables and map-types, at the beginning and end of the
block. Map-types are alloc, to, from, and tofrom. Depending on the hardware configu-
ration and the OpenMP runtime implementation, the mapping invokes a data transfer.
Variables not declared but referenced in a farget construct are treated as if they ap-
peared in a map clause with a map-type tofrom, thus, they are implicitly transferred to
and from the target device. The farget update construct is a stand-alone directive and
makes data on the host and target device consistent, according to the variables specified
in the motion-clause. Motion-clauses are to and from and update data on the target or
on the host, respectively. If a device clause is present in a target directive, it specifies
the target device. Otherwise the default device is used. When an if clause is present and
its expression evaluates to false the target directive does not take effect, as data are not
mapped nor is the execution offloaded to the target device.

There are other new directives in OpenMP 4.0 that might influence the execution
efficiency, such as e.g. the teams, the distribute and the simd directive. However, we do
not observe them in terms of performance measurement within the scope of this paper.



Performance Measurement for the OpenMP 4.0 Offloading Model 295

#pragma omp target
POMP2_Target_copy_begin data map(List)
POMP2_Target_copy_end

ompt_control(target_end)
POMP2_Target_begin | _#Pragma omp target POMP2_Target_end
ompt_control(target_begin)

POMP2_Target_map_region
POMP2_Target_map_region overhead
POMP2_Target_flush

ompt_control(push_region) | #pragma omp parallel
ompt_event_parallel_begin

POMP2_Target_copy_begin
SOIELLE POMP2_Target_copy_end

ompt_event_parallel_end
ompt_control(pop_region) v k \

Fig. 1. Execution sequence of measurement routines for an OpenMP parallel region enclosed in
a target region. A separate device data region has been added to measure the explicit mapping of
variables. OpenMP constructs are instrumented with POMP2 and OMPT calls.

4.2 Measurement Approach

The measurement of OpenMP target regions and other enclosed regions can be achieved
with a combination of OPARI2 instrumentation and OMPT callbacks. Figure 1 shows
the execution sequence of measurement routines for a simple program with a parallel
construct enclosed by a target construct. To record the runtime of a target region, timing
routines are added before the directive and after the associated code (statement, loop or
structured block). For target data regions a time stamp is recorded before the respective
begin directive and at the beginning of the associated code as well as at the end of the
associated code and after the farget data region. As target data regions are executed
on the host device, the deployed measurement environment can directly record the re-
sulting data transfer times. If data transfers are only asynchronously invoked (e.g. for
GPGPUs), this approach does not measure the effective mapping. However, these types
of data transfers can be measured by other means (e.g. libcupti for CUDA devices).

Measuring data transfers for a rarget construct with a map clause is a bit more te-
dious. To obtain the transfer time for explicit data transfers specified in the map clause,
we move the respective clause to a newly generated target data construct enclosing the
original target construct. However, there might occur implicit data transfers that are in-
voked simply by referencing variables that are not declared for the target device. This
implicit data mapping can be recorded as part of the target region overhead, which is
measured by calling a timing routine before the execution of the respective directive
and at the beginning of the associated code as well as at the end of the associated code
and after the farget region.

To record the execution of OpenMP constructs that are enclosed in a target region
we register callbacks for OMPT events. We record events on the master thread of a
thread team executing a parallel region and each explicit task. Additionally, we mea-
sure some optional events when available, such as barriers. Source-code correlation for
these events is added by inserting ompt control calls passing a region handle that is later
mapped to the corresponding statically created POMP2 region handle. After the tar-
get region finishes execution, the target device buffer is flushed (POMP2 Target flush).
This introduces most of the measurement overhead, but only at synchronous points in
the program execution. Furthermore, we insert synchronization points before and after
a target region that are necessary to convert the target device time stamps to host device
time stamps.



296 R. Dietrich et al.

4.3 Extending OMPT with Support for Target Directives

It is possible to measure the offloaded computation using OMPT without prior instru-
mentation. However, this would remove the possibility to correlate performance data
with the source-code location from where it originates. Even though OMPT’s outlined
function pointer enables the tool to identify the calling function, the Intel MIC software
stack for example does not provide any tools that are required to evaluate a backtrace
to identify source file and line for a memory address.

Without instrumentation, performance tools that use OMPT must be able to register
callbacks for synchronization points at which performance data can safely be collected
from the target device. Such synchronization points could be the begin and end of a tar-
get region. Similar callbacks would be beneficial to measure the data transfers induced
by target update directives. Note that none of these are yet available but they are likely
to be added to a future version of OMPT. Within the callback, the host tool could notify
the target device to flush its buffers and transfer the collected records to the host.

5 Integration into Score-P and OPARI2

5.1 Measurement Control Flow

We integrated our approach into the measurement infrastructure Score-P since it already
supports OpenMP performance analysis using OPARI2. When the Score-P compiler
wrapper detects OpenMP code, it invokes the OPARI2 instrumenter which has been
extended to enable the instrumentation of new OpenMP 4.0 directives. At application
start a small measurement library called libmpti that implements the OMPT interface is
preloaded on the target device. This library is responsible for capturing performance-
related events on the target device using OMPT. Once control is returned to the host
device after the farget region has been executed, performance records are transferred
from the target to the host device by Score-P. The complete control flow is illustrated in
figure 2.

5.2 Extensions to the POMP2 Interface

To properly support the measurement of OpenMP 4.0 rarget constructs, we added six
functions to the POMP2 interface (cf. figure 1). POMP2 Target begin/end are inserted
before and after the rarget construct in order to perform host/target time synchroniza-
tion and setup appropriate data structures. Several calls to POMP2 Target map region
are inserted after the farget construct to map runtime identifiers for OpenMP con-
structs, which are integral numbers, to their corresponding POMP2 region handles.
The latter contain source code information but cannot be used directly on the target
device because the OMPT interface allows to pass only values of type uint64 t to
ompt control. POMP?2 Target flush is called directly before POMP2 Target end and
initiates the transfer of target device records from /ibmpti to Score-P on the host device.
Finally, POMP?2 Target copy begin/end calls are added by OPARI2 around both begin
and end of a target data directive to measure the execution time of data transfers.



Performance Measurement for the OpenMP 4.0 Offloading Model 297

Host Device Target Device
ompt_control

Score-P i libmpti.so (preloaded)

|
ecoras/State ecort ate
— | \

A * ompt_control + OMPT callbacks
POMP2 calls OpenMP Runtime with OMPT Interface
* ompt_control * OpenMP
OPARI2 Instrumented Application Application (offloaded)
. OpenMP 4.0
POMP2_Target_begin() Offload {
#pragma omp target { ompt_control()
// offload #pragma omp parallel for {
3 icati 000
;g:g;’;arget’end( ) X Ap[gl;aatlon }
_Target_map_region() ompt_control()
POMP2_Target_flush() ‘ ‘ }
| —— control data transfer

Fig.2. Control and Data Flow: Host OpenMP activities are captured by Score-P using
the POMP?2 interface. Performance records for offloaded application parts are measured us-
ing libmpti, which implements OMPT on the target device, and transferred to the host during
POMP?2 Target flush. OpenMP constructs enclosed in a farget construct are instrumented with
ompt control calls to track their execution. The hatched area is the only platform-dependent part.

5.3 MIC Performance Tools Interface

The MIC Performance Tools Interface (libmpti) is a small library which implements
the OMPT interface for the Intel MIC architecture and is compiled as native MIC code
(i.e. using the -mmic compiler argument). Since the OMPT-instrumented open-source
version of the Intel OpenMP runtime cannot be compiled as a fat binary for the host and
the MIC, the library cannot be linked against the created executable directly. Instead,
libmpti is preloaded at application start using Unix’ LD PRELOAD mechanism. With
regard to Score-P, libmpti is not used directly in offloaded measurement code but only
by means of the portable OMPT control mechanism.

Registering for OMPT events, the library can record execution times for parallel re-
gions and explicit tasks on the target device. Per-thread data is available via OMPT
but not recorded as this would incur significant runtime overhead. Furthermore, libmpti
tracks the current state of each thread executing on the target device. This state in-
cludes only a stack of identifiers designating the currently executed construct. A region
identifier is pushed on this stack using ompt control calls inserted via OPARI2 instru-
mentation directly before an OpenMP parallel or task construct. Similarly, the current
identifier is popped from the stack after the respective construct has been left. This
allows libmpti to correlate generic region identifiers with target device records. When
Score-P receives those records from libmpti, it can map them to POMP2 region handles
which include information such as the source file and line number on the host device.

5.4 Visualization

Integration of our offloading measurement approach into Score-P allows developers
to take advantage of its OTF2 trace output. Resulting traces can be readily visualized
in the Vampir trace viewer. For offloading records created using libmpti, Score-P can
internally utilize the same mechanisms and data structures as for traditional OpenMP
performance data, resulting in a homogeneous Vampir experience for the user.



298 R. Dietrich et al.

Funckion Summary AX
All Processes, Accumulated Exclusive Time per ..
25s 0.0s

fillLists
'$omp target..ost_new.c:96

@ !$omp for @host_new.c:98

2.162 s sort
1376 s !$omp target..ost_new.c:95

1.33%4 5 : '$omp offloading overhead
0i605 s '$omp implici...ost_new.c; 112
0.178 s [| !$omp barrier

™ Master thread: 0
OMP thread 1:0
MIC [0:RDMA]:0
MIC [0:1]:0

¥ Master thread:1
OMP thread 1:1
MIC [0:RDMA]:1
MIC [0:1]:1

Fig. 3. Visualization: Two MPI processes using OpenMP 4.0 task and target directives for het-
erogeneous computation: (a) naming of new MIC offloading locations (b) target device initializa-
tion overhead (c) explicit and implicit data transfers between host and target visualized as RDMA
messages (d) parallel region (parallel for) and implicit barrier on target device

Vampir allows to display hierarchies of processes and threads (locations) to present
OpenMP threads as children of the spawning process. Therefore, we create new child
locations for offloaded OpenMP, too. We add a new target location for each explicit task
and each master thread in a thread team executing a parallel region. This also includes
measurement and visualization of nested parallelism. As a result, we create similar ex-
perience to the visualization of CUDA kernels with dynamic parallelism. As threads on
an OpenMP target device are similar to locations (streams) on different CUDA devices,
we furthermore create a resembling naming for those executing on the MIC architecture
(see Figure 3 (a)).

Differences between the visualization of traditional and offloaded OpenMP code are
primarily in data transfers. OpenMP 4.0 uses both implicit and explicit data transfers
between host and target. In the case of Intel’s Xeon Phi coprocessor device, the con-
nection is realized using the PCI-Express interface and data transfers over this interface
can suffer from both latency and bandwidth restrictions. Hence, developers must be
able to identify OpenMP constructs that result in poor application performance due to
such transfers.

For data transfers, one RDMA location per target device is added. On this location,
we use the same visualization for both explicit and implicit transfers (see Figure 3 (c)).
All transfers are marked as RDMA messages from the spawning host thread to the
target’s RDMA location. Note that for implicit transfers, this also includes the launch
overhead for the target region as the two cannot be distinguished using OpenMP means.

6 Experiments on Intel Xeon Phi

We use an implementation of the sparse Conjugate-Gradient (CG) method to evaluate
our measurement approach. The algorithm consists of a matrix-vector multiplication
and some vector operations which have been offloaded to the target device. Addition-
ally, a target data construct was added to keep all vectors and the matrix on the target
until the computation has finished.

Figure 4 compares the visualization of the performance data with the same ker-
nel parallelized using OpenMP on an Intel Xeon Phi coprocessor and OpenACC on
a NVIDIA C2050 Fermi GPU. In both cases the target is shown as a separate location
in the timeline view where offloaded kernels are illustrated as activities on the target lo-
cation. This makes it easy for programmers already familiar with OpenACC and Vampir



Performance Measurement for the OpenMP 4.0 Offloading Model 299

Timeline &% Function Summary
19.28 s 19.30 s 19.32 s 19.34 5 All Processes, Accumulated Exclusive Time per Function

~ Master thread q

MIC [0:RDMA]

MIC [0:1] m m
| |
]

20 ms 0ms
Ifomp targetmap @solver.c:56 [4]
Ifomp for @solver.c:57

R
" - W 21.074 ms gomp offloading flush
N |
| ]
||

1fomp barrier L

MIC [0:1] g 9‘317m= I$omp targetmap @solver.c:35
7.372 ms - Ifomp targetmap @solver.c:24
4.832 ms [Jl] '$omp targetmap @solver.c:45

(]

Context View

= | B Process Timeline €

Property Value

Master thread

Dl

Function E!$nmp for @solver.c:57
Function GroupM_Loop =
Interval Begin  19.319075 5
Interval End 19.350007 s

N o p W e

Duration 30.931891 ms

Timeline Function Summary
20.26 5 2028 s 20.30 s All Processes, Accumulated Exclusive Time per F..
50 ms 25 ms 0ms
Master thread eamSynchoanize, 59,483 ms custreamsynchronize %]

CUDA[0:1]

matvec_61_gpu
198.764 pis | cuLaunchkernel 1

146.944 ps | cuMemcpyD.. HAsync_v2

139.84 ps | vectorDot_26_gpu =

Context View

= | = Master Timeline © -

CUDA[0:1]

Master thread
Property Value [

Function Ematvec_61_gpu
Function Group McuDA_KERNEL
cuStreamSynchronize Interval Begin 20.258268 s

ENNRRN C

Interval End  20.297014 s =

Fig. 4. Performance results for the CG method visualized in Vampir for OpenMP 4.0 (top screen-
shot) and OpenACC (bottom screenshot). Both show a timeline view (top-left), call stack views
for the target/device (middle-left) and the host (bottom-left), a function summary (top-right) and
the context view (bottom-right).

to navigate through the OpenMP target device activities. An advantage of libmpti is that
more detailed information is collected for the target device. As shown in the process
timelines in figure 4 (top), the call stack presents information on different OpenMP
regions, e.g. synchronization in barriers on the target and their nesting.

To investigate the measurement overhead on our test system, which is equipped with
two Intel Knights Corner devices with BO stepping, 61 cores at 1090 MHz and 8 GB
GDDRS at 5.5 GT/s, we compare the instrumented with the original code version. We
repeated each test 50 times and used 120 threads on the coprocessor. The average time
for the computational part of the solver was 5.21 sec in the original case and 5.82 sec
including performance measurement. The overhead for the measurements was about
12 %, which mainly stems from flushing the target device buffer at a synchronous point
in the program execution. It depends only on a fixed offloading latency and the number
of target device records to be transferred.

Intel allows to gather basic performance information for the offloaded regions by
setting the environment variable OFFLOAD REPORT. This results in a text report with
information about all regions. For our CG solver the report contained 600 entries, 598
compute regions and one entry for the enter and exit of the data region. In the trace we
also observed 598 compute regions on the target device and the data region was shown
as a separate region in the call stack of the master process. The accumulated time of all
regions in the measured trace was 5.82 sec which exactly matches the average compute
time for the kernel in the instrumented case.



300 R. Dietrich et al.

7 Conclusion and Future Work

This work presents a portable approach to obtain performance relevant information on
programs utilizing the new OpenMP 4.0 target directives. For performance measure-
ment on the target device we rely on OMPT. OPARI2 is used to instrument the rarget
constructs and to add source-code correlation. We show where instrumentation hooks
have to be added to measure explicit and implicit data transfers between host and target
device as well as the runtime and the overhead for the execution of a target construct.

We developed the measurement library libmpti to record the execution of OpenMP
constructs on Intel MIC target devices. For another target device, libmpti needs to be
replaced with a platform-specific implementation. approach and allow a visual analysis
of the performance data we extended the popular measurement infrastructure Score-P.
In a use case we compared the obtained information with an OpenACC version of the
same CG kernel. To extend our implementation, we plan to add instrumentation of the
target update directive and record respective data transfers.

Acknowledgements. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant Numbers 01TH11006(LMAC) and
01IH13008(ELP).

References

1. Mellor-Crummey, J., et al.: OMPT support branch of the open source Intel OpenMP runtime
library (December 2013),
http://intel-openmp-rtl.googlecode.com/
svn/branches/ompt-support

2. Eichenberger, A., Mellor-Crummey, J., Schulz, M., Copty, N., Cownie, J., Dietrich, R., Liu,
X., Loh, E., Lorenz, D.: OpenMP Technical Report 2 on the OMPT Interface (March 2014)

3. Geimer, M., Wolf, F., Wylie, B.J.N., Erika Abraham, D.B., Mohr, B.: The Scalasca perfor-
mance toolset architecture. Concurrency and Computation: Practice and Experience 22(6),
702-719 (2010)

4. Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller, M.S.,
Nagel, W.E.: The Vampir Performance Analysis Tool-Set. In: Resch, M., Keller, R., Himm-
ler, V., Krammer, B., Schulz, A. (eds.) ”Tools for High Performance Computing”, Proceed-
ings of the 2nd International Workshop on Parallel Tools for High Performance Computing.
Springer, Stuttgart (2008)

5. Liu, X., Mellor-Crummey, J., Fagan, M.: A new approach for performance analysis of
OpenMP programs. In: Proceedings of the 27th International ACM Conference on Inter-
national Conference on Supercomputing, pp. 69-80. ACM (2013)

6. Mey, D., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M., Kniipfer, A.,
Lorenz, D., Malony, A., Nagel, WE., Oleynik, Y., Rossel, C., Saviankou, P., Schmidl, D.,
Shende, S., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A Unified Performance Measurement
System for Petascale Applications. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G.
(eds.) Competence in High Performance Computing 2010, pp. 85-97. Springer (2012)

7. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and Prototype of a Performance Tool
Interface for OpenMP. The Journal of Supercomputing 23(1), 105-128 (2002)


http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support
http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support

Performance Measurement for the OpenMP 4.0 Offloading Model 301

8. NVIDIA: CUDA Toolkit Documentation — CUPTI (July 2013),
http://docs.nvidia.com/cuda/cupti/index.html
9. OpenMP Architecture Review Board: OpenMP application program interface version 4.0
(July 2013), http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
10. Wylie, B.J., Frings, W.: Scalasca support for MPI+OpenMP parallel applications on large-
scale HPC systems based on Intel Xeon Phi. In: Proceedings of the Conference on Extreme
Science and Engineering Discovery Environment: Gateway to Discovery, p. 37. ACM (2013)


http://docs.nvidia.com/cuda/cupti/index.html
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	Performance Measurement for the OpenMP 4.0 Offloading Model 
	1
Introduction
	2
Related Work
	3
OpenMP Instrumentation
	3.1
OMPT
	3.2
OPARI2

	4
Measuring the OpenMP 4.0 Offloading Model
	4.1
OpenMP 4.0 Target Directives
	4.2
Measurement Approach
	4.3
 Extending OMPT with Support for Target Directives

	5
Integration into Score-P and OPARI2
	5.1
Measurement Control Flow
	5.2
Extensions to the POMP2 Interface
	5.3
MIC Performance Tools Interface
	5.4
Visualization

	6
Experiments on Intel Xeon Phi
	7
Conclusion and Future Work
	References




