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Abstract. Agents within multi-agent simulation environments
frequently compete for limited resources, requiring negotiation to re-
solve ‘conflict’. The negotiation process for resolving conflict often relies
on a transactional or serial processes that complicates implementation
within a parallel simulation framework. This paper demonstrates how
transactional events to resolve competition can be implemented within a
parallel simulation framework (FLAME GPU) as a series of iterative par-
allel agent functions. A sugarscape model where agents compete for space
and a model requiring optimal assignment between two populations, the
stable marriage problem, are demonstrated. The two case studies act as
a building block for more general conflict resolution behaviours requiring
negotiation between agents in a parallel simulation environment. Exten-
sions to the FLAME GPU framework are described and performance
results are provided to show scalability of the case studies on recent
GPU hardware.

Keywords: Agent-Based Simulations, FLAME GPU, Graphics Hard-
ware, CUDA, Conflict Resolution, Multi-Agent Competition.

1 Introduction

Agent based modelling provides a natural mechanism for describing complex
systems where agents are represented as a set of individuals with behavioural
rules. By simulating agents and their interactions over a period of time, emergent
behaviour can be observed, giving insight into processes of the system which the
model represents. Agent based simulations are typically more computationally
expensive than traditional top down equation based models as each individual
and their interactions must be simulated. Previous work has shown that agent
based simulations can be accelerated and scaled to increasing levels through the
use of parallel [5,10,1,7] and distributed methods [11]. In some cases [5,10,11]
such methods are implemented as part of a simulator providing a high level
interface for describing agents with a level of abstraction hiding the complexity
of the parallel or distributed architecture from end users (modellers).

A common behaviour within agent based models is for agents to compete for
some resource. A simple example of this is reflected by any agent based model
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consisting of a regular lattice based (grid) environment in which a sequential
simulator moves agents between grid cells. To determine a movement strategy,
each agent is free to examine the environment to locate free space (unoccupied
by any other agent) and decide upon an optimal movement often driven by the
availability of some finite resource. Reproducing this same model with a paral-
lel simulation environment is less straightforward. If each agent simultaneously
makes a decision to move there is a potential risk that multiple agents will move
to the same grid space (especially if it is highly desirable). Translating mod-
els built upon serial abstractions in parallel simulators therefore requires that
conflicts in movement can be resolved robustly.

Agent movement in lattice environments represents a special case where com-
petition is introduced indirectly via the migration of a serial algorithm to a paral-
lel environment. Agent competition is not however limited to examples involving
movement. For example, any form of assignment may result in agents competing
against one another. This paper presents a general method for implementing
conflict resolution, demonstrated through two case studies implemented within
the Flexible Large-scale Agent Modelling Environment for the Graphics Process-
ing Unit (FLAME GPU) simulation framework. The first example is an imple-
mentation of the sugarscape model [3] demonstrating how movement collision
avoidance can be implemented in parallel. The second case study demonstrates
how an iterative approach to conflict resolution can be applied to an agent based
implementation of a classic assignment task ‘the stable marriage problem’ [4].
The paper provides FLAME GPU background and shows how both case studies
can be implemented through a series of iterative stages (or rounds) providing
results which demonstrate performance characteristics.

2 FLAME GPU

The FLAME framework is an agent based simulation platform with implemen-
tations targeting parallel agent simulation on both distributed (FLAME) [5]
and GPU architectures (FLAME GPU)[10]. Both implementations use the same
underlying mode of an agent, a communicating stream X-machines (a form of
extended state machine containing an internal memory). Agents are expressed
as a set of states performing some ‘behaviour’ that updates an agents internal
memory when transitioning from one state to another. Agents are able to com-
municate indirectly through messages stored in globally accessible message lists.
After a message is sent it is persistent within the message list as read only data
for a single simulation iteration. Ensuring agents never write and read from the
same message list during a single agent function gives a natural synchronisation
barrier which enforces a stream like paradigm, preventing race conditions and
providing a robust format for mapping to parallel architectures.

FLAME for the GPU (or the FLAME GPU) is an implementation of FLAME
which utilises graphics card hardware to accelerate FLAME agent models by au-
tomatically translating the model to optimised GPU code. Rather than using a
custom model parser, FLAME GPU uses XSLT templates to generate a com-
plete simulation in NVIDIA CUDA C code. The advantage of a code generation
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process is that performance overheads of having a programming API are avoided
lending to extremely high performance. Whilst based on the same principles as
FLAME, FLAME GPU has a number of key differences which are important to
understand the features and limitations with respect to parallel simulation.

From a simulation perspective, FLAME GPU utilises the Single ProgramMul-
tiple Data (SPMD) architecture of GPUs to map agent functions as individual
GPU kernels operating over agent (and message) memory, stored as arrays of lin-
early offset data. FLAME GPU makes a distinction between mobile and non mo-
bile agents (Cellular Automaton) so that performance can be optimised in each
case. In order to optimise performance for common communication strategies
a distinction is made between three common types of message communication,
discrete (for cellular automaton), brute-force (for all to all communication) and
spatial partitioning (for limited range interactions). In each case, message data
is cached using an efficient algorithm to reduce the number of global memory
accesses and improve performance.

In certain cases, FLAME GPU provides a massive performance increase over
FLAME however it is best suited to large populations of relatively simple (in
terms of agent memory requirements) agents. When large number of agents are
simulated many GPU threads can be spawned providing an effective mecha-
nism for hiding memory latencies through context switching. If low numbers of
threads are used then hiding memory latency becomes more difficult. Similarly if
large (complex) agents are used performance is impacted due to the the limited
availability of registers. As such methods for solving conflicts and assignments
within FLAME GPU must be highly parallel and not for example rely on a sin-
gle ‘large’ agent that resolves conflict by having a global overview of the entire
population.

3 Competition between Agents on a Lattice

Lattice based agent simulations are a common abstraction within serial agent
based simulation software. In such simulation software the serial order of pro-
cessing agents is either randomised to ensure fairness or based on a priority
scheme which gives preference to agents according to some trait. In translating
the movement of agents into a parallel architecture it is important that many
agents can perform movement simultaneously creating the potential for conflict
through competition at highly desirable locations. If the model is built upon
the principle that a discrete spatial cell of the environment may be occupied by
only a single agent [EA96] then this conflict must be resolved. Within a paral-
lel simulator such as FLAME GPU there are a number of ways to address this
competition in parallel. The simplest is to simply to relax the rule preventing
grid cells from being occupied by multiple agents. Whilst computationally inex-
pensive this simplification ultimately changes the nature of the model and will
produce significantly different results to the model which relies on sequential
processing to avoid conflict. If the rule to relax cells from containing multiple
agents is not appropriate then the alternative approach is to serialise some parts
of the movement processes where conflicts are observed.



386 P. Richmond

To demonstrate how to address the serialisation of movement conflicts be-
tween agents, this paper considers a model of an artificial society (the sugarscape
model) proposed by Epstein and Axtell [3]. The sugarscape model in its simplest
form it consists of a population of agents (a society) distributed across an envi-
ronment with a renewable resource (i.e. sugar). Agents require sugar to survive
and sequentially move to empty cells within the lattice environment (without
breaking the constraint of a single agent per cell) to consume sugar. Each agent
has a sugar store which is incremented by accumulating sugar from the envi-
ronment. During each simulation step an agent is required to use up part of its
sugar store to survive at a rate determined by its randomly assigned metabolism.
Epstein and Axtell describe a number of more advanced rules including pollu-
tion, reproduction, seasonal environments, cultural connections and combat. For
the purposes of this paper these additional rules are omitted as the purpose of
this model is to demonstrate the use of transactional movement techniques in
FLAME GPU agent simulations.

3.1 Implementing Sugarscape in FLAME GPU

It has already been shown by Lynsenko and D’Souza [6] that the sugarscape
model is suitable for simulation on a GPU by scattering agents to collision map
to resolve movement collisions. Within Lynsenkos work the use of atomic op-
erations ensures that only the highest priority agent is able to occupy a single
space. Agents which are superseded by higher priority agents attempt to move
in a subsequent step which is repeated until all collisions are resolved. The im-
plementation for the sugarscape agent model within FLAME GPU uses this
same principle of iterative rounds of agent movement to resolve conflicts. The
FLAME GPU implementation differs however in that atomic operations are re-
placed with a series of transactional bids (negotiation) placed through messages
between agents. This approach of agent negotiation makes the processes applica-
ble to any parallel simulator or to parallel architectures where atomic operations
are not supported. More specifically the process to allow agent movement uses
the following sequence of events which are defined within FLAME GPU as indi-
vidual agent functions (an agent in this case represents a spatial cell which may
or may not contain an agent);

1. Cells containing agents read in messages from the environment to determine
the best place to move to. Once a target location is identified, they output a
request to move as a message containing the targets location identifier and
the agents identifier information.

2. Unoccupied cells read all request messages to determine if any neighbouring
sugarscape agents would like to move to the location. If multiple agents
request to move to the same cell then the cell uses the agents priority to
determine which agent should move. After all requests have been considered
the cell becomes occupied by the agent with the highest priority. It then
sends a confirmation response with the agents identifier to notify the old cell
that the agent has moved.
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Fig. 1. The sugarscape model consists of a Growback agent function which performs
the ‘normal’ agent behaviour e.g. consumption of sugar, etc. This function is only
triggered if all agents are in a resolved state indicating that all agents have moved.
If any agents are unresolved then a simulation step consists of agents performing an
iterative round of bidding where only the highest priority agent is allowed to move
should conflict occur.

3. Cells containing agents which previously requested to move, check the con-
firmation response messages. If a confirmation is found the agent knows it
has been relocated and updates the cell to an unoccupied state. If no confir-
mation is found then the agent remains at the same location.

The above steps represent a single iteration of agent movement and do not
guarantee that all agents with the desire to relocate will actually do so. To
overcome this problem, it is essential that the process is repeated until every
agent has moved. To guarantee movement of all agents potentially requires the
process to be repeated for every possible location that an agent could move into.
With a simple vision radius of 1, 8 potential repetitions represent the worst case
scenario. In many cases all agent movement can be resolved in far fewer iterations
so a FLAME GPU global function condition is used to determine the global state
of agent movement. A global function condition allows agents to perform a state
transition (and perform the necessary agent function in doing so) only when a
conditional statement is met by all agents (for which the function is applied). In
this case agents are assigned two states, resolved and unresolved (with respect to
their movement) and the global function condition only allows the population of
agents to move to a resolved state when all agent movements are resolved. Only
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within simulation steps where all agents are resolved does a function performing
the ‘normal sugarscape behaviour’, e.g. environment grow back, removal of sugar
from the environment and feeding (according to the metabolic rate) take place.
Following the normal sugarscape behaviour all agents enter the unresolved state
resulting in the next simulation iteration performing only the collision resolution
steps (Figure 1).

4 The Stable Marriage Problem

Within agent based modelling the assignment of agents to resources (including
other agents) is a common construct occurring within many models. For exam-
ple within economics it is common to match sets of workers with firms [2]. To
demonstrate how to implement assignment behaviour within parallel agent based
models, the stable marriage problem is considered. The stable marriage problem
is a example a classical two sided matching problem that can be applied not
only to matching agents (i.e. marriage) but (through small variations) is equally
applicable to other assignment problems. The stable marriage problem defines
two sided matching as a matching between two equal sized sets of n men and n
woman where each man and woman has a personalised ranking of all member of
the opposite sex. The goal is to find a stable solution of matches where stability
is defined as a set of matches where there are no two couples that would prefer
to swap with each others partners.

The Gale-Shapley algorithm [4] is an iterative algorithm which guarantees to
find a solution where everyone is married and marriages are stable. It does not
guarantee optimality from the perspective of both sides but is in fact optimal
from the perspective of the proposer. The algorithm works by iterating through a
number of rounds of proposals. During each round, single men (men who are not
engaged) propose to the woman that they have highest preference for and which
they have not previously proposed. Each woman then considers all proposals
and accepts the proposal of highest preference rejecting all others. At this stage
a provisional engagement between a couple is formed. This can only be broken
if the woman receives a a proposal from a man which she prefers in subsequent
rounds.

4.1 Implementing the Gale-Shapley Algorithm in FLAME GPU

In order to handle the storage requirements of the stable marriage problem
within FLAME GPU an extension to the existing framework has been made to
allow agents to hold fixed length arrays within the internal memory of an agent.
This effectively allows both a man and woman agent to hold a list of length n
(the number of men and woman) corresponding to the rank of their preferred
partners. Fixed length array agent memory variables have been implemented
in such as way as to preserve the coherence of memory accesses for a group of
agents simultaneously access the ith value from the array. In order to ensure
coherent memory accesses array items are organised as a Structure of Arrays
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(SoA) rather than an Array of Structures(AoS). Figure 2 demonstrates how agent
variables including (newly supported) arrays are assembled in memory. Array
items for each agent are separated in memory by a stride of n and as such agent
memory array access functions have been incorporated into the FLAME GPU
code generation templates to handle accessing variables with the appropriate
strides.

Fig. 2. Figure shows the memory layout differences of agent memory variables and
agent memory variable arrays when using an Array of Structures (AoS) vs a Structure
of Arrays (SoA) for data storage. Superscript indicates agent index, subscript indicates
array index. When using a SoA agent variables and indices of arrays are grouped
sequentially for each agent, allowing coalesced memory access.

The Gale-Shapley algorithm has been implemented within FLAME GPU as
two agents (men and woman) with the following five agent functions which rep-
resent the behaviour of a single round of the algorithm;

1. make proposals(): Only men who are not engaged propose to their highest
ranked woman who they have not already proposed to. To select the next
highest ranking woman, men select from an ordered list of indices repre-
senting the rank of woman they prefer. Proposal messages contain the index
of the woman who is being proposed to and the index of the man who is
proposing.

2. check proposals(): All woman iterate all proposals to check if any are di-
rected towards them (by considering the indices stored in the proposal mes-
sages). If they have received a proposal from any men in which they have
a higher preference for than their current provisional partner (or if they do
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not have partner) then the details of this ‘suitor’ are saved and the woman
becomes provisionally engaged.

3. notify suitors(): An agent function filter determines woman who are pro-
visionally engaged and allows these woman to notify suitors by sending a
notification message containing her unique index and the index of the suitor
that she has chosen.

4. check notifications(): All men check all notification messages. If a man
sees a notification that a woman has accepted his proposal then he becomes
provisionally engaged. Men who were previously engaged but do not receive
a notification have been replaced by a more desirable suitor and become free.

5. check resolved() A global function condition checks the engagement state
of each male agent. If all agents are engaged then a stable solution has been
found and all male agents move into an ‘engagement resolved’ state where
no further proposals will take place.

The check resolved function plays an important role in determining the ter-
minal state of the simulation. Once all Men are engaged the simulation ends (in
at worst n2 + 2n− 2 steps).

5 Experimental Results

The purpose of this section is to demonstrate the performance results of the two
case studies presented within this paper. The results obtained give insight into
the expected performance results which can be obtained by either migrating lat-
tice based serial movement models or implementing assignment resolution within
a FLAME GPU model. The two case studies have been implemented in FLAME
GPU 1.3 for CUDA 6.0 (available online for free at http://www.flamegpu.com)
which contains the new functionality to support array value agent memory vari-
ables. Both models are available within the updated framework to ensure results
to be producible. Results have been obtained from an Intel Core i7-2600K Ma-
chine using an NVIDIA K40 GPU with CUDA 6.0. A fixed number of 64 threads
per block is applied to all FLAME GPU kernels. FLAME GPU has a one to one
mapping of agent functions and GPU kernals, additional GPU kernels provide
background management of agent and message data for additional information
readers are directed to previous publications on these methods [8,9].

The sugarscape model is configured by randomly selecting 50 percent of avail-
able cells to contain sugarscape agents. The environment is also initialised with
a random sugar distribution. Figure 3 (A) shows that over a million FLAME
GPU agent cells are able to perform a single simulation step in just over 5ms,
a single simulation step with over 16 million cells takes on average 76 ms. Each
simulation step represents a single iteration of the movement conflict resolution
processes described in section 3.1 and as such agent behaviour such as consump-
tion (of sugar) and environmental grow-back is only performed within simulation
steps where movement conflicts are fully resolved. Figure 3 (B) shows simulta-
neously; a breakdown of simulation step performance of 1048576 cells over the
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Fig. 3. Performance results of the sugarscape simulation showing; A: The performance
scaling of the simulation by increasing the agent population size. Timings (in millisec-
onds) are measured over 100 simulation steps and then averaged. B: A breakdown of
simulation performance over the first 100 steps of simulation. Primary (left hand) axis
corresponds with the blue simulation timings (in milliseconds), the secondary (right
hand) axis shows the number of fully resolved resolution steps (where all agents have
resolved movement collision conflicts).
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Fig. 4. Performance results of the Gale-Shapely simulation showing; A: The perfor-
mance scaling of the simulation where the agent population size represents half the
total number of agents (i.e. the population size of either the men or woman). Timings
show the time required to simulate an average round of the Gale-Shapely algorithm.
B: A breakdown of the cumulative timings (primary left hand axis) for each of the
agent functions. The total number of engaged men is shown on the secondary (right
hand) axis.
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first 100 simulation steps and the total number of complete (fully resolved) sim-
ulation steps. The performance fluctuates between simulation steps in a fairly
repeatable pattern as a simulation step where movement is resolved takes longer
to process than a simulation step performing only movement resolution. Perfor-
mance is also shown to improve as agents trend towards a fully resolved state
as subsequent resolution steps are required to perform less work (e.g. simulation
steps 2-5 in the figure). On average it can be observed that it takes roughly 5
iterations of the simulation to resolve all movement conflicts.

The stable marriage model has been initialised by assigning each man and
woman with a randomly ordered preference for agents of the opposite sex. Within
Figure 4 (A) performance has been measured by averaging simulation time over
the total number of rounds required to reach a stable solution. Given the random
preference of agents the average number of rounds to reach a stable solution is
roughly 3.2 times the population size of a single sex. For example 1024 agents (of
each sex) are resolved in 3166 rounds in a total of 19 seconds and 16384 agents
are resolved in 49168 steps taking just over 2 hours. Figure 4 (B) shows simulta-
neously; the cumulative timing performance of each of the agent functions and
the total number of engaged men for a population size of 1024 (men and woman).
As the number of engaged men increases the performance of a simulation step
improves. This is mainly a result of performance improvements in the Woman
agents check proposals function which has fewer proposal messages to iterate
per round. It should be noted that as the number of engaged men increases the
number of agents performing the make proposals agent function decreases to
the point that the level of parallelism is lower than the amount required to fully
utilise the GPU. To avoid underutilising the GPU a potential solution would be
to transfer the execution of this agent function to the CPU. The disadvantage
of using the CPU for simulation would be that in this case the transfer cost
would outweigh the underutilisation of the hardware until very small agent pop-
ulation sizes were observed. To provide optimal GPU and CPU sharing of agent
functions for general cases would require dynamic load balancing, an area being
explored for FLAME and FLAME GPU in future work.

6 Conclusion

Two cases studies have been demonstrated in which ‘conflict’ resolution is re-
quired in order to manage competition between agents. The first case study
demonstrated a common problem which arises from the translation of a lattice
based agent system from a serial to a parallel simulation framework. The sec-
ond demonstrates a classic assignment problem. In each case the FLAME GPU
framework has been shown to be a suitable parallel simulator to demonstrate
implementation of an iterative method to resolve conflicts, allowing high per-
formance agent interactions to be exploited to provide negotiation for a conflict
resolution process. The case studies provide a building block for more complex
models to be implemented using FLAME GPU, allowing improved scaling and
performance. Further more they act as a guide in the translation of serial mod-
els to parallel simulators where negotiation can be used to resolve movement or
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assignment conflicts. In future work the process of resolving competitive assign-
ment will be applied to economic and biological models.
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