
Integrated Management of IaaS Resources

Fernando Meireles1,2 and Benedita Malheiro1,2

1 School of Engineering, Polytechnic Institute of Porto, Porto, Portugal,
2 INESC TEC, Porto, Portugal
{1050758,mbm}@isep.ipp.pt

Abstract. This paper proposes and reports the development of an open
source solution for the integrated management of Infrastructure as a Ser-
vice (IaaS) cloud computing resources, through the use of a common API
taxonomy, to incorporate open source and proprietary platforms. This
research included two surveys on open source IaaS platforms (OpenNeb-
ula, OpenStack and CloudStack) and a proprietary platform (Parallels
Automation for Cloud Infrastructure - PACI) as well as on IaaS abstrac-
tion solutions (jClouds, Libcloud and Deltacloud), followed by a thorough
comparison to determine the best approach. The adopted implementa-
tion reuses the Apache Deltacloud open source abstraction framework,
which relies on the development of software driver modules to interface
with different IaaS platforms, and involved the development of a new
Deltacloud driver for PACI. The resulting interoperable solution success-
fully incorporates OpenNebula, OpenStack (reuses pre-existing drivers)
and PACI (includes the developed Deltacloud PACI driver) nodes and
provides a Web dashboard and a Representational State Transfer (REST)
interface library. The results of the exchanged data payload and time
response tests performed are presented and discussed. The conclusions
show that open source abstraction tools like Deltacloud allow the modu-
lar and integrated management of IaaS platforms (open source and pro-
prietary), introduce relevant time and negligible data overheads and, as
a result, can be adopted by Small and Medium-sized Enterprise (SME)
cloud providers to circumvent the vendor lock-in problem whenever ser-
vice response time is not critical.

Keywords: IaaS, Deltacloud PACI Driver, Multiple IaaS Interoperable
Management

1 Introduction

The provisioning of the Infrastructure as a Service (IaaS) concept, initiated by
the Elastic Compute Cloud (EC2) [1] as part of Amazon Web Services (AWS)
[2], was rapidly adopted by other well-known technology enterprises with large
computing resources, that launched their own IaaS platforms. As a result, the
Research & Development (R&D) community as well as the involved enterprises
concentrated efforts on the development of new IaaS platforms. However, since
Cloud Computing was a recent concept, lacking pre-defined standards and a con-
sensual definition, the resulting platforms were highly heterogeneous in terms of

functionalities, architecture and interface libraries. This diversity hinders the
selection of an IaaS platform and, above all, constitutes an obstacle to the in-
teroperability among cloud service providers.

To overcome this problem, this paper proposes and presents an open source
solution that promotes the interoperability and standardization between hetero-
geneous IaaS platforms. This work involved the research, proposal and devel-
opment of an interoperable open source solution with standard interfaces (both
Web and application programming interfaces) for the integrated management
of IaaS cloud computing resources based on new as well as existing abstraction
libraries or frameworks. The research consisted of two surveys covering exist-
ing open source and a proprietary IaaS platforms as well as open source IaaS
abstraction solutions.

The approach proposed and adopted, which was supported on the conclu-
sions of the carried surveys, reuses an existing open source abstraction solution
- the Apache Deltacloud framework [3]. Deltacloud relies on the development
of software driver modules to interface with different IaaS platforms, officially
provides and supports drivers to sixteen IaaS platform, including OpenNebula
and OpenStack, and allows the development of new provider drivers. The latter
functionality was used to develop a new Deltacloud driver for PACI. Further-
more, Deltacloud provides a Web dashboard and REpresentational State Trans-
fer (REST) API interfaces. To evaluate the adopted solution, a test bed inte-
grating OpenNebula, OpenStack and PACI nodes was assembled, deployed and
the time response and data payload via the Deltacloud framework and via direct
IaaS platform API calls was measured. The Deltacloud framework behaved as
expected, i.e., introduced additional delays, but no substantial overheads. The
Web and the REST interfaces produced identical results.

The developed interoperable solution for the seamless integration and provi-
sion of IaaS resources from PACI, OpenNebula and OpenStack IaaS platforms
fulfils the specified requirements, i.e., enables IaaS cloud providers to expand
the range of adopted IaaS platforms and offers a Web dashboard and REST API
for integrated management. The contributions of this work include the surveys
and comparisons made, the selection of the abstraction framework and, last, but
not the least, the PACI driver developed.

2 IaaS Platforms

The IaaS platforms surveyed include the OpenNebula [4], OpenStack [5] and
CloudStack [6] open source frameworks and the PACI [7] proprietary solution.

OpenNebula is the only European IaaS platform studied. This platform man-
ages virtual resources from public and hybrid clouds. It presents a layered
architecture, which enables the centralised management of data-centres, and
provides a detailed level of customization. At the top of the stack, it exposes
multiple API to communicate with AWS EC2 [1] and the OpenGrid Forum
(OGF) Open Cloud Computing Interface (OCCI) solutions [8][9].

OpenStack is a highly dynamic platform, presenting several new functionali-
ties with each software release. However, it is fragmented into multiple soft-
ware modules (OpenStack projects) with dedicated interface libraries [10].
This fragmentation hardens the installation process, the management of the
platform and increases the complexity of the system. On the other hand, it
interacts with several third-party applications, uses RESTful interfaces and
offers OCCI [11], AWS EC2 [1] and S3 [12] interface libraries.

Apache CloudStack uses a modular architecture for the automation and cen-
tralised management of data-centres, which is organized in zones, pods and
clusters. It uses a Query API as well as an API translator so that applications
written for CloudStack can also run in AWS EC2 [1]. Although the studied
version of CloudStack (4.2.1) does not provide official OCCI support, it is
available via a third-party contribution [13].

PACI includes various proprietary products to enable the creation, manage-
ment, monitoring and billing of public or hybrid (if the PACI platform is used)
IaaS platforms. It exposes an open interface (RESTful API) to enable the
development of third-party applications for the interaction with the system.
However, PACI is a platform without software modules to support directly
the interaction with other IaaS platforms. This behaviour is common among
proprietary solutions in order to generate the user lock-in phenomenon.

Table 1 compares the authentication, hypervisors, management, interfaces,
network, storage and governance features of the studied IaaS platforms. The

Table 1. IaaS platforms comparison.

Features OpenNebula OpenStack CloudStack PACI

Author./Authen.

Password,
SSH RSA
keypair,
X509, LDAP

In-memory
Key-Value Store,
PAM, LDAP,
X509

Password, LDAP,
SSH RSA keypair

Password,
LDAP

Hypervisors
XEN, KVM,
VMware vSphere

KVM, LXC, UML,
VMWare vSphere,
Xen, PowerVM,
Hyper-V

VMware vSphere,
KVM, Citrix Xen

Parallels
hypervisor,
KVM

Management Centralized Scattered Centralized Centralized

Interfaces
XML-RPC API;
AWS EC2,
OCCI, OCA

RESTful API;
AWS EC2, S3,
EBS and OCCI

Query API;
AWS EC2,
OCCI,
Plug-in API

RESTful API

Network
Virtual router,
Contextualization

Nova-network,
Newtron

Virtual router POA

Storage Volume Storage

Volume and
Object storage
(Glance, Swift,
Cinder)

Volume Storage System DB

Governance Model
Benevolent
Dictator

Foundation
Technical
Meritocracy

Proprietary

main differences among the open source IaaS platforms are related to the archi-
tecture, interface libraries and governance models. This diversity is caused by
the absence of well defined architectural standards for the commoditization of
IaaS systems. Every IaaS platform tends to provide distinct functionalities and
be compatible with specific third-party services in order to monopolize the mar-
ket and impose its technologies as standards. OpenStack is a good example of an
IaaS platform that tries to monopolize the market. On the other hand, the pro-
prietary IaaS platform PACI has a limited set of features and no interoperable
mechanisms to interact with other platforms, which may purposely lead to a ven-
dor lock-in problem. There are also significant differences regarding the type and
number of interfaces, the level of customization, the organization of the groups
of operations as well as the structure of the request and response messages pro-
vided by the four IaaS platform interface libraries. OpenStack and PACI rely on
RESTful interfaces, while OpenNebula and CloudStack use natively XML-RPC
and Query (RESTlike) interfaces, respectively.

3 Abstraction Solutions

Interface abstraction libraries provide a collection of implementations for the
development of middleware systems that abstract the peculiarities of the under-
lying IaaS platform and offer a standard and unique API for the management of
multiple IaaS clouds. Deltacloud [3], jClouds [14] and Libcloud [15] are examples
of existing cloud abstraction solutions.

Deltacloud is an open source framework from the Apache Software Foun-
dation [16] that aims to abstract differences between IaaS cloud platform
interface libraries. It is written in Ruby and contains a Web dashboard, a
group of IaaS provider drivers [17] (including OpenNebula and OpenStack)
and multiple API – the Deltacloud RESTful API, the Distributed Manage-
ment Task Force (DMTF) open standard Cloud Infrastructure Management
Interface (CIMI) REST API [18] and the AWS (EC2 [1] and S3 [12]) API.
Each driver exposes the list of implemented Ruby collections. These collec-
tions describe the abstractions offered by the Deltacloud API [19] and each
collection represents an entity in the back-end provider node.

Apache jClouds and Libcloud are open source libraries, developed by Apache
Software Foundation [16] in Java and Python, that abstract the differences
among multiple cloud provider interface libraries. jClouds offers both portable
abstractions and cloud-specific features, which enable the management of
buckets (BlobStore) and compute operations (ComputeService), and has a
list of compatible cloud providers and IaaS platforms, including OpenStack
and CloudStack [20]. The Libcloud library supports an extensive group of
IaaS platforms [21], including OpenNebula, CloudStack and OpenStack and
allows users to manage compute, storage and network cloud resources.

Deltacloud, jClouds and Libcloud are among the most representative cloud
IaaS abstraction solutions and are used in several R&D cloud interoperability
related projects, e.g., Aeolus and mOSAIC [22][23]. Deltacloud, which provides

by default three different service API (native RESTful Deltacloud, CIMI and
AWS EC2 API), is a framework that includes a Ruby client, a Web dashboard
and a driver development environment to support the integration of further
IaaS platforms. jClouds and Libcloud are standard programming libraries and,
unlike Deltacloud, do not integrate additional development tools. In terms of
IaaS platform support, Libcloud provides official integration with the studied
open source IaaS platforms (OpenNebula, OpenStack and CloudStack), jClouds
supports CloudStack and OpenStack while Deltacloud supports OpenNebula and
OpenStack. None of these abstraction solutions provides support for PACI. Table
2 presents the comparison between these open source abstraction solutions.

Table 2. Open-source abstraction solutions comparison.

Features Deltacloud jClouds Libcloud

Type Framework Library Lybrary
Programming language Ruby Java Python
Supported providers 17 cloud providers 30 cloud providers 38 cloud providers

Supported operations
Compute, Storage,
Network

Compute, Storage
Compute, Storage,
Network

Platform integration Drivers
Maven
dependencies

Drivers

API REST, CIMI, AWS

Other interfaces
Web dashboard,
Ruby client

Although Libcloud provides official support for the analysed open source
IaaS platforms, there are also third-party drivers that integrate CloudStack with
Deltacloud [24]. Thus, the Deltacloud abstraction framework was adopted be-
cause it provides additional development tools and Web services (e.g., the Ruby
Command Line Interface and Web Dashboard), exposes broadly used interface
libraries (CIMI and AWS EC2) and provides documentation for the development
of Deltacloud drivers to integrate new IaaS platforms that can be used for the
development of the PACI driver.

4 Interoperable Service Proposal and Development

The Interoperable Service uses the Deltacloud abstraction framework as a mid-
dleware between cloud users and IaaS platforms, permitting the management
of multiple IaaS platforms via a single service. The architecture of this Inter-
operable Service is composed by the back-end driver modules (OpenNebula,
OpenStack, CloudStack and PACI driver), the software daemon deltacloudd

and the Graphical User Interface (GUI) and API services. Figure 1 illustrates
the architecture of the Interoperable Service.

The back-end driver modules, composed of the OpenNebula, OpenStack,
CloudStack and PACI drivers, are integrated and developed to enable the ab-
straction and interaction with the respective back-end IaaS platforms. These
drivers define, through method instantiation and implementation, the Deltacloud

Fig. 1. Interoperable Service architecture.

operations that the IaaS platform provides. The software daemon deltacloudd

is included in the deltacloud-core component and is responsible for the start-up
and deployment of the front-end interface services (the GUI and API services).
The GUI service presents a simple Web dashboard containing the driver imple-
mented collections and operations. The API service has a RESTful implemen-
tation that uses the Deltacloud defined collections and operations to expose the
cloud resources of the IaaS platforms [19].

Depending on the configuration of the Deltacloud daemon, two different de-
ployments modes can be adopted: (i) the single tenant configuration where a
single Deltacloud daemon loads a pre-defined YAML file containing the creden-
tials and the cloud provider URL endpoint for each driver module; and (ii) the
multiple tenant configuration where multiple server instances, containing each
the GUI and API services, are defined by individual back-end driver modules,
i.e., each Deltacloud server instance contains a specific driver, port and cloud
provider endpoint URL to access the respective back-end IaaS platform.

5 Tests and Results

In order to test the developed Interoperable Service, a test bed containing Open-
Nebula, OpenStack, CloudStack nodes and Internet access to a PACI cloud
provider was assembled – Figure 2. This test bed is not intended to test the
individual properties and capabilities of each IaaS system.

The OpenNebula, OpenStack, CloudStack and PACI driver modules were
tested and evaluated in terms of functionality and interoperability performance
using this test bed. The experiments compared the Deltacloud API calls with
the direct IaaS platform API calls in terms of response time per operation (i.e.,
the total amount of time required to perform a HTTP request and obtain the
response) as well as the HTTP request packet length and HTTP response content

Fig. 2. Test bed platform.

length. The execution of the API operations (via the Deltacloud API and via
the IaaS platform API) and the measurement of the corresponding response time
was performed with the cURL command line tool [25]. The HTTP request packet
length and response payload were measured using the Wireshark software [26].
For the sake of these tests, the HTTP Secure Sockets Layer (SSL) encryption
security procedure was purposely discarded.

Problems were detected with the OpenNebula, OpenStack and CloudStack
drivers. The OpenNebula driver supplied with the Deltacloud framework had
two minor bugs related with an id argument mismatch in the destroy_image

method (included in the opennebula_driver.rb file) and the instantiation of
an unused xmlfile argument in the delete method of the occi_client.rb file.
Both problems were corrected and reported. The OpenStack driver, although
fully functional, lacked the start and stop VM operations in the OpenStack
rubygem. Moreover, the delete_instance method was defined as an alias of
the stop_instance method, causing the destruction of the VM whenever the
Stop Instance operation is invoked. The third party CloudStack driver, added
to Deltacloud in order to integrate the CloudStack IaaS platform, did not work.
From the analysis of the driver implementation, it was possible to conclude that
the driver is incomplete and, thus, non functional.

The results obtained for OpenNebula are presented in Table 3. The inter-
action via the Deltacloud API, which relies on the OpenNebula driver module,
increases the operation response time, particularly in the listing operations, e.g.,
the List Instances, List Images and List Hardware Profiles operations. It is also
possible to observe that the Delete Image and Create Instance operations have
almost the same average response time.

Table 3. OpenNebula results.

Time Response (s) Data (B)

OCCI API Deltacloud API OCCI API Deltacloud API
Request Response Request Response

List Collections 0.010 0.030 174 348 172 654
List Instances 0.130 0.582 194 6585 181 7376
Show Instance Information 0.089 0.150 183 1219 183 729
Create Instance 0.462 0.482 515 591 298 592
Stop Instance 0.295 0.426 349 1218 189 907
Start Instance 0.203 0.396 348 1219 190 639
Reboot Instance 0.194 0.359 348 1218 191 907
Delete Instance 0.323 0.361 187 0 187 0
List Images 0.105 0.529 194 2828 178 10 966
Show Image Information 0.071 0.133 183 287 180 1101
Delete Image 0.220 0.234 187 0 184 0
List Hardware Profiles 0.012 0.067 200 720 189 1232

The HTTP request packet length and returned payload per operation rein-
force the interpretation of the response time results from Table 3. The HTTP
request packets length of the OpenNebula OCCI API operations are slightly big-
ger than the ones of the Deltacloud API operations. This can be observed mainly
in the Create Instance, Stop Instance, Start Instance and Reboot Instance oper-
ations. On the other hand, the length of the HTTP response payload varies and
is bigger for the responses of Deltacloud API List Collections, List Instances, List
Images, Show Image Information and List Hardware Profiles operations (being
the List Instances and List Images the responses containing the larger values),
identical in the Create Instance operation and larger for the responses of the
OpenNebula OCCI API Show Instance, Stop Instance, Start Instance and Re-
boot Instance operations. In the case of the Delete Instance and Delete Image
operations, the returned payload length is nil since they are silent.

The OpenStack response time as well as the HTTP request packet length
and returned payload (using the Deltacloud API and the OpenStack services
API) are presented in the Table 4. Since the authentication request is performed

Table 4. OpenStack results.

Time Response (s) Data (B)

OpenStack API Deltacloud API OpenStack API Deltacloud API
Request Response Request Response

List Instances 0.131 1.196 2605 16 522 157 13 608
Show Instance Information 0.064 0.387 2635 2371 194 1346
Create Instance 0.380 0.848 2748 665 290 931
Reboot Instance 0.198 1.025 2721 0 202 1346
Delete Instance 0.244 0.947 2670 0 200 1346
List Images 0.095 0.508 2604 7050 154 16 547
Show Image Information 0.070 0.445 2634 967 191 1378
Delete Image 0.194 0.412 2669 0 194 0
List Hardware Profiles 0.024 0.216 2598 1356 165 2177

in each Deltacloud API operation when using the OpenStack driver, the aver-
age HTTP authentication request response time was added to the average of
the OpenStack services (Nova and Glance) API operations time response. As
expected, the response time of the Deltacloud API operations is significantly
higher than the response time of the OpenStack services API (Keystone, Nova
and Glance) operations. This occurs for all listed operations except for the Delete
Image and List Hardware Profiles operations. In fact, the average response time
of operations like the List Instances, Create Instance and Reboot Instance Delta-
cloud API operations reached values higher than the operations performed via
the Deltacloud API using the OpenNebula driver.

The authentication procedure (authentication token) used by OpenStack is
reflected in the values of the HTTP request packet length of the OpenStack API
operations, which is substantially bigger than the values of the corresponding
Deltacloud API operations. On the other hand, the HTTP response payload
varies. The OpenStack API List Instance and Show Instance Information opera-
tions return bigger payloads than the corresponding Deltacloud API operations,
the Delete Image operation returns the same payload in both cases (a void
HTTP response body) and the remaining operations return a smaller payload
than the Deltacloud API counterparts. The Reboot Instance and Delete Instance
operations are silent. Usually, the HTTP response of the Delete Instance opera-
tion defined by the Deltacloud API is also silent. However, since the OpenStack
driver defined the stop_instance method as an alias of the destroy_instance

method, the pause of an OpenStack instance with the Deltacloud API deletes
the instance. In fact, it sends the Delete Instance operation, but returns the Stop
Instance operation result.

Contrary to the open source IaaS platforms (OpenNebula, OpenStack and
CloudStack), which were in the same test network as the laptop used to perform
the tests, the PACI IaaS platform was in an external network. This way, the
latency of the network was taken in consideration in the results presented in
Table 5. The analysis of the results shows that, despite the registered latency,
the time response values of the PACI API operations are lower than the values
registered for the OpenNebula OCCI API and OpenStack API operations, with
the exception of the List Images operation. Although, the List Image operation
lists 103 Images in comparison with the 10 images that were listed by the same
operations of the OpenNebula OCCI API and OpenStack API. In comparison,
the results of the interaction with the Deltacloud API, using the PACI driver,
show a significantly response time increase, mainly with the List Instances, List
Images, List Load Balancers and Show Load Balancers Information operations.
The List Images operation presents the highest time response value, since the
driver has to process the information of 103 returned images. On the other hand,
the response time results for the remaining operations is justified by the need to
perform additional calls to the back-end PACI API and to process the returned
information. The refinement of this methodology may improve the measured
response time. Other Deltacloud API operations, e.g., Show Instance Informa-
tion, Stop Instance, Start Instance, Delete Instance and Show Image Information

Table 5. PACI results.

Time Response (s) Data (B)

PACI API Deltacloud API PACI API Deltacloud API
Request Response Request Response

List Instances 0.032 1.385 180 726 177 10 276
Show Instance Information 0.033 0.124 188 938 185 1128
Create Instance 0.374 0.647 675 165 343 932
Stop Instance 0.078 0.278 193 17 191 939
Start Instance 0.064 0.280 194 18 192 1126
Delete Instance 0.078 0.186 191 19 188 0
List Images 0.655 3.235 186 46 029 174 153 680
Show Image Information 0.042 0.094 206 449 194 1508
List Load Balancers 0.035 2.483 191 818 182 9592
Show Load Balancer Information 0.033 1.717 195 1063 186 947
Create Load Balancer 0.393 0.520 203 167 355 610
Delete Load Balancer 0.075 0.081 198 21 189 0
Associate Instance with LB 0.076 0.463 204 131 284 947
Dissociate Instance from LB 0.081 0.286 206 28 286 610

present lower response time than the corresponding operations via the OpenNeb-
ula and OpenStack drivers.

The length of the HTTP request packets is larger for the PACI API opera-
tions with the exception of the Create Load Balancer, Associate Load Balancer
and Dissociate Load Balancer operations. These Deltacloud API operations re-
quire more parameters than the corresponding PACI API operations. The Delta-
cloud API operations return a larger payload than the direct API calls with the
exception of the Show Load Balancer Information, Delete Instance and Delete
Load Balancer operations. In the case of the last two operations, the Deltacloud
API does not send a HTTP response body.

6 Conclusions

In order to propose and develop an interoperable service for the integrated man-
agement of cloud resources provisioned by different IaaS platforms, a survey was
conducted to compare the features of the most popular open source IaaS plat-
forms - OpenNebula, OpenStack and CloudStack - and of a proprietary IaaS
platform - PACI. This survey concluded that, although the open-source IaaS
platforms expose similar functionalities, the architecture, interface library oper-
ations and governance models are significantly different. The proprietary solution
does not support directly the interaction with other IaaS platforms and origi-
nates, on purpose, the vendor lock-in problem to monetize new products and
paid support services. Additionally, the proprietary IaaS platform has a smaller
group of functionalities in comparison with the open source IaaS platforms stud-
ied. Regarding the interface libraries, the OpenNebula, OpenStack, CloudStack
and PACI client API showed significant differences in terms of type and number
of interfaces, level of customization, organization of the groups of operations and
structure of the request/response messages.

A second survey on existing IaaS abstraction solutions compared the Delta-
cloud framework and the jClouds and Libcloud libraries. The result was the
selection of the Deltacloud framework since it provides many of the desired func-
tionalities (Web dashboard, multiple API, a Ruby client application), includes
several IaaS platform driver modules and integrates new IaaS platforms through
the development of new dedicated driver modules.

To evaluate the proposed solution, a test bed was assembled, deployed and
used to determine the time response and data payload via the Deltacloud frame-
work and via direct IaaS platform API calls. In terms of driver functionalities,
these experiments showed that the new PACI driver was fully functional, the
OpenNebula and OpenStack drivers were fully operational after minor correc-
tions and improvements and the CloudStack driver module was incomplete and
non functional. In terms of driver performance, the results showed that the use of
Deltacloud drivers to access the IaaS platform resources introduces an expected
response time delay when compared with the direct platform API calls. In the
majority of the operations, the HTTP request packet length of the Deltacloud
API was lower and the results of the HTTP response payload were substan-
tially higher in the case of the Deltacloud API listing operations. In general,
the Deltacloud abstraction framework reduces the HTTP request and response
detail to the essential information. The PACI platform, despite being located at
an external network, presented the lowest time response of the tested platforms.

The solution adopted for the integrated management and provision of IaaS
resources from PACI, OpenNebula and OpenStack IaaS platforms fulfils the
specified requirements, i.e., integrates multiple IaaS platforms and offers a Web
dashboard and a REST API for user management. The contributions of this
work include the surveys made, the selection of the abstraction framework, the
assembled test bed platform and, last, but not the least, the developed PACI
driver. Although the PACI driver performed well, it can be refined to enhance
the response time of certain operations. Future improvements to the Deltacloud
API may also enhance the performance of the included drivers. The PACI driver
was shared with the Deltacloud community and the detected OpenNebula and
OpenStack driver malfunctions were also reported.

Acknowledgements

This work was partially supported by the ERDF – European Regional Devel-
opment Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT – Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project «FCOMP – 01-0124-FEDER-022701».

References

1. Amazon: Amazon Web Services: Amazon EC2. [Online]. Available: http://aws.
amazon.com/ec2/ (April 2014)

2. Amazon: Amazon Web Services. [Online]. Available: http://aws.amazon.com/

(April 2013)
3. Deltacloud: Deltacloud Framework. [Online]. Available: http://deltacloud.

apache.org/ (May 2014)
4. C12G Labs: Open–Source Enterprise Cloud Simplified. [Online]. Available: http:

//opennebula.org/ (April 2014)
5. OpenStack Foundation: Open source software for building private and public

clouds. [Online]. Available: http://www.openstack.org/ (April 2014)
6. Apache Software Foundation: Apache CloudStack: Open Source Cloud Computing.

[Online]. Available: http://cloudstack.apache.org/ (April 2014)
7. Parallels: Parallels Automation for Cloud Infrastructure. [Online]. Available: http:

//www.parallels.com/paci/

8. Open Grid Forum (OGF): Open Forum - Open Standards. [Online]. Available:
https://www.ogf.org/dokuwiki/doku.php (April 2014)

9. OGF: OCCI: About. [Online]. Available: http://occi-wg.org/about/ (April
2014)

10. OpenNebula: OpenStack Programs. [Online]. Available: https://wiki.

openstack.org/wiki/Programs (May 2014)
11. OpenStack: OCCI. [Online]. Available: https://wiki.openstack.org/wiki/

Occi\#Summary (April 2014)
12. AWS: Amazon S3. [Online]. Available: https://aws.amazon.com/s3/ (April 2014)
13. Isaac Chiang: rOCCI Server – A Ruby OCCI Server. [Online]. Available: https:

//github.com/isaacchiang/rOCCI-server (June 2014)
14. jClouds: The Java Multi-Cloud Toolkit. [Online]. Available: http://jclouds.

apache.org/ (May 2014)
15. Apache Libcloud: One Interface To Rule Them All. [Online]. Available: http:

//libcloud.apache.org/ (May 2014)
16. Apache: The Apache Software Foundation. [Online]. Available: http://www.

apache.org/foundation/ (April 2014)
17. Deltacloud: Deltacloud drivers. [Online]. Available: http://deltacloud.apache.

org/drivers.html#drivers (May 2014)
18. DMTF: Cloud Management Initiative. [Online]. Available: http://dmtf.org/

standards/cloud (May 2014)
19. Deltacloud: Deltacloud API. [Online]. Available: https://deltacloud.apache.

org/rest-api.html#rest (May 2014)
20. jClouds: Providers. [Online]. Available: http://jclouds.apache.org/reference/

providers/ (May 2014)
21. Libcloud: Supported Providers. [Online]. Available: http://libcloud.apache.

org/supported_providers.html (May 2014)
22. Aeolus: Manage Your Cloud Deployments with Ease. [Online]. Available: https:

//github.com/aeolusproject/aeolusproject.github.com/wiki (May 2014)
23. mOSAIC: Open source API and platform for multiple clouds. [Online]. Available:

http://www.mosaic-cloud.eu/ (May 2014)
24. Childers, C.: CloudStack Driver for Deltacloud. [Online]. Available:

https://github.com/chipchilders/deltacloud/tree/cloudstack-driver/

server/lib/deltacloud/drivers/cloudstack (May 2014)
25. Stenberg, D.: cURL. [Online]. Available: http://curl.haxx.se/ (May 2014)
26. Wireshark Foundation: Wireshark. [Online]. Available: http://www.wireshark.

org/ (May 2014)

