
Towards the Transparent Execution

of Compound OpenCL Computations
in Multi-CPU/Multi-GPU Environments�

Fábio Soldado, Fernando Alexandre, and Hervé Paulino

NOVA-LINCS / Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

herve.paulino@fct.unl.pt

Abstract. Current computational systems are heterogeneous by nature,
featuring a combination of CPUs and GPUs. As the latter are becoming
an established platform for high-performance computing, the focus is
shifting towards the seamless programming of the heterogeneous systems
as a whole. The distinct nature of the architectural and execution models
in place raise several challenges, as the best hardware configuration is
behavior and data-set dependent. In this paper, we focus the execution
of compound computations in multi-CPU/multi-GPU environments, in
the scope of Marrow algorithmic skeleton framework, the only, to the
best of our knowledge, to support skeleton nesting in GPU computing.
We address how these computations may be efficiently scheduled onto
the target hardware, and how the system may adapt itself to changes in
the CPU’s load and in the input data-set.

1 Introduction

Most of the current computational systems are intrinsically heterogeneous, fea-
turing a combination of multi-core CPUs and GPUs. However, the discrepancies
of the programming and execution models in place make the programming of
these hybrid systems a complex chore. Consequently, only experts with deep
knowledge of parallel programming, and even computer architecture, are able to
fully harness the available computing power.

The OpenCL specification has been designed with the purpose of enabling
code portability across a wide range of architectures. However, the portability
of performance is not guaranteed. In fact, it depends greatly on device-specific
optimizations, which are cumbersome to implement, due to the low level nature
of the programming model. Moreover, when targeting multiple devices, it is still
up to the programmer to assume the parallel decomposition of the problem. Ac-
cordingly, the definition of high level programming constructs for heterogeneous
computing has been the driver of a considerable amount of recent research both

� This work was partially funded by FCT-MEC in the framework of the PEst-
OE/EEI/UI0527/2014 and PTDC/EIA-EIA/111518/2009 projects.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 177–188, 2014.
© Springer International Publishing Switzerland 2014

178 F. Soldado, F. Alexandre, and H. Paulino

at library and language level. A growing tendency is to build upon the notion of
algorithmic skeleton [1–7].

We share this vision. Algorithmic skeletons render a template-based program-
ming model that abstracts the complexity inherent to parallel computing by
factorizing known solutions in the field into high level parameterizable struc-
tures. We claim that these characteristics can be used to, on one hand, hide
the heterogeneity of the underlying hardware and, on the other, provide tools
to cope with such heterogeneity, enabling device-specific parallel decompositions
and optimizations. To that extent, we have been developing an algorithmic skele-
ton framework, entitled Marrow [8, 9], for the orchestration of OpenCL kernels.
Marrow offers both data and task-parallel skeletons, and is the first on the GPU
computing field to support skeleton composition, through nesting.

In this paper, we grow the Marrow framework to provide a skeletal program-
ming model for the transparent programming of computational systems com-
prising multiple CPUs and GPUs. Our proposal distinguishes itself from the
current state of the art by supporting the execution of compound computations,
having in mind data locality requirements. Most of the current frameworks ei-
ther expose the heterogeneity to the programmer [5] (and [10] when considering
performance) or selectively direct the computations exclusively to one of their
CPU and GPU back-ends [1–4, 10, 11]. In turn, the proposals that tackle the
transparent conjoint use of both CPUs and GPUs either restrict their scope to
the execution of single kernels [12,13] or require previous knowledge on the com-
putation to run [14]. The contributions of this paper are thus on the definition of
strategies to distribute the load of a Marrow compound computation across mul-
tiple CPUs and GPUs, and to adapt this distribution to different input data-sets
and to the CPUs’ load fluctuations.

2 The Marrow Framework

Marrow is a C++algorithmic skeleton framework for the orchestration of OpenCL
computations. It provides a set of data and task-parallel skeletons that can be
combined, through nesting, to build compound computations. A Marrow compu-
tation may be interpreted as a tree of skeleton constructions that apply a partic-
ular behavior to their sub-tree, down to the leaf nodes, which represent the actual
OpenCL kernels. The framework takes upon itself the entire host-side orchestra-
tion required to correctly execute these computational trees (CTs), including the
proper ordering of the data-transfer and execution requests, and the communica-
tion between the tree nodes. The following skeletons are currently supported:

Pipeline - a pipeline of data-dependent CTs; Loop - while and for loops over
a CT; Map - application of a CT upon independent partitions of a data-set;
MapReduce - extension of Map with a subsequent reduction stage.

The Marrow programming model comprises two main stages: the construction
of the CTs and the subsequent issuing of execution requests. The framework al-
lows for the composition of arbitrary OpenCL kernels. Accordingly, for the sake
of correctness and efficiency, setting up a CT leaf requires the specification of

Towards the Transparent Execution of Compound OpenCL Computations 179

the interface of the wrapped computational kernel, namely in what concerns its
input and output parameters. For that purpose, the framework supplies a set
of data-types to classify these parameters as vector or scalar values; mutable
or immutable, and global or local. Moreover, the programmer may specify a
kernel-specific local work-group size, for computations that are bound to par-
ticular sizes, and upon how many elements of the multi-dimensional range each
computing thread (aka OpenCL work-unit) operates on. For instance, a thread
may work upon multiple pixels of an image. This information will be used by
the framework to compute the number of threads (OpenCL workspace) required
to run the kernel.

1 vector < shared_ptr < IWorkData>> inData(2);
2 vector < shared_ptr < IWorkData>> outData(1);
3 // Gaussian noise kernel wrapper
4 outData[0] = inData[0] = shared_ptr <IWorkData> (new BufferData < cl_uchar4 >());
5 inData[1] = shared_ptr <IWorkData> (new FinalData<int >(factor));
6 unique_ptr < IExecutable > gaussKernel (new KernelWrapper(gaussNoiseKernelFile, gaussNoiseFunction, inData , outData

, 2)); // 2 is the number of elementary units computed per thread
7 // Solarise kernel wrapper
8 inData[1] = shared_ptr <IWorkData> (new FinalData<int >(threshold));
9 unique_ptr < IExecutable > solariseKernel (new KernelWrapper(solariseKernelFile, solariseFunction, inData , outData)

);
10 // Mirror kernel wrapper
11 ...
12 // 3-stage pipeline
13 unique_ptr < IExecutable > pipeline (new Pipel ine (gaussKernel, solariseKernel, mirrorKernel));

Listing 1. Image filter pipeline

Listing 1 presents a snippet of the construction of a pipeline with three stages.
The setting up of the computation tree is a bottom-up process. It grows from the
leafs, that take the form of KernelWrapper objects (line 8 and 11), which enclose
a kernel’s logic and domain in a single computational unit. The specification of
the kernels’ interface is expressed via the parameters of the associated wrapper.
In this particular case, all kernels receive and output a single buffer (representing
an image) and a final scalar value.

3 Cooperative Multi-CPU/Multi-GPU Execution

The main contribution of this paper is on the execution of Marrow CTs in hybrid
multi-CPU/multi-GPU environments. To accomplish such enterprise we must
address three key challenges: 1) how to efficiently decompose a CT among the
multiple CPU and GPU devices; 2) how to efficiently distribute the work load
among the available hardware resources, and; 3) how to adapt this distribution
to different input data-sets and to the CPUs’ load fluctuations. Due to space
restrictions we will focus mainly on challenges 2 and 3, addressing the first lightly.
For more details we refer the reader to a companion technical report [15].

Computational Tree Decomposition: To address this challenge we apply
the same locality-aware approach that we devised for multi-GPU computing.
We leverage the work-group based organization of OpenCL executions, namely
the fact that work-groups (groups of threads) execute asynchronously and in-
dependently over data. Consequently, we opt to decompose the computation’s
data-set into partitions that can be adjusted to the best possible work-group size

180 F. Soldado, F. Alexandre, and H. Paulino

No Yes

Yes

Yes

Yes Yes No

No
No

No

Perform
training

Training
flag?

Derive
Work

Distribution

CT
info?

Persist
result

Persist
prediction

result

Monitored
execution

Compute
lbt

Execution
request

End

New
data-set

?

Retreive
lbt

Must
balance

?

Adjust
Work

Distribution

First
exec?

Reset
lbt

Fig. 1. The top-level work-distribution decision process

for each device. In that sense, we extend the scope of OpenCL’s SPMD (Single
Operation Multiple Data) based execution model to multiple devices, where each
OpenCL work-group computes the CT over a partition of the input data-set.

The decomposition of the input data-set must be subjected to user-defined
restrictions imposed in the CT’s kernel specifications, but also be driven by the
characteristics of the underlying hardware, such as the size of AMD wave-fronts
or NVIDIA warps. Furthermore, in order to really leverage the aforementioned
locality properties, the data communicated between two consecutive kernel ex-
ecutions must be partitioned in such a way that, each of such partitions may
be communicated between the kernels simply by persisting in the device’s mem-
ory across their execution. As a result, two kernel executions that communicate
data-sets must expect an identical partitioning of such sets, with respect to their
number and size(s), regardless the individual work-group size restrictions of ei-
ther kernel. This approach induces a partitioning process with global vision of the
computation, defining what we call a CT’s locality-aware domain decomposition.

Work-Load Distribution: To efficiently execute computations composed by
multiple (arbitrary) OpenCL kernels in hybrid multi-CPU/multi-GPU environ-
ments, we must engender a solution that is able to deliver good performances
without requiring previous knowledge on the CT to execute.

In [9] we addressed this issue for heterogeneous multi-GPU environments. The
workload is statically distributed among the devices, according to their relative
performance. This static approach, although simple, delivers good performance
results for GPU-accelerated executions, due to the specialized nature of the un-
derlying execution model: one kernel execution at a time, with no preemption
and no input/output operations. These premises are not valid for CPU execu-
tions. The execution time of a CPU computation is highly conditioned by the
load of the processor, which is time-shared by multiple threads, and by hardware
optimizations that cannot be fully controlled by the programmer, such as cache
memory management. Therefore, to adequately balance the load of arbitrary
computations between CPU and GPU of devices is still a challenge.

In this paper we are particularly interested in recurrent applications of CTs
upon possibly different data-sets with different sizes. Therefore, we want to have
a lightweight mechanism that is able to infer a suitable configuration for a CT’s
execution, given a particular parameterization. We address this challenge via
profile-based self-adaptation. We still rely on static scheduling: the workload is
distributed in advance between the available devices. However, this distribution

Towards the Transparent Execution of Compound OpenCL Computations 181

resorts to a CT-specific profile built from past runs. Furthermore, we refine this
information for subsequent executions, so that the distribution may be adapted
to alterations of the CPUs’ load and/or of the input data-set’s size. The first
execution of a CT upon a particular workload is preceded by the inference of the
best configuration (of the ones known to the system) to run such computation.
From that point on, subsequent executions are monitored by a controlling process
that identifies, and corrects, load unbalances, so that the ensuing executions may
be better adapted to the system’s current load.

The top-level work-flow of the work-distribution process is depicted in Fig. 1.
The entire decision process builds on the availability of historic data about the
target CT’s execution. This knowledge-base (KB) stores information about the
best configuration for a given input data-set. The primary source is a training
process that is triggered whenever there is no information about the target CT,
or the user explicitly demands it through the framework’s configuration settings.
If none of these conditions hold, the framework will try to determine a suitable
workload distribution from the KB. Such enterprise is trivial if the necessary
information is already available, otherwise it will have to be derived from the
existing knowledge. Both the training and the derivation branches terminate
with the persisting of the attained result, qualified with the process employed.
As a result, the derivation process also contributes to populate the KB, serving
as a cache for following executions.

Once a work-distribution configuration has been derived, the execution pro-
ceeds under the monitoring of the controller process. This process simply calcu-
lates the deviation (dev) between the execution times of each concurrent appli-
cation of the CT over a partition of the original data-set, and computes a load
balancing threshold lbt(n) = isUnbalanced(dev)×w+ lbt(n−1)×(1−w), for the
given execution number n – isUnbalanced(x) indicates if the deviation falls out
of the allowed interval, and w denotes the weight assigned to the last execution
relatively to the historic data. The use of a weighted historic data factor makes
lbt less sensitive to sporadic unbalanced executions.

When a CT is applied recurrently, but over data-sets with different character-
istics, the work-distribution process may configured to revert to (a) the training
process or to (b) the derivation of a new workload distribution from the KB. Op-
tion (a) is tailored for applications that operate over the same type of data-sets
for long periods of time. In such cases, it compensates to have the best possible
configuration, even if it takes some time to obtain it. Option (b) is more directed
to applications that operate over indiscriminate types of data-sets, and want to
build on previous knowledge to adjust the framework to the particularities of
each of such types.

Dimensions to consider in the training process: The Marrow framework is
modular and extensible, in the sense that it allows for multiple OpenCL back-
ends, each one specialized for a given type of device. These back-ends are exposed
as execution platforms that abstract the OpenCL communication details to the
remainder modules and encapsulate all the device-specific optimizations. They
are also responsible for supplying an iterator over which of their configuration

182 F. Soldado, F. Alexandre, and H. Paulino

parameters must be included in the training process. The current Marrow imple-
mentation features two execution platforms: CPU and GPU. The first supplies
an iterator over the affinity fission configurations the device supports, a subset
of: (

⋃4
i=1{Li CACHE})∪{NUMA}∪{NO FISSION}, while the second offers an itera-

tor over the number of overlapped executions to be performed in the GPU.
The training process: The process searches for the best parameterization of

the existing execution platforms for the computation at hand. The algorithm
performs an uniform search over the search space, spanning all possible combina-
tions. This strategy is viable for the dimension of our current space. Nonetheless,
in the future, scalability requirements may lead to the use of other techniques.

The algorithm requires a stoppage criterion, in the form of a precision value,
a quality factor, in the form of the number of executions to be performed in
each possible configuration, and the task to execute. It also assumes the exis-
tence of the CPU and GPU execution platforms, as well as of the scheduler
module responsible for performing the static distribution of the work among
the available devices. Given these premises, for each CPU fission/GPU overlap
configuration the algorithm behaves as follows: 1) reconfigure the existing ex-
ecution platforms; 2) activate the scheduler’s profiling mode, providing it the
precision value and the quality factor; 3) perform the loop to obtain the best
workload distribution for the current configuration - the scheduler internally
determines the next configuration to test and computes the average execution
time for the nTrainingExecutions; 4) store the work distribution that yielded
the best performance and the associated execution time; 5) select the best per-
forming configuration and reconfigure the execution platforms accordingly, and;
6) decompose the input data-set in conformance to the current parallelism level.

Concerning the CPU/GPU work-distribution internally determined by the
scheduler, we have formulated two strategies: 50/50 split evens, as much as
possible, the time that each device type (CPU or GPU) takes to carry out the
computation. For that purpose, it continuously transfers increasingly smaller
parts of the load from the worst to the better performing device type. The relative
execution times are expected to converge after a small number of iterations, being
the algorithm bound to the precision value passed to the scheduler. CPU
assisted GPU execution lessens the CPUs’ role to a mere assistant of the
GPUs, contributing only to lighten the latter’s load. To that end, the strategy
incrementally assigns work to the CPU so that the CT’s overall execution time
is minimized, independently of the devices’ relative execution times.

Configuration Derivation: The configuration derivation process is twofold,
represented by the two darker boxes in Fig. 1. Box ”Derive work distribution”
represents the derivation required to kickoff the execution of a CT, whenever the
training flag in not active. For that purpose, we infer, by the means of interpo-
lation, a workload distribution for the given input data-set from the information
currently stored in the KB. The function to interpolate may be multidimensional,
bound to the CT’s number of input arguments. Our current approach employs
the nearest-neighbor method sustained by the Euclidean distance over a multi-
dimensional space, with as many dimensions as number of input arguments. The

Towards the Transparent Execution of Compound OpenCL Computations 183

framework allows for the simple integration of new interpolation methods, and
in the future other approaches may be implemented.

The second box ”Adjust work distribution” is triggered whenever the value
of lbt ≈ 1. In order for the load balancing process to be as little intrusive as
possible to the application’s global execution, we employ a two-level approach,
where the first level is considerable lighter, computationally, than the second.
This first level tries to re-balance the load by simply transferring a percentage
of the workload from the slowest performing device type to the other. The work
transference is iteratively applied in the following executions of the CT, until
the execution time of the parallel executions converge below the maxDev upper
bound. The second level reverts to a partial execution of the training process
that only considers the current fission/overlap configuration.

4 Experimental Results

The purpose of this study is to quantify the performance gains that the conjoint
use of the CPU and GPU may deliver relatively to GPU-only executions, and to
assess the efficiency of the proposed work distribution and balancing strategies.

For the experiments, we resorted to five benchmarks that make use of the
different skeletons available in Marrow. The first two make use of the Pipeline
skeleton. Filter Pipeline composes three image filters: Gaussian Noise, Solarize
and Mirror. All of them may be independently applied to distinct lines of the im-
age to be processed. Accordingly, the line is the partition’s elementary unit. FFT
is a set of Fast-Fourier Transformations (FFTs) where FFT is pipelined with its
inversion. The decomposition elementary unit is the size of each FFT which is
512 kBytes. Ergo, each device is assigned with a set of such FFTs. The third
benchmark is the iterative N-Body simulation supported by the Loop skeleton.
The kernel implements the direct-sum algorithm that, for each single body, com-
putes its interaction with all the remainder. Therefore, there is a dependency on
the whole data-set, requiring replication to all the data-set to all devices. The
distribution is hence performed at body level, entailing a synchronization point
in-between each iteration. The final two benchmarks are simple Map applica-
tions. The BLAS Saxpy routine computes a single-precision multiplication of a
constant with a vector added to another vector. The computation is embarrass-
ingly parallel and does not require any partitioning restrictions. Segmentation
performs a transformation over a gray-scale three dimensional image. Although
there is no algorithmic dependencies between pixel elements, the elementary size
is set to the size of the first two dimensions so the partitioning is performed only
over the last one.

All experiments were conducted on a system featuring one hyper-threaded
six-core Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz, with 6 L1 and L2 caches
(one per core) and a single L3 cache, shared by all cores; two AMD HD 7950
GPU devices attached to two dedicated PCIe x16 lanes; and 32 GBytes of RAM.

For each benchmark we have established three parameterization classes and
two baselines, that report the time for the GPU-only accelerated execution of the

184 F. Soldado, F. Alexandre, and H. Paulino

Table 1. Benchmark characterization

Benchmark Input Input 1 GPU 2 GPUs
type argument Baseline 50/50 Training CPU assisted GPU Training Baseline 50/50 Training CPU assisted GPU Training

execution Configuration Level of Distribution Configuration Level of Distribution execution Configuration Level of Distribution Configuration Level of Distribution
time (fission/overlap) parallelism (GPU/CPU) (fission/overlap) parallelism (GPU/CPU) time (fission/overlap) parallelism (GPU/CPU) (fission/overlap) parallelism (GPU/CPU)

Filter Image 1024x1024 1.97 L2/3 9 91.8/8.2 L1/3 9 92.5/7.5 1.12 L3/2 5 94.6/5.4 L1/3 12 98.8/1.2
pipeline size 2048x2048 5.10 L3/4 5 92.9/7.1 none/4 5 93.8/6.3 3.84 L3/4 9 96.1/3.9 none/3 7 98.8/1.2

(pixels) 4096x4096 16.80 none/4 5 93.8/6.3 none/4 5 93.8/6.3 11.76 none/4 9 96.9/3.1 none/4 9 97.5/2.5

Size 128MB 35.28 L2/3 9 32.8/67.2 L2/4 10 37.5/62.5 23.76 L1/4 14 59.8/40.2 L2/3 12 52.5/47.5
FFT of 256MB 67.83 L2/4 10 31.3/68.7 L1/4 10 30.0/70.0 43.12 L1/4 14 58.6/41.4 L2/4 14 55.0/45.0

data-set 512MB 88.93 L1/3 9 37.1/62.9 L2/1 7 15.0/85.0 77.21 L1/4 14 56.3/43.8 L1/4 14 57.5/42.5

Number 16384 37.17 - - - L1/1 7 95.0/5.0 29.87 - - - L3/1 3 98.8/1.2
NBody of 32768 101.56 - - - L2/1 7 97.5/2.5 69,63 - - - L2/1 8 98.8/1.2

bodies 65536 356.85 - - - L2/1 7 98.8/1.2 200.76 - - - L2/1 8 98.8/1.2

Number 1×106 2.56 L1/2 8 41.4/58.6 L2/2 8 37.5/62.5 1.59 none/2 5 75.0/25.0 L1/2 10 67.5/32.5
Saxpy of 10×106 14.91 L1/2 8 45.3/54.7 none/4 5 67.5/32.5 10.97 L3/4 9 87.5/12.5 none/4 9 88.8/11.2

elements 50×106 72.86 L1/3 9 43.8/56.3 L1/3 9 47.5/52.5 46.84 L3/4 9 85.2/14.8 L1/4 14 77.5/22.5

Number 1MB 0.79 none/2 3 59.9/40.1 none/1 2 55.0/45.0 0.72 none/1 3 69.5/30.5 none/2 5 85.6/14.4
Segmentation of 8MB 2.88 none/4 5 81.3/18.7 L3/4 5 78.8/21.2 1.87 none/3 7 88.3/11.7 none/2 5 88.8/11.2

elements 60MB 16.70 none/4 5 82.6/17.4 L1/4 10 78.8/21.2 10.75 none/4 9 93.0/7.0 L1/4 14 88.8/11.2

benchmarks using just one or the two available GPUs. Table 1 presents, for each
of the determined parameterization classes, the baseline execution times and
the results of applying the two training strategies to both the single and dual
GPU setups. We do not present the result of the 50/50 split training for the
NBody benchmark because the results are not usable. From this table we may
observe that the best fission/overlap configuration depends on several factors:
the actual computation, the input data-set’s size, the number of devices, and
the training strategy. Nonetheless, there is an aspect that spans most of the
results: the correlation between the data-set’s size and the level of fission and
overlap. The advantages of the overlap tendentiously increase with the size of
the data-set, leveraging the scalability lend by the two PCIe buses. In turn, the
advantages of fission seem to decrease, implying that the fission support in the
AMD OpenCL implementation (version 1348.5) is particularly beneficial when
a data-set’s partition fits the fission cache level.

Speedup Results: Figures 2 and 3 present the speedups obtained by the CPU+
GPU ensemble when compared to the GPU-only baselines. The results show that
the use of the hybrid infrastructure is beneficial in almost every conducted ex-
periments - the NBody benchmark is the exception. The impact is, naturally,
more visible in the single GPU configuration, where the gains range from 1.3 to
3, whilst in the 2 GPU configuration they range from 1.4 to 2.6. The speedups
are particularly noticeable in the communication-bound computations. Paradig-
matic examples are the smaller parameterization classes of Saxpy and Segmen-
tation, where the CPU boosts the overall performance more than twice for both
the 1 and 2 GPUs configurations. In both these benchmarks, as the data-set’s
size increases so does the computational weight, mitigating the benefits of the
CPU. This behavior may also be observed in the FFT benchmark. The FFT ker-
nels are computationally heavy but also operate upon large data-sets: 128 to 512
MBytes. It is the ever-present trade-off between the overhead of data-transfers
and the computational complexity of the computation.

Filter Pipeline is more computation bound. Three different computations are
applied over a single image transferred to the GPU. Nonetheless, the CPU’s
utility is still more visible with smaller images, where less parallelism is required.
In NBody the advantages of using the CPU are minimum due to the large
amount of work assigned to the GPU. Loop’s execution model is more complex
than the remainder skeletons, using the GPU for executing the loop’s body,

Towards the Transparent Execution of Compound OpenCL Computations 185

Fig. 2. Speedup: CPU+1GPU vs 1GPU Fig. 3. Speedup: CPU+2GPUs vs 2GPUs

Table 2. Filter Pipeline: training’s results versus interpolation from past executions

Image Image Training result Derivation Balancing Resulting distribution Exec. Relative
id size Fission Overlap GPU (%) CPU (%) Exec. time Nearest neighbour Level 1 Level 2 GPU (%) CPU (%) time perf.

Image 1 1024x1024 L3 3 90.8 9.2 1.10
Image 2 512x512 L3 2 87.5 12.5 0.54 Image 1 6 1 81.0 19.0 0.64 84%
Image 3 1024x2048 L1 4 91.5 8.5 1.74 Image 1 2 0 90.7 9.3 1.87 93%
Image 4 2048x512 L2 3 89.8 10.2 1.06 Image 1 4 0 90.6 9.4 1.07 100%
Image 5 2048x2048 none 4 92.9 7.1 3.17 Image 3 1 0 90.6 9.4 3.48 91%
Image 6 4096x4096 L3 4 93.8 6.3 12.59 Image 5 0 0 91.8 8.2 13.41 94%

and the CPU for iteration synchronization and evaluating the loop’s condition.
Our current profiling process is not able to differentiate the work performed
on each type of processor, an issue that opens the door to more fine-grained
profiling approaches. Nonetheless, in this particular benchmark, delegating the
execution almost entirely to the GPUs is the best option. We artificially forced
other distributions with worse results.

Regarding the two training strategies, the 50/50 split seems to be more reli-
able, as it tries to balance the load among the device types, while also taking
into consideration the overall execution time. However, the results are quite close
and even converge when the precision is very high.

Efficiency of the Work Distribution and Load Balancing Strategies:
We selected the Filter Image benchmark to evaluate how does our configuration
derivation behaves in the presence of different input data-sets. We begin with an
empty KB, and populate it as the benchmark is successively applied to images
Image 1 to Image 6. Thus, when Image i is executed the KB contains knowledge
about images Image 1 to Image i− 1.

To establish individual baselines, we independently ran the training process
for each image. The left-side of Table 2 presents such results. Then, beginning
with the empty KB, we resorted to our nearest neighbor interpolation to suc-
cessively apply the benchmark to images 1 to 6. The benchmark was configured
to run 500 times, so that we could count how many times the load balancing
process was triggered, and its level — the framework was configured to consid-
ered balanced all runs whose partial execution times say within 88% of each
other. We also measured the final workload distribution, and the performance
loss relatively to the one obtained from the training process. All these values are

186 F. Soldado, F. Alexandre, and H. Paulino

presented on the right-side of Table 2. We chose this benchmark because, as may
be observed in the table, the best fission/overlap configuration is very depen-
dent on the data-set. Thus, we wanted to asses if the simple balancing of load
within the configuration derived from the interpolation was enough to obtain
good results. What may be initially concluded is that the second balancing level
is rarely used. Moreover, as should be expected, the derivation process is highly
dependent of the affinity of the current data-set in regard to the ones stored
in the KB. Naturally, the probability of finding a good candidate increases in
time, as the KB grows. Nonetheless, as the number of images rises we are able to
deliver performances within less than 10% of the performance obtainable from
the training process.

Fig. 4. Saxpy subjected to load fluctuations

For our last experiment,
we selected the 50 million
parameterization class of the
Saxpy benchmark to study
how the framework adapts to
load fluctuations in the CPU.
From Table 1 we have that
the initial workload distribu-
tion is GPU ← 49.61% and
CPU ← 50.39%. To introduce
the load fluctuation on the
CPU we implemented an ap-
plication that spawns as many
software threads as available
hardware threads, each running a computationally heavy algebraic problem. Fig.
4 depicts the framework’s adaptation to the sudden increase in the CPU’s load.
The process begins with the successive application of the level 1 load balancing
strategy (L1 in the chart). However, the solution is not sufficiently aggressive to
quickly shift the work to the GPU and, thus, the second level (L2 in the chart)
is forced to kick in. The distribution stabilizes at GPU ← 58.18% and CPU
← 40.82%. As we terminate the load inducing application, the system becomes
unbalanced once again. The balancing process restarts and, upon a first level
2 execution, the system is mostly balanced. Yet, in order for it to stay within
the pre-determined 88% mark for balanced executions, a second burst of load
balancing operations is required. The final distribution is GPU ← 49.22% and
CPU ← 50.78%.

5 Related Work

There are several skeleton/template frameworks that address GPU computing.
However, their focus in solely on data-parallel skeletons and none of them support
skeleton nesting, thus no compound behaviors can be offloaded to the GPU. Het-
erogeneity support in such frameworks comes in two flavors. The first approach is
to include, at language level, constructions to determine where the computation

Towards the Transparent Execution of Compound OpenCL Computations 187

must take place, such is the case of Muesli [5]. The second approach obliges the
programmer to direct the compilation at either CPUs or GPUs. This category
includes SkePU [1] and Thrust [4], which feature multiple mutual exclusive back-
ends, for either GPGPU or shared-memory parallel programming. SkePU can be
combined with the StarPU scheduler to provide computation locality abstrac-
tion. Although StarPU has the capability to schedule tasks on both multi-core
CPUs and GPUs simultaneously, when a task is submitted to SkePU, only the
best performing device for the given input size is selected.

In [12], the authors propose a run-time infrastructure for executing MapRe-
duce computations on hybrid CPU/GPU systems. They propose different meth-
ods for work distribution, from the scheduling of map tasks across the devices,
to the placing of the map stage on a device and of the reduction stage on the
other, much like what we allow in our MapReduce skeleton. The dynamic work
distribution tries to adjust the task block sizes for subsequent executions of tasks
in the same application.

Dandelion [10] offers a LINQ-based programming model for heterogeneous
systems, extended with other constructions, such as loops. A specialized compiler
generates code for both CPU and GPU from the source code, while the run-time
system transparently offloads computations to the GPU, when the workload
so justifies. Good performance requires the programmer to convey some GPU-
related information, and no CPU+GPU support is provided.

The works presented in [11] and [16] address the paralellization of nested loops
in heterogeneous environments. They both resort to polyhedral optimization
techniques which restrict their scope to loops with affine expressions. The first
selects the best device to run the computation but never resorts to CPU+GPU
wide computations. The second generates OpenCL code for CPU, GPU and
CPU+GPU environments, selecting the best hardware depending on the data
flow requirements. Very few results are given for CPU+GPU environments.

Finally, in [14], the presented solution allows for work-partitioning among de-
vices based on a performance model updated at run-time. This solution, however,
requires the existence of multiple versions of the program, one for each different
device present in the system.

6 Concluding Remarks

In this paper we have presented a systematic approach for the cooperative
multi-CPU/multi-GPU execution of Marrow computations. We have proposed
a locality-aware domain decomposition of Marrow skeleton trees that promotes
data-locality but, simultaneously, allows for the multiple OpenCL kernels to be
executed under different work-group configurations, as long as communication
compatibility is assured. We have also proposed profile-based workload distri-
bution and load balancing strategies, that build from past runs of a given com-
putational tree to derive suitable configurations for subsequent executions. The
experimental results show that our approach brings speedups up to 300% over
GPU-only executions. Moreover, they also provide some insight on the frame-
work’s ability to adapt to data-sets of different sizes and to fluctuations on the

188 F. Soldado, F. Alexandre, and H. Paulino

CPU’s load. Regarding future work, the focus is on the improvement of our con-
figuration derivation. We want to refine our profile-based approach with more
sophisticated interpolation techniques, and combine these with static analysis of
the kernel’s code, in order to reduce the weight of the training stage.

References

1. Dastgeer, U., Li, L., Kessler, C.: Adaptive implementation selection in the skePU
skeleton programming library. In: Wu, C., Cohen, A. (eds.) APPT 2013. LNCS,
vol. 8299, pp. 170–183. Springer, Heidelberg (2013)

2. Steuwer, M., Gorlatch, S.: SkelCL: Enhancing openCL for high-level programming
of multi-GPU systems. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp.
258–272. Springer, Heidelberg (2013)

3. AMD Corporation: Bolt C++ Template Library,
http://developer.amd.com/tools/heterogeneous-computing/

4. Hoberock, J., Bell, N.: Thrust: A parallel template library,
http://thrust.github.io/

5. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems
and clusters. Int. J. High Perform. Comput. Netw. 7(2), 129–138 (2012)

6. Huynh, H.P., et al.: Scalable framework for mapping streaming applications onto
multi-GPU systems. In: PPoPP 2012, pp. 1–10. ACM (2012)

7. Dubach, C., others: Compiling a high-level language for GPUs (via language sup-
port for architectures and compilers). In: PLDI 2012, pp. 1–12. ACM (2012)

8. Marques, R., Paulino, H., Alexandre, F., Medeiros, P.D.: Algorithmic Skeleton
Framework for the Orchestration of GPU Computations. In: Wolf, F., Mohr, B., an
Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 874–885. Springer, Heidelberg
(2013)

9. Alexandre, F., Marques, R., Paulino, H.: On the support of task-parallel algorith-
mic skeletons for multi-GPU computing. In: SAC 2014, pp. 880–885. ACM (2014)

10. Rossbach, C.J., Yu, Y., Currey, J., Martin, J.-P., Fetterly, D.: Dandelion: a compiler
and runtime for heterogeneous systems. In: SOSP 2013, pp. 49–68. ACM (2013)

11. Dollinger, J.F., Loechner, V.: Adaptive runtime selection for GPU. In: ICPP 2013,
pp. 70–79. IEEE Computer Society Press (2013)

12. Chen, L., Huo, X., Agrawal, G.: Accelerating MapReduce on a coupled CPU-GPU
architecture. In: SC 2012, pp. 25:1–25:11. IEEE Computer Society Press (2012)

13. Lee, J., et al.: Transparent CPU-GPU collaboration for data-parallel kernels on
heterogeneous systems. In: PaCT 2013, pp. 245–255. IEEE (2013)

14. Colaço, J., Matoga, A., Ilic, A., Roma, N., Tomás, P., Chaves, R.: Transparent
application acceleration by intelligent scheduling of shared library calls on hetero-
geneous systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 693–703. Springer, Heidelberg
(2014)

15. Soldado, F., Alexandre, F., Paulino, H.: Transparent execution of compound
OpenCL computations in multi-CPU/multi-GPU environments. Technical report,
CITI/DI, Universidade NOVA de Lisboa (2014)

16. Dathathri, R., et al.: Generating efficient data movement code for heterogeneous
architectures with distributed-memory. In: PaCT 2013, pp. 375–386. IEEE (2013)

http://developer.amd.com/tools/heterogeneous-computing/
http://thrust.github.io/

	Towards the Transparent Execution of Compound OpenCL Computations in Multi-CPU/Multi-GPU Environments
	1 Introduction
	2 The Marrow Framework
	3 Cooperative Multi-CPU/Multi-GPU Execution
	4 Experimental Results
	5 Related Work
	6 Concluding Remarks
	References

