
Dynamic Scheduling of MapReduce Shuffle under
Bandwidth Constraints

Sylvain Gault and Christian Perez

Avalon Research Team
Inria / LIP, ENS Lyon, France

{sylvain.gault,christian.perez}@inria.fr

Abstract. Whether it is for e-science or business, the amount of data
produced every year is growing at a high rate. Managing and process-
ing those data raises new challenges. MapReduce is one answer to the
need for scalable tools able to handle the amount of data. It imposes a
general structure of computation and let the implementation perform its
optimizations. During the computation, there is a phase called shuffle
where every node sends a possibly large amount of data to every other
node. This paper proposes and evaluates two algorithms to improve data
transfers during the shuffle phase under bandwidth constraints.

Keywords: Big Data, MapReduce, shuffle, scheduling, network, con-
tention, bandwidth, regulation.

1 Introduction

In the past decades, the amount of data produced by scientific applications has
never stopped growing. Several solutions have been proposed to handle these
new order of magnitude in data production. Among them Google proposed to
use MapReduce [5] in order to handle the web indexing problems in its own
data-centers. This paradigm, inspired by functional programming, distributes the
computation on many nodes that can access the whole data through a distributed
file system. MapReduce users usually implement an application by only providing
a map and a reduce function.

��� ����� 	�
���

���


�
���

����

Fig. 1. Typical structure of a MapReduce ap-
plication

The global process of a MapRe-
duce application mainly consists in
3 steps, map, shuffle and reduce as
shown in Fig. 1. During the map
phase, every mapper process reads
a chunk of data and applies the
map function on every record of that
chunk to produce a number of key-
value pairs. All those key-value pairs
make up what is called the intermediate data. Within every mapper process, the
intermediate data is split into partitions. A partition represents the set of data
to send to a given reducer process. Then during the shuffle phase, all the pairs

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 117–128, 2014.
c© Springer International Publishing Switzerland 2014



118 S. Gault and C. Perez

with an equal key are gathered into a single reducer to build pairs made of a
key and a list of values. The reducer process can thus run the reduce function on
every pair and produce one result per intermediate key. Every mapper may send
some data to every reducer.

Most work that try to optimize MapReduce have mainly focused on the map
phase [4,9,14,13]; the shuffle has been largely forgotten despite it might take a
non-negligible amount of time.

To optimize the performance / cost ratio, most MapReduce platforms run
on moderately high-end commodity hardware. Nowadays, a classical HDD can
produce a throughput of more than 1 Gbps, and even more with RAID configu-
rations, while the network remain bound to 1 Gbps. The time taken by the map
phase is expected to be equivalent to that of the shuffle. Some works [11] show
that when contention occurs in a LAN, the overall throughput drops because of
the delay needed by TCP to detect and retransmit the lost packets.

Problem statement. In a MapReduce application, it is quite common that the
mappers do not process the same amount of data and that the map processes do
not terminate at the same time. Thus, sharing the bandwidth equally among the
mappers (as would do the network stack by default) may lead to a suboptimal
bandwidth usage due to the mappers that finished later and those with more
intermediate data. How to improve the shuffle phase? This work proposes and
compares several scheduling algorithms to optimize the shuffle phase.

This paper is structured as follow: Section 2 reviews some related works that
optimize the shuffle phase. Section 3 describes the proposed algorithms while
a few important implementation details are presented in Sect. 4. Experimental
results are discussed in Sect. 5. Section 6 concludes the paper.

2 Related Work

Some works have investigated the problem of the transfer cost during the shuffle
phase of a MapReduce application. Most of them focus on optimizing the task
and data placement during or just after the map phase.

The LEEN [8] (locality-aware and fairness-aware key partitioning) algorithm
try to balance the duration of the reduce tasks while minimizing the bandwidth
usage during the shuffle. This algorithm relies on statistics about the frequency
of occurrences of the intermediate keys to get to create balanced data partitions.
This approach is complementary to ours.

Another complementary approach is the HPMR [10] algorithm. It proposes a
pre-shuffling phase that leads to reduce the amount of transferred data as well
as the overall number of transfers. To achieve this, it tries to predict in which
partition the data will go into after the map phase and tries to place this map
task on the node that will run the reduce task for this partition.

Conversely, the Ussop [12] runtime, targeting heterogeneous computing grids,
adapts the amount of data to be processed by a node with respect to its process-
ing power. Moreover it tends to reduce the intermediate amount of intermediate



MapReduce Shuffle Scheduling 119

data to transfer by running the reduce task on the node that hold most of the
data to be reduced. This method can also be used together with our algorithms.

A MapReduce application can be seen as a set of divisible tasks since the
data to be processed can be distributed indifferently on the map tasks. It is
then possible to apply the results from the divisible load theory [2]. This is the
approach followed by Berlińska and Drozdowski [1]. They consider a runtime
environment in which the bandwidth of the network switch is less than the
maximum bandwidth that could be used during the shuffle phase, thus inducing
contention. To avoid this contention, they propose to model the execution of a
MapReduce application as a linear program that generates a static partitioning
and a static schedule of the communications based on a set of communication
steps. While interesting, we showed in a previous work [6] that this approach is
hardly scalable and that the chosen communication pattern is clearly suboptimal.

3 Shuffle Optimization

3.1 Platform and Application Models

We consider as a platform model a cluster connected by a single switch, thus
forming a star-shaped network. Every link connecting a node to the switch has a
capacity of C byte/s and the switch have a bandwidth of σ byte/s. σ is supposed
to be an integer multiple of the link bandwidth. Thus σ = l × C. Above l
concurrent transfers, communications will suffer from contention.

A MapReduce application is represented here by the number of mapper pro-
cesses m, and the number of reducer processes r. There are more reducers than
what the switch can support, meaning that r ≥ l. A map task i will transfer αi,j

bytes to the reduce task j. We call αi =
∑

αi,j the amount of data a mapper
process i will have to send. Let V =

∑
αi be the size of all intermediate data.

We also assume that a mapper cannot send its data before its computations are
finished. A mapper i finishes its computation Si seconds after the first mapper.
For the sake of simplicity, the mappers are numbered by the date of termination
of the computation. Thus, Si < Si+1 and S1 = 0. Figure 2 show the Gantt chart
of a possible execution of a MapReduce application following this model. The
computation time is green (or dark gray), the transfer time is light gray and in
red (or black) is the idle time.

As we mainly focus on the throughput, the model ignores any latency as well
as any mechanism of the network stack that could make the actual bandwidth
lower than expected for a short amount of time, such as the TCP slow-start.

mapper 1

mapper 2

mapper 3

mapper 4

S compute

S compute

S compute

S compute

S2

S3

S4

Fig. 2. Gantt of a possible execution following the application model



120 S. Gault and C. Perez

The transfer time of a chunk is proportional to its data size. This network model
also ignores any acknowledgment mechanism of the underlying network proto-
cols that can consume bandwidth and any interaction between CPU usage and
bandwidth usage. Therefore, in order to make these assumptions realistic, we
choose to map one mapper or reducer process per physical node.

3.2 Sufficient Conditions of Optimality and Lower Bound

We aim at optimizing the time between the start of the first transfer and the
end of the last transfer. Indeed, in the general case, a reduce task cannot start
before all input data are available. Thus, all the reduce tasks will start almost
at the same time, which corresponds to the end of the shuffle phase.

Sufficient condition. From the above models, we can derive a few properties of
an optimal algorithm. It would be trivial to prove that an algorithm that uses
all the available bandwidth from the beginning to the end of the shuffle phase
would be optimal. One way to achieve this, is by making all the transfers end
at the exact same time. This is not a necessary condition for an algorithm to be
optimal since, in some cases, these requirement cannot be met.

Lower bound. From this sufficient condition, a lower bound of the shuffle duration
t that will be used in the analysis of the experiments can be computed [7] as

t = Sl +

V − C

l−1∑

i=1

(Sl − Si)

σ

3.3 Algorithms

To maximize the use of the bandwidth during the shuffle phase, we design and
evaluate three algorithms. The first one is the simplest and probably the one
implemented in every framework. The second algorithm is based on two ordered
lists. The thrid algorithm is based on bandwidth regulation. Let describe them.

Start-ASAP Algorithm. As a reference algorithm, we consider the simplest
algorithm which consist in starting every transfer as soon as the intermediate
data are available. It thus relies on the operating system and on the network
equipment to share the bandwidth between multiple transfers.

List-Based Algorithms. This algorithm enforces the constraints there must
never be two transfers at the same time from a single mapper (1) or toward a
single reducer (2) as this would create some contentions.

start(i, j) ≥ end(i, j′) ∨ end(i, j) ≤ end(i, j′) ∀i ∈ [1..m], j, j′∈ [1..r], j �= j′ (1)
start(i, j) ≥ end(i′, j) ∨ end(i, j) ≤ end(i′, j) ∀i, i′ ∈ [1..m], j ∈ [1..r], i �= i′ (2)



MapReduce Shuffle Scheduling 121

Algorithm. To fulfill the constraints (1) and (2), the list-based algorithm handles
the mappers and reducers in a list from which a reducer is taken and associated
to a mapper to form a couple that represents a transfer. When at least one
mapper is ready to start a transfer, the first ready mapper is taken from the list
of mappers. Then, the algorithm iterates through the list of reducers to take the
first that the current mapper has not transferred its data to yet. Once found,
the reducer and the mapper are removed from their lists. When the transfer is
done, the reducer is put back at the end of the list of reducers thus keeping it
ordered by date of last finished transfer. The mapper is inserted back into the list
keeping the list ordered by the increasing number of remaining transfers. It may
happen that for a given mapper there is no reducer it has not already transferred
its data. In that case, the next entry in the list of mappers is considered.

More formally, that means that there are two lists named ml and rl. ml is
empty in the beginning and it will contain only the id of the mappers that have
finished their map computation and still have some intermediate data to transfer.
ml is assumed to be automatically ordered by the number of remaining transfers,
like a priority queue. rl contains the id of every reducer in the beginning, and it
is ordered by the fact that the reducer id will be always be queued at the end.

The transfer to start is chosen as follow. While no mapper i ∈ ml has been
chosen, take the next mapper i from ml. Iterate through rl until a reducer j is
found that i has some data to send to. Once this is found, break every loop, (i, j)
is the transfer to start. As a last step, i is removed from ml and j is removed
from rl. The full algorithm is described in [7].

Limitations. Although we expect this algorithm to perform better than the
reference algorithm, some corner cases may still remain. Indeed, it may happen
a mapper has some transfers left to do but cannot start them because all the
reducers are already busy transferring. We can expect that this situation is more
common when l is almost as large as r. Moreover, the scalability of this algorithm
seems limited since the centralized scheduler has to be queried for every transfer,
and their number grows with the number of nodes.

Two Phase Per-Transfer Regulation. The idea of this algorithm is based
on the sufficient condition of an optimal algorithm that uses all the bandwidth
of the switch and that terminates all the transfers at the same moment. For this,
we assume that for a given data transfer, a given bandwidth can be maintained.
We also assume that the bandwidth can be modified dynamically. The way we
achieved this is explained in [7].

This algorithm computes the bandwidth to be allocated to every sending
mapper process with respect to the amount of data to send. This bandwidth
is then distributed among the transfers mapper → reducer inside the mapper
process. This algorithm is expected to never allocate too much bandwidth to a
given mapper process and to finish all the transfers at the same time.

Model addition. For this algorithm we name ready(t) the set of mapper processes
that have finished their computation but not the transfer of their intermediate



122 S. Gault and C. Perez

data. βi,j(t) is the bandwidth allocated to the transfer from mapper i to reducer
j at a date t, and βi(t) =

∑
βi,j(t) the bandwidth allocated to a given mapper

process i. αi(t) is also the amount of intermediate data a ready mapper i still
has to transfer to the reducers at date t. And αi,j(t) the amount of data still to
be transferred from mapper i to reducer j.

Algorithm. The first phase computes the values for βi(t), the bandwidth allo-
cated to mapper i. The second phase applies a very similar algorithm for every
process in order to distribute the bandwidth among the transfers.

The first phase is done by computing βi(t) ← σαi(t)
V (t) for every mapper i. If one

value for βi(t) is larger than C, then it is set to C, and the remaining bandwidth
is redistributed among the other mappers. It should be noted that when the
bandwidth of a mapper i is reduced to C, it means that this process will not
be able to complete its transfers at the same time of the others. In this case,
this algorithm may not be optimal. The second phase is done by computing
βi,j ← βi(t)

αi,j(t)
αi(t)

for every transfer (i, j). The full algorithm is presented in [7].
The complexity of one iteration of the first phase is O(m) because it has

to compute βi(t) for every mapper i. This computation could be repeated a
maximum of m times. Thus this first phase run in O(m2) in the worst case. The
complexity of the second phase is O(m× r) because βi,j(t) has to be computed
for every mapper i and every reducer j. The complexity of the algorithm is then
O(m2 +m× r). This may sound large, but, the second phase can be distributed
and every mapper i can share its allocated bandwidth itself and it can compute
βi,j(t) from βi(t) on its own. Thus reducing the worst-case complexity of the
whole algorithm to O(m2 + r).

Limitations. Although this algorithm prevents any contention on the switch or
on the private links of the mappers, contention may happen on the reducers side.
However, since r ≥ l, this case should not occur very often.

4 Implementation Details

To evaluate these algorithms, we have implemented them in our own MapReduce
framework HoMR (HOmemade MapReduce) which has been developed in the
context of the French ANR MapReduce project. It is based on HLCM/L2C [3],
a software component model. HoMR is written in C++ and it relies on CORBA
for inter-process communications.

The two phase algorithm recomputes the allocated bandwidths every time
a transfer terminates, or every 5 seconds if nothing happened. This enables to
avoid a slight imprecision in the bandwidth control to be compensated. The value
of 5 seconds has been chosen arbitrarily. However, experiments have shown that
the computed bandwidth for every mapper is always slightly different.

To reach the maximal bandwidth of a single link, every mapper uses 4 threads
to send data per transfer. This value has been suggested by the experiment with
tc presented in Sect. 5.2. It has been further confirmed by tests with HoMR.



MapReduce Shuffle Scheduling 123

5 Experiments

To evaluate these algorithms, we have performed some experiments on the
Grid’5000 experimental testbed. First we ensure the environment behaves as
expected, and we compare the 3 algorithms presented in this document.

5.1 Platform Setup

The model assumes that the platform is a switched star-shaped network with a
limited bandwidth on the switch. The central point of our algorithms is to control
the bandwidth used during the shuffle phase. Thus, to evaluate our algorithms in
the case of several switch bandwidth limit configurations, we simulated a switch
by the mean of a node dedicated to routing packets.

This may not be an optimal simulation of a switched network since the rout-
ing mechanism implies a store-and-forward method of forwarding the packets,
instead of a cut-through as most switches do. However, we believe that this does
not has a large effect on the measured throughputs and this enables to easily
control the overall bandwidth available on that routing node.

As all the packets will have to traverse twice the network interface of the
router node, we need a fast network to simulate a switch with a throughput
greater than 1 Gbps. Thus, we used InfiniBand 40G interfaces with an IP over
InfiniBand driver for the ease of use. The bandwidth of the router is controlled
with the Linux tc tool. The performance behavior of this setup is tested in
Sect. 5.2. As the network is based on fast network interface controllers (NIC),
the bandwidth of the private links is configured to 1 Gbps. The tc rules used are
based on the htb algorithm to limit the outgoing bandwidth and on the default
algorithm to limit the incoming bandwidth. The operating system of the nodes
is Debian wheezy with Linux 2.6.32 as a kernel.

Experiments have been done on the Edel cluster of Grid’5000. Each node has
2 quad-core CPUs Intel Xeon E5520 @2.27 GHz, and it equipped with 24 GB of
memory, 1 Gigabit Ethernet and 1 InfiniBand 40G cards.

5.2 Preliminary Tests

tc Regulation on Router. To test whether we can limit correctly the band-
width on the router we used 2 nodes and a router node. Only the router node
has a limited bandwidth. The limit is varied by steps of 100 Mbps up to 12 Gbps.
The actual bandwidth is measured with iperf with 4 parallel clients threads on
the client side. Every measure is run 5 times.

Figure 3(a) shows the results of this experiment. Globally, we observe that
the measured bandwidth stay roughly between 90% and 95% of the target band-
width until the maximal bandwidth of the system is reached. Also, the measures
are quite stable as the difference between the maximal and minimal measured
bandwidth never exceed 0.28 Gbps or 8% of the average bandwidth.

However, some steps are clearly distinguishable around 5 Gbps and 7 Gbps.
Similar results have been obtained on another cluster with InfiniBand 20G net-
work adapters. We have no real explanation for that. The results on a newer



124 S. Gault and C. Perez

0

2

4

6

8

10

12

0 2 4 6 8 10 12

M
ea

su
re

d
b
w

(G
b
/
s)

bw limit (Gb/s)

Setting bw
90% - 95% setting bw
bw IB 40G min-max
bw IB 40G average

bw IB 20G min-max
bw IB 20G average

(a) Without correction

0

2

4

6

8

10

0 2 4 6 8 10

M
ea

su
re

d
b
a
n
d
w
id

th
(G

b
/
s)

Bandwidth limit (Gb/s)

Setting bw
90% setting bw

Bw min-max
Bw average

(b) With correction

Fig. 3. Bandwidth limitation on Linux + tc on InfiniBand

version of Linux (not shown here) are completely different. Thus, we think that
this is a performance bug in Linux.

To still get the targeted bandwidth, we built a lookup table to set the band-
width limit that would produce the bandwidth actually targeted. Figure 3(b)
show the measured bandwidth with respect to the corrected setting bandwidth.
It can be noted that the larger step from Fig. 3(a) could not be completely cor-
rected and that the bandwidth of 10 Gbps cannot be reached. Except from those
outliers, the measured bandwidth is always between 96% and 103% of the target
bandwidth. However, the lookup table has been tested only when one node emit
the data and one node receive them. It is not impossible that when several nodes
send data at the same time the bandwidth drift shown in Fig. 3(a) is not the
same. This would make the correction applied inaccurate.

Bandwidth Regulation. The two phase algorithm relies on the ability to
regulate the bandwidth. The method we used for this is described in [7]. To
check whether it performs correctly, we set up an experiment with only two
nodes interconnected by an InfiniBand 40G network. We then vary the size of
the messages from 4 bytes to 64 MB and the target bandwidth from 1 KB/s to
1 GB/s and measure the overall average bandwidth. Each measure is repeated
10 times.

Fig. 4. Bandwidth regulation test

Figure 4 shows a 3D plot of the
results this experiment. It shows the
actual bandwidth with respect to the
message size and to the targeted
bandwidth. Some points are miss-
ing in the results because the exe-
cution time required for them would
have been too long. The colors (or
gray scale) represent the percentage
of variability.



MapReduce Shuffle Scheduling 125

This figure shows 3 distinct areas. A black plan for small targeted bandwidth
and large enough message size, a purple (or gray) plan for small message size and
high targeted bandwidth, and a roof for large message size and large targeted
bandwidth. The black plan is the area where the regulation algorithm works
perfectly. The purple plan is the area where the system is CPU-bound. And the
roof is the area where the system is bound by the network bandwidth.

5.3 Synchronous Transfer Start

The first experiment with our algorithms is simple and all other experiments
are only variations of this one. The MapReduce job is a word count application.
However, for the sake of simplicity and control, the data are not read from a file,
they are generated by a component WordGenerator. This enables to control the
amount of intermediate data produced. In order to control the time at which
the map computations end, an artificial synchronization barrier is added. In the
next experiment, an imbalance is simulated by adding a sleep after this barrier.
This enables to evaluate the behavior of the shuffle phase.

For this first experiment all the map computations finish at the exact same
time and every mapper have the same amount of intermediate data. Every map-
per process generates 2.56 GB of intermediate data. The same amount of data
has to be sent to every reducer. The router’s bandwidth is varied from 1 Gb/s
to 10 Gb/s. The time taken from the start of the first transfer to the end of the
last transfer is measured and compared to the lower bound. This experiment is
run with 10 mappers and 10 reducers. Every configuration is run 5 times.

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

to
lo

w
er

b
o
u
n
d

Switch bandwidth (Gb/s)

Lower bound
ASAP

Lists-Based
Regulation-Based

Fig. 5. Median time taken by all the 3 algo-
rithms under various bandwidth restriction
with same amount of data and synchronous
start of transfers

Figure 5 displays the results of
this experiment in terms of percent-
age with respect to the lower bound.
As every measure has been made 5
times, the median time is represented
on this figure.

The results for the list-based al-
gorithm are close to what was ex-
pected. The lists-based algorithm has
a behavior close to the optimal. Per-
formance degradations occur for a
switch bandwidth of 7 Gb/s and 10
Gb/s. Those configurations, as shown
in Fig. 3(b), are known not to offer
the actual bandwidth targeted.

The two phase regulation algo-
rithm shows a good behavior for a switch bandwidth less or equal to 8 Gb/s.
Above that limit it creates contentions and it exhibits a behavior as bad as the
reference algorithm. Also, for 7 Gb/s, this algorithm produces a peak of bad
performance. This can be interpreted as a high sensitivity to overestimation of
the switch bandwidth.



126 S. Gault and C. Perez

Regarding the variability of the performance, the list-based algorithm has a
good stability. The standard deviation of the time of the shuffle phase is no more
than 3%. The two other algorithms have a variability between 0% and 17%.

5.4 1 Second Steps between Computation End

The second experiment is very similar to the previous one. Only a one-second
delay between the end of every map computation has been added, thus creating
a slight imbalance among the mapper process.

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

to
lo

w
er

b
o
u
n
d

Switch bandwidth (Gb/s)

Lower bound
ASAP

List-Based
Regulation-Based

Fig. 6. Median time taken by all the 3 algo-
rithms under various bandwidth restriction
with same amount of data and 1 second step
between transfer start

Figure 6 displays the results of this
experiments in terms of percentage
with respect to the lower bound.

The list-based algorithm has a sim-
ilar behavior as in the previous exper-
iment. The reference algorithm also
has a better performance. This is due
to the fact that in the beginning
and in the end, not all the mappers
are transferring data, thus there is
less contention and less performance
degradation. The global behavior of
the list-based and two phase algo-
rithms remain the same. However the
two phase algorithm appears to be
super-optimal by up to 5% for some
configurations. The cause is not very clear. It is supposed that raising the limit
bandwidth as done in Fig. 3(b) is only valid for a single source and single desti-
nation network.

5.5 1 Second Step between Transfer Start with Heterogeneous
Amount of Data

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

to
lo

w
er

b
o
u
n
d

Switch bandwidth (Gb/s)

Lower bound
ASAP

List-Based
Regulation-Based

Fig. 7. Median time taken by the 3 algo-
rithms under various bandwidth restriction,
with an imbalanced amount of intermediate
data and non-synchronous transfer start

The third and final experiment com-
bines the delay before starting the
transfers and imbalance of the amount
of intermediate data.

The results of this experiment are
displayed in Fig. 7 in terms of percent-
age with respect to the lower bound.

The results shows that the
list-based algorithm has a more
regular behavior. It produces a
performance variability of less than
2%. As previously, the reference
algorithm has poor performance for
small bandwidth as it generates some
contentions. It also has a variability



MapReduce Shuffle Scheduling 127

between 2% and 14%. Its performance is equivalent to that of two phase and
lists-based algorithms for a router bandwidth which is large enough. Globally,
the reference algorithm has a bowl-shaped performance curve centered around
5 Gb/s. The left part seems to be due to the decrease of the contention ratio,
leading to an increase of the performance; the right part seems to be due to the
imbalance among the amount of intermediate data to transfer that makes the
increase of the bandwidth of the router has only a slight impact in the actual
performance. Except for a bandwidth limit of 7 Gbps, the two phase algorithm
achieves performance close or better than the list-based algorithm. It also has a
variability usually less than 3%, except for a bandwidth limit of 7 and 10 Gbps
where some contentions occur.

6 Conclusion and Future Work

The two phase algorithm performs equally or better than the list-based one
when the switch bandwidth is precisely known, but it is quite sensitive to an
over-estimation of this parameter. The impact of contention on the reducers’
side has been ignored here and should be investigated. Taking the bandwidth
regulation from the reducers’s side may be beneficial. The list-based may hardly
scale and it requires the switch bandwidth to be an integer multiple of the link
bandwidth.

Several assumptions have been made in this work, and removing them would
be a step forward. On the experiment part, the most important assumption is
that Linux + tc mimic the behavior of a real switch, which could be investigated
further.

On the model part, some simplifications have been made which may not always
be realistic. This is, however, a crucial step towards a more general solution.
Forcing the mappers and reducers to be located on distinct nodes each is a
strong requirement that could be addressed by allowing the list-based algorithm
to pick only one of the collocated process, and by adding an intermediate phase
to the two phase algorithm that would distribute the bandwidth allocated to a
node among the processes.

Assuming a single-switch network is also a strong constraint. However, it could
be mitigated by discriminating the same-switch transfers from the others and
tweaking the algorithm parameters accordingly.

Automatically determining the parameters of the algorithms, such as link
and switch bandwidths, would remove this burden from the user. Making the
estimated bandwidth dynamic would also make those algorithms more robust
against the disturbances that may be caused by the other users of a cloud in-
frastructure. Also, network topology discovery would be very important to ease
their usage.

In the end, the shuffle phase has been largely ignored by the academic work
despite being a potentially important bottleneck. This has showed that a no-op
algorithm lead to bad performance in case of network contention and smarter
algorithms are proven to be more efficient.



128 S. Gault and C. Perez

Acknowledgment. This work is supported by the French National Research
Agency (Agence Nationale de la Recherche) in the framework of the MapRe-
duce project under Contract ANR-10-SEGI-001. The experiments referenced in
this paper were carried out using the Grid’5000/ALADDIN-G5K experimental
testbed, an initiative from the French Ministry of Research through the ACI
GRID incentive action, INRIA, CNRS and RENATER and other contributing
partners.

References
1. Berlinska, J., Drozdowski, M.: Scheduling Divisible MapReduce Computations.

Journal of Parallel and Distributed Computing 71(3), 450–459 (2010)
2. Bharadwaj, V., Robertazzi, T.G., Ghose, D.: Scheduling Divisible Loads in Parallel

and Distributed Systems. IEEE Computer Society Press (1996)
3. Bigot, J., Pérez, C.: On High Performance Composition Operators in Component

Models. In: High Performance Scientific Computing with special emphasis on Cur-
rent Capabilities and Future Perspectives, Advances in Parallel Computing, vol. 20,
pp. 182–201. IOS Press (2011)

4. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S.: Samr: A self-adaptive mapreduce
scheduling algorithm in heterogeneous environment. In: 2010 IEEE 10th Int. Conf.
on. Computer and Information Technology (CIT), pp. 2736–2743 (June 2010)

5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proc. of the 6th Conf. on Symposium on Opearting Systems Design & Imple-
mentation, OSDI 2004, vol. 6, p. 10. USENIX Association (2004)

6. Gault, S.: Ordonnancement dynamique des transferts dans MapReduce sous con-
trainte de bande passante. In: ComPAS 2013 / RenPar’21 - 21eme Rencontres
Francophones du Parallélisme (January 2013)

7. Gault, S., Desprez, F.: Dynamic Scheduling of MapReduce Shuffle Under Band-
width Constraints. Tech. Rep. Inria/RR-8574

8. Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., Qi, L.: LEEN: Locality/fairness-aware key
partitioning for mapreduce in the cloud. In: 2010 IEEE Second Int. Conf. on Cloud
Computing Technology and Science (CloudCom), pp. 17–24 (November 2010)

9. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: Mitigating skew in mapre-
duce applications. In: Proc. of the 2012 ACM SIGMOD Int. Conf. on Management
of Data, SIGMOD 2012, pp. 25–36. ACM (2012)

10. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: HPMR: Prefetching and
pre-shuffling in shared mapreduce computation environment. In: IEEE Int. Conf.
on Cluster Computing and Workshops, CLUSTER 2009, pp. 1–8 (August 2009)

11. Steffenel, L.: Modeling network contention effects on all-to-all operations. In: 2006
IEEE Int. Conf. on Cluster Computing, pp. 1–10 (September 2006)

12. Su, Y.L., Chen, P.C., Chang, J.B., Shieh, C.K.: Variable-sized map and locality-
aware reduce on public-resource grids. Future Generation Computer Systems 27(6),
843–849 (2011)

13. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Job scheduling for multi-user mapreduce clusters. Tech. Rep. UCB/EECS-2009-55,
EECS Department, University of California, Berkeley (April 2009)

14. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In: Proc. of the 5th European Conf. on Computer Systems, EuroSys
2010, pp. 265–278. ACM (2010)


	Dynamic Scheduling of MapReduce Shuffle under Bandwidth Constraints
	1 Introduction
	2 Related Work
	3 Shuffle Optimization
	3.1 Platform and Application Models
	3.2 Sufficient Conditions of Optimality and Lower Bound
	3.3 Algorithms

	4 Implementation Details
	5 Experiments
	5.1 Platform Setup
	5.2 Preliminary Tests
	5.3 Synchronous Transfer Start
	5.4 1 Second Steps between Computation End
	5.5 1 Second Step between Transfer Start with Heterogeneous Amount of Data

	6 Conclusion and Future Work
	References




