EXA-DUNE: Flexible PDE Solvers,
Numerical Methods and Applications

Peter Bastian!, Christian Engwer?, Dominik Goddeke?, Oleg Iliev?,
Olaf Ippisch®, Mario Ohlberger?, Stefan Turek?®, Jorrit Fahlke?,
Sven Kaulmann?, Steffen Miithing®, and Dirk Ribbrock3

! Interdisciplinary Center for Scientific Computing, Heidelberg University,
Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
2 Institute for Computational and Applied Mathematics, University of Miinster
Orleans-Ring 10, D-48149 Miinster, Germany
3 Department of Mathematics, TU Dortmund,
Vogelpothsweg 87, D-44227 Dortmund, Germany
4 Fraunhofer Institute for Industrial Mathematics ITWM
Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
® Institut fiir Mathematik, TU Clausthal-Zellerfeld,
Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany

Abstract. In the EXA-DUNE project we strive to (i) develop and im-
plement numerical algorithms for solving PDE problems efficiently on
heterogeneous architectures, (ii) provide corresponding domain-specific
abstractions that allow application scientists to effectively use these meth-
ods, and (iii) demonstrate performance on porous media flow problems.
In this paper, we present first results on the hybrid parallelisation of
sparse linear algebra, system and RHS assembly, the implementation of
multiscale finite element methods and the SIMD performance of high-
order discontinuous Galerkin methods within an application scenario.

1 The EXA-DUNE Project

Many processes from science and engineering can be modelled with stochastic
or parameterised partial differential equations (PDEs). Despite increasing com-
putational capacities, many of these problems are still only solvable with severe
simplifications. This is particularly true if not only single forward problems are
considered, but rather uncertainty quantification, parameter estimation or opti-
misation in engineering applications are investigated.

Within the EXA-DUNE! project we pursue three different routes to make
progress towards exascale: (i) we develop new computational algorithms and im-
plementations for solving PDEs that are highly suitable to better exploit the
performance offered by prospective exascale hardware, (ii) we provide domain-
specific abstractions that allow mathematicians and application scientists to ex-
ploit (exascale) hardware with reasonable effort in terms of programmers’ time
(a metric that we consider highly important) and (iii) we showcase our method-
ology to solve complex application problems of flow in porous media.

! http://www.sppexa.de/general-information/projects.html#EXADUNE

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 530-541, 2014.
© Springer International Publishing Switzerland 2014

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 531

Software development, in the scope of our work for the numerical solution
of a wide range of PDE problems, faces contradictory challenges. On the one
hand, users and developers prefer flexibility and generality, on the other hand,
the continously changing hardware landscape requires algorithmic adaptation
and specialisation to be able to exploit a large fraction of peak performance.

A framework approach for entire application domains rather than distinct
problem instances facilitates code reuse and thus substantially reduces develop-
ment time. In contrast to the more conventional approach of developing in a
‘bottom-up’ fashion starting with only a limited set of problems and solution
methods (likely a single problem/method), frameworks are designed from the
beginning with flexibility and general applicability in mind so that new physics
and new mathematical methods can be incorporated more easily. In a software
framework the generic code of the framework is extended by the user to pro-
vide application specific code instead of just calling functions from a library.
Template meta-programming in C++ supports this extension step in a very ef-
ficient way, performing the fusion of framework and user code at compile time
which reduces granularity effects and enables a much wider range of optimisa-
tions by the compiler. In this project we strive to redesign components of the
DUNE framework [3,2] in such a way that hardware-specific adaptations based
on the experience acquired within the FEAST project [15] can be exploited in a
transparent way without affecting user code.

Future exascale systems are characterised by a massive increase in node-level
parallelism, heterogeneity and non-uniform access to memory. Current exam-
ples include nodes with multiple conventional CPU cores arranged in different
sockets. GPUs require much more fine-grained parallelism, and Intel’s Xeon Phi
design shares similarities with both these extremes. One important common fea-
ture of all these architectures is that reasonable performance can only be achieved
by explicitly using their (wide-) SIMD capabilities. The situation becomes more
complicated as different programming models, APIs and language extensions are
needed, which lack performance portability. Instead, different data structures
and memory layouts are often required for different architectures. In addition,
it is no longer possible to view the available off-chip DRAM memory within
one node as globally shared in terms of performance. Accelerators are typically
equipped with dedicated memory, which improves accelerator-local latency and
bandwidth substantially, but at the same time suffers from a (relatively) slow
connection to the host. Due to NUMA (non-uniform memory access) effects,
a similar (albeit less dramatic in absolute numbers) imbalance can already be
observed on multi-socket multi-core CPU systems. There is common agreement
in the community that the existing MPI-only programming model has reached
its limits. The most prominent successor will likely be ‘MPI+X’; so that MPI
can still be used for coarse-grained communication, while some kind of shared
memory abstraction is used within MPI processes at the UMA level.

Our work within the EXA-DUNE project currently targets pilot applications
in the field of porous media flow. These problems are characterised by coupled
elliptic/parabolic-hyperbolic PDEs with strongly varying coefficients and highly

532 P. Bastian et al.

anisotropic meshes. The elliptic part mandates robust solvers and thus does not
lend itself to the current trend in HPC towards matrix-free methods with their
beneficial properties in terms of memory bandwidth and/or FLOPs/DOF ra-
tio; typical matrix-free techniques like stencil-based geometric multigrid are not
suited to those types of problems. For that reason, we aim at algebraic multigrid
(AMG) preconditioners known to work well in this context, and work towards
further improving their scalability and (hardware) performance. Discontinuous
Galerkin (DG) methods are employed to increase data locality and arithmetic
intensity. Matrix-free techniques are investigated for the hyperbolic/parabolic
parts.

In this paper we report on the current state of the EXA-DUNE project. As
message passing parallelism is well established in DUNE (as documented by
the inclusion of DUNE’s solver library in the High-Q-Club?), we concentrate on
core/node level performance. Regarding the three ‘exa-avenues’ identified in the
project, implementations of multiscale reduced basis and high-order spectral DG
methods are treated in Sections 3 and 4, hybrid parallelisation of finite element
assembly and sparse linear algebra is covered in Section 2 and preliminary results
for density-driven flow in porous media are shown in Section 4.

2 Hybrid Parallelism in DUNE

In the following, we introduce the ‘virtual UMA node’ concept at the heart of
our hybrid parallelisation strategy, and ongoing current steps to incorporate this
concept into the assembly and solver stages of our framework.

2.1 UMA Concept

Current and upcoming HPC systems are characterised by two trends which
greatly increase the complexity of efficient node-level programming: (i) A mas-
sive increase in the degree of parallelism restricts the amount of memory and
bandwidth available to each compute unit, and (i) the node architecture be-
comes increasingly heterogeneous. Consequently, on modern multi-socket nodes
the memory performance depends on the location of the memory in relation to
the compute core (NUMA). The problem becomes even more pronounced in the
presence of accelerators like MICs or GPUs, for which memory accesses might
have to traverse the PCle bus, severely limiting bandwidth and latency. To il-
lustrate this issue, we consider the relative runtime of an iterative linear solver
(Krylov-DG), as shown in Table 1: An identical problem is solved with different
mappings to MPI processes and threads, on a representative 4-socket server with
AMD Opteron 6172 12-core processors and 128 GB RAM. On this architecture,
a UMA domain comprises half a socket (6 cores), and thus, (explicit or implicit)
multi-threading beyond 6 cores actually yields slowdowns. This experiment vali-
dates our design decision to regard heterogeneous nodes as a collection of ‘virtual

2 http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ node.html

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 533

Table 1. Poisson on the unit cube, discretised by the DG-SIPG method, timings for
100 Krylov iterations. Comparison of different MPI / shared memory mappings for
varying polynomial degree p of the DG discretisation and mesh width h. Timings ¢5;/p
and speedups for varying numbers of MPI processes M and threads per process T'.

— t t t
P h 1 t48/1[3} tg/G[s] ;188//61 t4/12[s] tifg t1/48 [S] ;11?4/1;
1 256 645.1 600.2 1.07 1483.3 0.43 2491.7 0.26
2 128 999.5 785.7 1.27 1320.7 0.76 2619.0 0.38
3 64 709.6 502.9 141 1237.2 0.57 1958.2 0.36

UMA nodes’ on the MPI level: Internal uniform memory access characteristics
are exploited by shared-memory parallelism, while off-node communication is
handled via (classical/existing) message passing.

2.2 Finite Element Assembly

Assembling the finite element operator or the residual vector typically involves
two user-level inputs: The assembler iterates through the grid cells of a given
mesh, and for each grid cell a local operator is evaluated, which computes the
local contributions to the global stiffness matrix or the residual vector. Following
DUNE’s general approach, we implement threading and vectorisation on top of
the existing grid abstraction.

Globally the grid is partitioned using the existing MPI layer. Within each
UMA node system threads are used to share the workload among all cores. For
a user-defined number of concurrent threads the grid is locally partitioned such
that each thread handles the same amount of work. On the finest level vectorisa-
tion (SIMD, ILP) is required to fully exploit the hardware. SIMD has the largest
impact in the local operator which also poses the biggest challenge, as this is user
code. The resulting requirement of fully exploiting SIMD in that setting with-
out exposing users to the details of vectorisation presents an additional problem
compared to the linear algebra, where the number of kernels is much smaller.

Multi-threading support is implemented on top of the existing grid interface,
thus we can easily compare different strategies for the local partitioning of a
mesh 7 (£2). Experiments are carried out on an Intel Xeon E7-4850 with 10
cores (20 hyperthreads), 2 GHz and 12 GB RAM and on an Intel Xeon Phi 5110P,
with 60 cores (240 hyperthreads), 1 GHz and 8 GB RAM. Many bottlenecks for
multi-threading only become visible on many-core systems like the Xeon Phi.
SIMD experiments are carried out on an Intel Core i5-3340M with 2 cores (4
hyperthreads), 2.7 GHz and 8 GB RAM and a 256-bit SIMD unit (AVX). See
[5] for more details. Our experiments indicate that the additional complexity of
partitioning the node-local mesh into per-thread blocks that optimise properties
like surface-to-volume ratio, e.g. using graph partitioning libraries like METIS
or SCOTCH, does not pay off; those approaches impose prohibitive setup and
memory penalties. Instead, a ranged partitioning strategy showed the best overall

534 P. Bastian et al.

Table 2. Comparison of different polynomial degrees k, number of threads P, and
hardware X. Time per DOF t3 [us] and efficiency E7 of the Jacobian assembly using
ranged partitioning and entity-wise locking. We see a clear benefit from higher order
discretisations, due to the increased algorithmic intensity.

CPU CPU CPU CPU CPU PHI PHI PHI PHI PHI PHI PHI
ty tio tao Fio Eao ty teo ti20 tas0 Feo Fiz0 Eaao

459 0.74 0.54 62% 42% 59.57 1.33 1.17 1.20 75% 43% 21%
1.38 0.22 0.17 62% 42% 18.92 0.37 0.27 0.26 84% 57% 30%
1.10 0.15 0.12 72% 46% 17.12 0.32 0.21 0.19 90% 69% 38%
1.29 0.16 0.13 79% 50% 19.84 0.36 0.23 0.20 92% 72% 41%
1.52 018 0.15 8% 49%
1.81 0.21 0.18 88% 51%

Tk WD~ O

performance. We define consecutive iterator ranges of the size |7|/P. This is
efficiently implemented using entry points in the form of begin and end iterators.
The memory requirement is O(P) and thus will not strain the bandwidth.

Data access is critical during the assembly, as different local vectors and local
matrices contribute to the same global entries. Two approaches are possible
to avoid race conditions: locking and colouring. Entity-wise locks are expected
to give very good performance, as they correspond to the granularity of the
critical sections. The downside is the additional memory requirement of O(|7T).
With a ranged partitioning and entity-wise locking, or with colouring, we obtain
good performance on multi-core CPUs and on many-core systems alike. The
performance gain from colouring is negligible, but increases code complexity, so
that this approach is less favourable.

Timings for ranged partitioning and entity-wise locking are presented in Ta-
ble 2. As a benchmark we consider the assembly of the Jacobian and measure
strong scalability. Discretisations using different polynomial orders are evaluated
and the problem sizes are chosen such that the global number of unknowns is
roughly the same. The results indicate the benefit of higher order trial and test
functions, due to the increased arithmetic intensity in the local operator. The
absolute timings show a significant issue for the Xeon Phi, which can only exhibit
its full performance if the code is able to use the 512-bit wide SIMD instructions.

Vectorising computations in the local operator requires pursuing different av-
enues depending on the number of local DOFs / quadrature points: For high-
order discretisations, good performance can be achieved by simply unrolling /
vectorising the existing loops (cf. results in Sec. 4). For low-order methods this
approach is only feasible if the number of DOFs / quadrature points is a multiple
of the SIMD width, limiting the applicability of this technique. We thus follow
a different approach to transparently add SIMD parallelism at the level of the
local operator and vectorise over N elements, operating on the same local func-
tion space, and encapsulate data in a packed C++ data type. This approach is
inspired by [7]; their Vc library is also used for the presented preliminary results.
The packed data consists of a vector of N doubles. Using operator overloading
an arithmetic operation a ®b is mapped to the component-wise evaluation a; ©b;.

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 535

All interfaces providing local information of the IV cells are now vectorised as
well as the residual vector and the local matrix. In particular, information like
the Jacobian of the geometric mapping and the determinant of the Jacobian are
now provided for all N elements.

We investigate a 3D Q2 discretisation of the Poisson problem with 262 144 cells
and benchmark the assembly of the residual and the Jacobian on a structured
grid on a single core. First results show a speedup of 1.8 (SSE, 2 lanes) and 2.6
(AVX, 4 lanes) for the Jacobian and 1.7 (SSE) and 2.3 (AVX) for the residual.
This is measured without the scatter operation into the global matrix as this is
not yet optimised — if we include scattering in the timing the speedup is, e.g.,
1.7 for the Jacobian and AVX. Even without scattering some operations are not
vectorised yet, so we do not obtain the full speedup, but we can show that it
is possible to add SIMD parallelism to the local operator with only minimal
restrictions for the user.

2.3 Sparse Linear Algebra and Solvers

Designing effcient implementations and realisations of solvers effectively boils
down to (i) a suitable choice of data structures for sparse matrix-vector multiply,
and (ii) numerical components of the solver, i.e., preconditioners.

DUNE’s current matrix format, (block) compressed row storage, is ill-suited
for modern hardware and SIMD, as there is no way to efficiently and generally
expose a block structure that fits the size of the SIMD units. We have thus
extended the SELL-C-o matrix format introduced in [8] which is a tuned variant
of the sorted ELL format known from GPUs, to be able to efficiently handle block
structures [11].

As we mostly focus on solvers for DG discretisations, which lend themselves to
block-structured matrices, this is a valid and generalisable decision. The standard
approach of requiring matrix block sizes that are multiples of the SIMD size is not
applicable in our case because the matrix block size is a direct consequence of the
chosen discretisation. In order to support arbitrary block sizes, we interleave the
data from N matrix blocks given a vector unit of size IV, an approach introduced
in [4]. This allows us to easily vectorise existing scalar algorithms by having
them operate on multiple blocks in parallel, an approach that works as long as
there are no data-dependent branches in the original algorithm. Sparse linear
algebra is typically memory bandwidth bound, and thus, the main advantage
of the block format is the reduced number of column block indices that need
to be stored (as only a single index is required per block). With growing block
size, this bandwidth advantage quickly approaches 50% of the overall required
bandwidth.

So far, we have implemented the SELL-C-o building blocks (vectors, matri-
ces), and a (block) Jacobi preconditioner which fully inverts the corresponding
subsystem; for all target architectures (CPU, MIC, CUDA). Moreover, there is
an implementation of the blocked version for multi-threaded CPUs and MICs.
While the GPU version is implemented as a set of CUDA kernels, we have not
used any intrinsics for the standard CPU and the MIC — instead we rely on the

536 P. Bastian et al.

2
3
3

2500 4500

MT e

MT blocked -

3500 Tesla =
MIC blocked -----

3000

IS
&
3
8

2000

1500
2500

2000 |
FLy e— -

n
8
38

¥

1500 °

1000

@
2
8

Time per DOF and CG iteration (ns)
@ & @
g8 &8 8
8 8 8
¥
1
i
H
&
o=
H = =
i 5 3
1] g e
i ga8
il 848
4 285
T 858
“d
T %
I
1
=
{ 5 3
* g g
X g8
] 848
| 282
I 3588
| o i
Time per DOF and CG iteration (ns)

=]
8
Time per DOF and CG iteration (ns)

a
8
8

o

0 0
4 5 6 7 8 0 02 04 06 08 1 12 14 16 18 0 01 02 03 04 05 06 07 08 089
#DOFs / 1e6 #DOFs/ 1e6 #DOFs / 1e6

o
N
w

Fig. 1. Normalised execution time of the (block) Jacobi preconditioned CG solver for
polynomial degrees p = 1, 2, 3 (left to right) of the DG discretisation. The multithreaded
(MT) and MIC versions use a SIMD block size of 8. Missing data points indicate
insufficient memory.

auto-vectorisation features of modern compilers without performance penalty
[11]. Due to the abstract interfaces in our solver packages, all other compo-
nents like the iterative solvers can work with the new data format without any
changes. Finally, a new backend for our high-level PDE discretisation package
enables a direct assembly into the new containers, avoiding the overhead of a
separate conversion step. Consequently, users can transparently benefit from our
improvements through a simple C++ typedef.

We demonstrate the benefits of our approach for a linear system generated
by a 3D stationary diffusion problem on the unit cube with unit permeability,
discretised using a weighted SIPG DG scheme [6]. Timings of 100 iterations of a
CG solver using a (block) Jacobi preconditioner on a single-socket Intel Sandy
Bridge machine (8 GB DDR3-1333 RAM, 2 GHz 4-core Intel Core i7-2635QM,
no hyper-threading) which supports 256-bit wide SIMD using AVX instructions,
on a NVIDIA Tesla C2070 for the GPU measurements and on a Intel Xeon Phi
7120P, are presented in Figure 1, normalised per iteration and DOF.

As can be seen, switching from MPI to threading affords moderate improve-
ments due to the better surface-to-volume ratio of the threading approach, but
we cannot expect very large gains because the required memory bandwidth is
essentially identical. Accordingly, switching to the blocked SELL-C-o format
consistently yields good improvements due to the lower number of column in-
dices that need to be loaded, an effect that becomes more pronounced as the
polynomial degree grows due to larger matrix block sizes. Finally, the GPU and
the MIC provide a further speedup of 2.5-5 as is to be expected given the relative
peak memory bandwidth figures of the respective architectures, demonstrating
that our code manages to attain a constant fraction of the theoretically available
memory bandwidth across all target architectures.

3 Multiscale Methods

Our software concept for numerical multi-scale methods in a parameterised set-
ting is based on the general model reduction framework for multi-scale problems

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 537

presented in [12]. The framework covers a large class of numerical multi-scale ap-
proaches based on an additive splitting of function spaces into macroscopic and
fine scale contributions combined with a tensor decomposition of function spaces
in the context of multi query applications. Numerical multi-scale methods make
use of a possible separation of scales in the underlying problem. The approxima-
tion spaces for the macroscopic and the fine scale are usually defined a priori.
Typically, piecewise polynomial functions are chosen on a relatively coarse and
on a fine partition of the computational domain. Based on such discrete func-
tion spaces, an additive decomposition of the fine scale space into coarse parts
and fine scale corrections is the basis for the derivation of large classes of nu-
merical multi-scale methods. A variety of numerical multi-scale methods can be
recovered by appropriate selection of decomposed trial and test functions, the
specific localisations of the function space for the fine scale correctors, and the
corresponding localised corrector operators.

To efficiently cope with multi-scale problems in multi-query scenarios, we add
a further tensor type decomposition of function spaces that can be derived as a
generalisation of the classical projection based reduced basis approach. Suppose
that in a first step a small number of snapshots have been computed with some
numerical multi-scale method for suitable parameters, e.g., chosen by a greedy al-
gorithm based on efficient a posteriori error estimates. As a generalisation of the
classical reduced basis approach, we then define a reduced approximation space
as a non-linear combination of the computed snaphots. As a particular example
we focus on tensor product type approximation spaces spanned by products of
coarse scale functions and precomputed snapshots. A reduced multi-scale scheme
is then obtained by suitable projection of the original problem onto such function
spaces. A particular realisation of this approach is, e.g., the localised reduced
basis multi-scale method [1].

Within EXA-DUNE we develop a unified interface-based software framework
that mimics the mathematical concept for numerical multiscale methods in
multi-query scenarios. Particular implementations of this framework are pursued
for the multiscale finite element method as a representative of classical numerical
multiscale methods and for the localised reduced basis multiscale method as a
representative of the generalised model reduction approach.

Concerning the structure of the solution spaces and the resulting discrete
approximation schemes, in all the above mentioned methods the global solu-
tion is decomposed into dense local solutions on coarse grid blocks, and block-
wise sparse global solutions. Therefore, the general structure of approximation
spaces, discrete operators and solvers is similar as for DG schemes with locally
high polynomial degrees. Thus, for an efficient implementation in heterogeneous
parallel environments, we can directly build upon concepts developed, e.g., for
DG schemes. The realisation of the parallel multiscale methods is based on the
DUNE-Multiscale module? and on the DUNE-gdt module* and builds upon the
hybrid parallelism in DUNE as discussed in Section 2.

3 http://users.dune-project.org/projects/dune-multiscale
4 http://users.dune-project.org/projects/dune-gdt

538 P. Bastian et al.

16-32 16-64 16-128 16-256 16-512 16-1024

Overall | 1.92 | 384 | 7.46 14.57 28.50 | 54.05

@ Coarse Matrix Assembly

5 Coarse RHS Assembly

Coarse RHS Assembly | 1.71 © 341 = 6.80 | 1335 2573 @ 5035 U8 @ Local Problem Assembly and Solve
@ Coarse Problem Solve

Coarse Matrix Assembly [2.00 | 4.01 792 1586 31.60 @ 63.47

Local Problem Assembly | 2.00 = 398 @ 7.85 1564 30.55 60.35
and Solve

Coarse Problem Solve | 0.41 : 0.80 | 0.77 1.01 1.96 2.16

Fig. 2. Left: Strong scaling factors for different parts of the multiscale finite element
(msfem) method from 16 to N cores. Right: Distribution of wall time amongst 4 heaviest
callers (accounting for 99% of overall runtime) during msfem method on 1024 Cores.

In the hybrid setting, the computational grid associated with the coarse solu-
tion space is decomposed into patches (of varying size) that are then distributed
to the processes using the MPI-based parallel communication interface of DUNE.
On each coarse patch, a virtual local grid refinement is constructed. This locally
structured grid then serves as computational mesh for the derivation of the fine
scale corrections. Using the virtual grid refinement allows for fully unstructured
meshes on the coarse scale while avoiding memory and bandwidth limitations
on the fine scale. The fine-scale correction assembly and solve phases can then
be further distributed via shared-memory parallelisation within one UMA-node
using the techniques from Section 2.

In Figure 2 we demonstrate the scaling capabilities of the multiscale finite
element method using an artificial 3D benchmark problem on 32768 coarse cubes,
each subdivided into 4096 fine cubes. We test strong scaling on 16 to 1024 cores
of our local PALMA cluster at the University of Miinster. Most parts of our
code show promising scaling, except for the coarse scale system solve which
necessitates MPI-communication in each step of the iterative solver and therefore
is inefficient for the relatively small coarse problem. Bigger meshes stemming
from real-world applications will show better scaling on this part, too.

4 A First Porous Medium Flow Application

As a prototypical example for flows in porous media we consider density driven
flow in a three-dimensional domain §2 = (0, 1) given by an elliptic equation for
pressure p(x, y, z,t) coupled to a parabolic equation for concentration ¢(z, y, z,t):

-V (Vp—cl,)=0, (1)
Oc—V - ((Vp—clz)c—l— RlaVc> =0. (2)

Boundary conditions for the pressure equation are p =0 at z = 0 and ‘no flow’
at all other boundaries. Boundary conditions for the concentration equation are
¢ =1for z =1, ‘no flow’ at lateral boundaries and ‘inflow/outflow’ at z = 0.
Initial condition is ¢ = 0. This system serves as a model for the dissolution
of a CO4 phase in brine, where the unstable flow behaviour leads to enhanced

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 539

Fig. 3. Density driven flow in a porous medium in three space dimensions for Ra =
8000. Left: concentration at ¢t = 2.25 after the onset of instability, right: concentration
at ¢t = 4.8 in the nonlinear regime where persistent fingers have developed.

dissolution. The system is formulated in non-dimensional form with the Raleigh
number Ra as the only governing parameter. For details we refer to [13].

The system (1), (2) is solved in a decoupled fashion resulting, after discreti-
sation in space and time, in a large and sparse linear system which is solved by
algebraic multigrid and a system of ordinary differential equations. The pressure
equation (1) is discretised using the cell centered finite volume (CCFV) method
with two-point flux approximation on a structured, equidistant mesh. The veloc-
ity field v = —(Vp—cl.) required in the transport equation is then reconstructed
from the finite volume fluxes with lowest order Raviart-Thomas (RT) elements.
The transport equation (2) is discretised in space with the symmetric weighted
interior penalty DG finite element method [6]. For the Raleigh number and mesh
sizes utilised below the grid Peclet number is of order 1 and explicit time stepping
schemes for the transport equation are efficient. Using strong stability preserv-
ing explicit Runge-Kutta methods [14] we can exploit the increased arithmetic
intensity of a matrix-free implementation. Figure 3 shows results of a 3D simu-
lation on 8 Xeon E5-2680v2 10-core processors, mesh size 2403, Q2 DG elements
(373 - 105 DOF) and 16000 time steps. One time step takes 14s.

DG methods are popular in the porous media flow community due to their
local mass conservation properties, the ability to handle full diffusion tensors
and unstructured, nonconforming meshes as well as the simple way to imple-
ment upwinding for convection dominated flows. The efficient implementation
of high order ‘spectral’ DG methods relies on a tensor product structure of
the polynomial basis functions and the quadrature rules on cuboid elements.
At each element the following three steps are performed: (i) evaluate the finite
element function and gradient at quadrature points, (i) evaluate PDE coeffi-
cients and geometric transformation at quadrature points, and (iii) evaluate the
bilinear form for all test functions. The computational complexity of steps (i)
and (iii) is reduced from O(p?), p — 1 being the polynomial degree and d the
space dimension, to O(dp®*!) with the sum factorisation technique, see [9,10].
This can be implemented with matrix-matrix products, albeit with small matrix

540 P. Bastian et al.

12 T T T T 2.0e-06
sum factorization GFLOPs ——+—
“ spatial residual GFLOPs ===¢===
10 1% time step GFLOPs ++-- &+ |
spatial residual time per DOF @ - 1.5e-06

GFLOP/s

Time per DOF (s)

0.0e+00

Polynomial degree

Fig. 4. Single core performance for various components of the DG method
dimensions. For the face terms, the complexity is reduced from O(p??~!) to
O(3dp?). For practical polynomial degrees, p < 10, the face terms dominate the
overall computation time, resulting in the time per degree of freedom (DOF) to
be independent of the polynomial degree. This is illustrated by the finely dotted
curve in Figure 4. We employ a nodal basis on Gauf-Lobatto points with under-
integration on the Gaufl-Lobatto points for the temporal bilinear form leading
to a diagonal mass matrix. Gauf}-Legendre quadrature is used for the spatial
bilinear form.

Figure 4 presents performance results of the sum factorisation based 3D DG
code on a single core of a Xeon E5-2680v2 for varying polynomial degree. The
stand-alone sum factorisation kernel (solid line) achieves up to 8 GFLOP/s cor-
responding to 40% peak performance. The performance peaks at Q7/Q11 with
8/12 basis functions per direction show that vectorisation is effective. The per-
formance for the complete spatial residual evaluation and a complete time step
peak at 4 GFLOP/s. These results clearly illustrate that high order methods can
take advantage of modern multicore architectures and their SIMD capabilities.

5 Conclusion

This paper reports first results on introducing hybrid parallelisation and
hardware-orientation into the DUNE framework. In the finite element assem-
bly process we obtain promising results for low order methods by vectorising
over several elements while for high polynomial degree good performance can
also be achieved by loop auto-vectorisation. In ongoing work both approaches
will be combined. On the sparse linear algebra level shared memory parallelisa-
tion and vectorisation is based on the SELL-C-o matrix format and additionally
exploits the matrix block structure. These components have already been used
to speed up a multiscale finite element and a density driven flow solver.

Acknowledgements. This research was funded by the DFG SPP 1648 ‘Soft-
ware for Exascale Computing’.

EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 541

References

10.

11.

12.

13.

14.

15.

Albrecht, F., Haasdonk, B., Kaulmann, S., Ohlberger, M.: The localized reduced
basis multiscale method. In: Proceedings of Algoritmy 2012, Conference on Scien-
tific Computing, Vysoke Tatry, Podbanske, September 9-14, pp. 393-403 (2012)
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Kléfkorn, R., Kornhuber, R.,
Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scien-
tific computing. part II: Implementation and tests in DUNE. Computing 82(2-3),
121-138 (2008)

Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klofkorn, R., Ohlberger, M.,
Sander, O.: A generic grid interface for parallel and adaptive scientific comput-
ing. part I: Abstract framework. Computing 82(2-3), 103-119 (2008)

Choi, J., Singh, A., Vuduc, R.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Principles and Practice of Parallel Programming,
pp. 115-126 (2010)

Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the DUNE
grid interface. In: Proceedings of ENUMATH 2013 (2014)

Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with
weighted averages for advection-diffusion equations with locally small and
anisotropic diffusivity. IMA Journal of Numerical Analysis 29(2), 235-256 (2009)
Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Software:
Practice and Experience 42(11), 1409-1430 (2012)

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse
matrix data format for modern processors with wide SIMD units. STAM Journal
on Scientific Computing 36(5), C401-C423 (2014)

Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite
element operator application. Computers & Fluids 63, 135-147 (2012)

Melenk, J., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadra-
ture. Computer Methods in Applied Mechanics and Engineering 190(32-33),
43394364 (2001)

Miithing, S., Ribbrock, D., Géddeke, D.: Integrating multi-threading and acceler-
ators into DUNE-ISTL. In: Proceedings of ENUMATH 2013 (2014)

Ohlberger, M.: Error control based model reduction for multiscale problems.
In: Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke
Tatry, Podbanske, September 9-14, pp. 1-10. Slovak University of Technology in
Bratislava, Publishing House of STU (2012)

Riaz, A., Hesse, M., Tchelepi, H., Orr, F.: Onset of convection in a gravitationally
unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics 548,
87-111 (2006)

Shu, C.: Total-variation-diminishing time discretizations. SIAM Journal on Scien-
tific and Statistical Computing 9, 1073-1084 (1988)

Turek, S., Géddeke, D., Becker, C., Buijssen, S., Wobker, S.: FEAST — Realisation
of hardware-oriented numerics for HPC simulations with finite elements. Concur-
rency and Computation: Practice and Experience 22(6), 2247-2265 (2010)

	EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications
	1
The EXA-DUNE Project
	2
Hybrid Parallelism in DUNE
	2.1
UMA Concept
	2.2
Finite Element Assembly
	2.3
Sparse Linear Algebra and Solvers

	3
Multiscale Methods
	4
A First Porous Medium Flow Application
	5
Conclusion
	References

