
Towards a Framework for Adaptive Resource

Provisioning in Large-Scale Distributed
Agent-Based Simulation

Masatoshi Hanai1,2, Toyotaro Suzumura2,4,
Anthony Ventresque2,3,4, and Kazuyuki Shudo1

1 Tokyo Institute of Technology,
Dept. of Mathematical and Computing Sciences

2-12-1 Ookayama, Meguro, Tokyo, 152-8552 Japan
{hanai.aa,shudo}@{m,is}.titech.ac.jp

2 School of Computer Science and Informatics,
University College Dublin, Ireland

anthony.ventresque@ucd.ie
3 Lero, the Irish Software Engineering Research Centre

4 Smarter Cities Technology Centre, IBM Research,
Damastown Industrial Estate, Mulhuddart, Dublin 15, Ireland

suzumura@acm.org

Abstract. Large scale distributed agent-based simulations run on sev-
eral computing units (e.g., virtual machines in the Cloud, nodes in a
supercomputer). Classically, these systems try to (re-)load-balance the
nodes as overloaded nodes slow down the process.However another chal-
lenge in large scale distributed simulations is that the overall load evolves.
In this paper we leverage on commodity computing to adapt resource
provisioning (number of computing units) to the load during the exe-
cution of the simulation. We also propose an asynchronous migration
mechanism that migrate workload between computing nodes efficiently
when nodes wait for synchronisation barriers to happen. We validate our
implementation on a scenario simulating one day of vehicular traffic in
Tokyo, running on 2 to 8 machines depending on the demand. Our evalu-
ation shows a 26% reduction in data migration time compared to a naive
migration approach between computing units.

1 Introduction

Agent-based simulation is an important field of research that has led to im-
portant and promising findings in areas such as transportation, environmental
protection and economy [17]. Bringing agent-based simulations up to the scale
required by large systems (e.g., large urban areas, social systems) is a challeng-
ing problem and several methods and simulators have been proposed [10,20]. In
short, large scale simulations need to run on several computing nodes in parallel
to speed-up their processing, and the challenges are usually load-balancing and
minimisation of communication between nodes.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 430–439, 2014.
c© Springer International Publishing Switzerland 2014



Towards a Framework for Adaptive Resource Provisioning 431

In this paper we are interested in a different problem: how can we efficiently
adapt the number of computing resources to the load? Our idea comes from two
simple observations: (i) overall simulation load evolves over time [19], e.g., for
a urban traffic simulation, there are less vehicles to process during the night
than during peak commuting hours; and (ii) the number of computing nodes
required during low and peak demands should vary accordingly. Figure 1 shows
the traffic pattern (number of cars) of a day in Tokyo; in the system we describe
below (Megaffic) 100,000 vehicles per computing node is a good number and it
is clear from the figure that while we sometimes need 8 machines to run the
simulation, there are other moments when less are required.

Fig. 1. Typical day of traffic (number of vehicles) in Tokyo and number of machines
required to simulate it with our adaptive system

This provisioning and releasing of resources according to demand is challeng-
ing in a high-performance computing setting, i.e., the classical context for large
scale simulations. However the situation is different nowadays, with the advent
of pay-as-you-go mechanisms in both Cloud computing and supercomputers (see
Section 2 for details). This is why we propose in this paper a new method to
adapt resource provisioning, which enables to increase and decrease the number
of machines during execution and achieves an efficient utilization of computa-
tional resources. Our main contribution are:

1. The description of a framework which can control the number of machines
during execution.

2. An asynchronous migration mechanism for simulated objects, keeping the
simulation consistent when the number of executing machines is changing.

The rest of paper is organized as follows: Section 2 describes the context of
our research; Section 3 gives a description of our framework, Section 4 details
our efficient object migration technique and Section 5 summarizes our imple-
mentation decisions; we evaluate the performance of our system in Section 6;
Section 7 compares our work to related efforts; we finally conclude in Section 8.



432 M. Hanai et al.

2 Background

This section gives a description of two of the main elements of our work: the
traffic simulator and the Cloud computing infrastructure.

2.1 IBM Mega Traffic Simulator

IBM Mega Traffic simulator, or Megaffic [15,20,16], is a large-scale distributed
traffic flows simulator. Megaffic is built on top of the platform XAXIS (X10-
based Agent eXecutive Infrastructure for Simulation), a highly scalable multi-
agent simulation distributed middleware based on X10, the parallel computing
programming language developed by IBM [9]. Megaffic reduces the computation
time by precomputing several of the simulation elements, such as route selection,
lane selection and vehicle speed.

In Megaffic, an agent represents a driver of a vehicle, who travels along the
road. There are three elements defining the simulation model that need to be set
up before execution: route selection, speed selection and lane selection. Execu-
tion steps are divided in two: pre-iteration and iteration. During the pre-iteration
phase, the origin, the destination and the departure time of each agent are gen-
erated according to the model. The iteration phase then starts, agents interact
with other agents according to the defined behavior model. Agents select a route
from the origin to the destination, change speed and select a lane. Finally when
an agent reaches its destination, it is removed from the simulation. Megaffic also
creates new agents at their origin whenever their departure time is reached.

In our research, the computation model and the agent behavior are based on
Megaffic. Thus each agent has a tentative path, driver preference and origin-
destination data in advance.

Other than Megaffic, some large-scale traffic simulators have been proposed
in recent years. For instance Bragard et al. recently proposed dSUMO [8], which
is a distributed version of SUMO, an open source microscopic traffic simulation
system including the simulation application and supporting tools for network
imports and demand modeling. Another example is Matsim [4], which achieves
a large-scale microscopic traffic simulation on a single computer. For example,
the traffic in all of Switzerland was simulated using Matsim, but some of the
details were omitted from their simulation models for scalability [18].

2.2 Pay-as-you-go Cost Model for Computing Resources

Pay-as-you-go is a new model for renting computational resources, where users
can decide how much and for how long they want to use specific resources.
This model is fine-grained: e.g., renting can be done in the order of seconds [7]
or minutes [2,5,6], and it is also flexible, allowing users to define exactly what
infrastructure they need, in terms of memory, network or CPU [1]. While pay-
as-you-go is often associated with the Cloud computing environment, it is also
popular in the area of supercomputers: see for instance the examples of Tsubame
[7] and K computer [3].



Towards a Framework for Adaptive Resource Provisioning 433

3 Framework for Adaptive Resource Provisioning

This section describes in details the simulation model used in Megaffic and our
system. In particular, we give a presentation of the three main modules of our
framework: workload predictor, resource provisioning optimizer, resource con-
troller.

3.1 Simulation Model of Megaffic Simulation

As mentioned in the previous section, we assume the same computational model
and the same agent behavior as Megaffic. The simulator gets data such as road
definition and vehicle trip description (origin, destination, exact path and de-
parting time). After giving this data to the system, roads and vehicles are dis-
tributed to each worker according to the precomputed road map partitions. The
roads have as many queues as they have lanes, and each vehicle is inserted in the
queues. The system starts iterating then, each iteration representing 1 second of
real world time. During each iteration the vehicles are processed to determine
where they are at the next iteration. After finishing to process all its vehicles,
each worker start communicating with the roads of its neighboring workers. And
so on until the end of the simulation.

3.2 Overview of the System

To achieve an efficient resource utilization on a pay-as-you-go system that is fine-
grained (in terms of renting time) and flexible, we have mainly three problems
to address:

– How do we predict the workload in the next steps to provision exactly the
required resource?

– How do we optimize cost given some user’s objectives, such as, “as fast as
possible simulation (whatever cost)”, “as fast as possible but for a cost less
than 20 dollars”, “as cheap as possible but not lasting more than 1 hour”?

– How do we increase and decrease the number of machines during the simu-
lation according to the objectives we want to optimize?

To solve these problems, our system consists of mainly three components
in addition to the traffic simulator itself: the workload predictor, the resource
arrangement optimizer and the resource controller. Figure 2 shows an overview
our system. The system is built on top of a master-worker architecture where the
master controls utilization of the resources and manages the synchronization of
the simulation and the meta-data such as the cross points and roads arrangement
given to the workers. The workers process the simulation scenario itself.

Workload predictor The workload predictor predicts the workload for next
iterations based on its analysis of the input data and some feedback from
all workers. It returns the predicted next the workload information for next
stepts such as CPU usage, memory usage, network I/O usage, number of
outgoing vehicles and incoming vehicles.



434 M. Hanai et al.

Resource provisioning optimizer The resource provisioning optimizer opti-
mizes the cost of running the simulation according to some user-defined re-
quirements. The optimizer gets the result of predicted workload and returns
the most efficient arrangement of the simulation state to the workers.

Resource controller The resource controller controls the physical and/or vir-
tual machines environment of the simulation. According to the optimized
arrangement, the controller launches new machines via the proper IaaS API
if it requires extra machines. After finishing an iteration, the controller also
releases the possible unused machine.

Fig. 2. System overview Fig. 3. Asynchronous migration

4 Efficient Migration for Agent-Based Simulation

In order to change the number of workers during the simulation while keeping
consistency of the simulating result, we need to migrate part of the simulation
state between workers. But migration cost is high as it requires a lot of com-
munication between workers and serialization and deserialization of simulation
objects, which increases execution time and CPU cost. Suppose Ca is cost to
migrate 1 agent, Cr is cost to migrate 1 road, Na(i) is the number of migrating
agents in roadi, and Nr is the number of migrating roads. The total cost of
migration Ctotal is:

Ctotal = Cr ×Nr +
∑

i=0,1,2,,..Nr

{Ca ×Na(i)} (1)

Each road migration is independent, thus you can easily parallelize it and if there
are enough processes and enough network bandwidth, the execution time is:

TparaTotal = max
i∈{0,1,2,···,Nr}

{T ime(Cr +Na(i)× Ca), } (2)

where T ime(x) gives the time required to process the corresponding cost.



Towards a Framework for Adaptive Resource Provisioning 435

The key idea of our proposed solution is to include the migration in the sim-
ulation execution itself: the load imbalance between nodes leaving time when
workers can exchange workload. To do so, we make the migration asynchronous.
The problem that needs to be considered carefully is how to keep consistency of
simulating results. If migration occurs at arbitrary points during the simulation,
the meta data of the simulation state (roads and cross points) may change incor-
rectly, which could result in inconsistent simulation results. In our system, for
appropriate asynchronous migration, the migration occurs only at the beginning
of the iteration.

In Megaffic, the whole simulation flow consists of a series of iterations of par-
allel processing of individual roads and communications alternatively. Between
the processing of roads and the communication, the synchronization barrier oc-
curs in all roads. Thus for a consistent asynchronous simulation it is sufficient
to synchronise the simulation state metadata at the start of the communication.
Figure 3 shows the comparison between a naive way of synchronising and our
proposed solution. In the naive synchronous way to migrate, workers with no mi-
gration are idle until all migrations are finished. In contrast, in our asynchronous
solution, the migrations overlap with the simulation execution and we reduce the
total execution time.

5 Implementation

As we already mentioned, we use a master-worker architecture, meaning that a
master process controls the resource management and the synchronization of the
traffic simulation while workers execute each a part of the traffic simulation. We
use ZooKeeper, an open source software for distributed systems configuration,
to manage the coordination of the system. ZooKeeper is in charge of naming reg-
istry, synchronization mechanism, addressing of machines, role of each machine,
and to maintain the status of each machine.

In our traffic simulation, which is mainly implemented in Java, the heaviest
process is communication between workers, especially the sending and recep-
tion of Java objects. Regarding the communication between objects, we use
Messagepack serialization format to serialize simulation object and Netty, non-
blocking networking framework, for sending and receiving such serialized sim-
ulation objects. As for the predictor, the evolution in the number of departing
vehicles at each iteration step is analyzed statically before executing the simula-
tion. Then the predictor returns the sum of the departing vehicles and vehicles
to process by each worker. In the optimizer, the worker resource arrangement is
optimized based on precomputed partitioned road map data and the number of
vehicles at the next step as predicted by the predictor. The road map data is par-
titioned by a k-ways graph partitioning algorithm [12] using METIS [13] before
execution. Other solutions could be used among the various space/graph/road
network partitioning algorithms, such as SParTSim [21]. The resource controller
uses physical machines instead of the flexible resource provider, just for evalua-
tion purposes. This does not include the shutdown or start up of machines, and
the provisioning occurs instantly.



436 M. Hanai et al.

6 Evaluation

In this section, we evaluate our proposed cost reduction method for traffic sim-
ulation. We use eight worker machines in total and one master machine, all
running Linux 3.8.0. Each machine has two 2.40 GHz Xeon E5620 CPUs and
32GB RAM. We execute the simulation on Java SE 7 update 4 with option
-Xmx16g. We use the road network of the bay area in Tokyo, which includes
161,364 crosspoints (junctions) and 20,2976 roads. There are a total of 250,000
vehicle trips over a 24 hour period (82,800 steps). The evolution of the number
of vehicles during 24 hours are based on the ratio of some traffic data in All of
Tokyo collected by the MLIT (Ministry of Land, Infrastructure, Transport and
Tourism) in 2011 (see Figure 1 in section 1).

We first conduct evaluations of the scalability and the roads migration time.
Figure 4 shows the execution time of simulating 24 hours in Tokyo according to
the number of machines. The execution time decreases to as low as 52 % of a
single machine’s execution time, but plateaus in 6 or 7 machines. This is because
the communications cost increases with the number of workers. Figure 5 shows
the migration time of roads between two machines. The migration cost increases
according to the number of roads and the number of vehicles on the roads.

We then evaluate our proposed asynchronous migration of roads and vehicles
for distributed traffic simulation. We adapt the number of workers to the number
of new departing vehicles (given before the simulation by the predictor). The
optimizer optimizes the roads arrangement every hour (3,600 steps) to keep
the number of new vehicles to 2,000. Figure 6 shows the average time for one
iteration in synchronous or asynchronous migrations. Note that the migration
can be included in the simulation itself (not the communication though) and the
time for the asynchronous migration could decrease even more. However, in our
traffic simulation scenario, the simulation time is very short compared to the
migration time, and the effect of the asynchronous migration does not appear as
important as it should be. The asynchronous migration technique could be more
effective if the simulation time is large compared to the migration time. Figure

Fig. 4. Scalability of the traffic simulation Fig. 5. Migration time for roads



Towards a Framework for Adaptive Resource Provisioning 437

Fig. 6. Overall execution time Fig. 7. Cost of migration

7 shows the comparison of costs (i.e., sum of the CPU times including idle time
in all machines) between static and adaptive migrations. Adaptive techniques
reduce the cost of migration by 26% compared to the static solution.

7 Related Work

Shengming Li, et al. [14] proposed a workload prediction-based multi-VM pro-
visioning mechanism, which contains a multi-VM provisioning technique based
on time-based billing aware multi-VM provisioning algorithm (TBAMP) and a
workload prediction technique based on ARIMA (autoregressive integrated mov-
ing average). This technique achieves effective rental cost saving in the Cloud
and consists of a prediction module and an optimizing module, like our work.
However, unlike our approach, this technique does not take machine commu-
nication into consideration. This is ok for applications without any machine
communication, like web servers or cache servers, which can be linearly faster
with more machines and do not require to keep consistency. However this is
not the case in the agent-based simulation domain. We then need to take net-
work topology (e.g., communication) into consideration to keep or even improve
the performance, and we need a migration solution of the simulation states for
consistency.

Efficient resource allocation of computer resources is a challenging research
topic. There are a lot of work on efficient resource allocation using resource
provider. For example, Gandhi et al. [11] proposed a method to reduce the en-
ergy cost while meeting SLAs by using a workload prediction and a reactive
allocations modules. This approach is similar to ours but from a different per-
spective: we are interested in users of computational resources while they focus
on resource providers. Thus, we do not share the same assumptions. First, we
can use some application specific and some semantic information for prediction.
For instance, we can get some input about the number of vehicles and the road
map data, and we can predict based on traffic semantics such as ”it is noon” or



438 M. Hanai et al.

”it is early in the morning”. This enables a more detailed and accurate predic-
tion than just using general profiling of machines. Second, we do not take any
resource limit into consideration and assume we can provision as many machines
as we need (as long as we pay for them).

8 Conclusion

In this paper, we presented a framework for adaptive resource provisioning of
traffic simulations, providing a method to reduce the utilization cost of comput-
ing resources. We also proposed a technique to migrate the simulation objects
efficiently by overlapping the simulating processes. We simulated the traffic of
Tokyo with 8 commodity servers and we confirmed that our method can save up
to 26 % of the simulation costs without impacting the simulation results.

We would like to improve some of the components of our framework as fu-
ture work. The prediction could be more accurate by using some mathematical
or machine learning techniques. For example, we can predict traffic flows more
precisely using ARIMA. The optimizer could benefit from a dynamic graph par-
titioning and would certainly optimize the resource assignment for next steps.
For example, by using incremental graph partitioning technique, we can adapt
the resource assignment more effectively to the information given by moving
vehicles. Finally we need to implement and evaluate fully the Cloud computing
environment in the resource controller module.

Acknowledgment. This work was supported, in part, by JST CREST and
JSPS KAKENHI Grant Numbers 25700008 and 26540161, by Science Foun-
dation Ireland grant 10/CE/I1855 to Lero and by Science Foundation Ireland
Industry Fellowship grant 13/IF/12789.

References

1. Amazon EC2, https://aws.amazon.com/ec2/

2. Google Compute Engine, https://cloud.google.com/products/compute-engine/

3. K computer, http://www.kcomputer.jp/en/

4. Matsim, http://www.matsim.org/

5. Microsft Asure, http://azure.microsoft.com/

6. Rackspace Cloud, http://www.rackspace.com/

7. Tsubame 2.5, http://www.gsic.titech.ac.jp/en/tsubame/

8. Bragard, Q., Ventresque, A., Murphy, L.: dSUMO: towards a distributed SUMO.
In: SUMO Conference (2013)

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. ACM SIGPLAN Notices 40(10), 519–538 (2005)

10. Collier, N., North, M.: Repast HPC: A platform for large-scale agent-based mod-
eling. Wiley (2011)

https://aws.amazon.com/ec2/
https://cloud.google.com/products/compute-engine/
http://www.kcomputer.jp/en/
http://www.matsim.org/
http://azure.microsoft.com/
http://www.rackspace.com/
http://www.gsic.titech.ac.jp/en/tsubame/


Towards a Framework for Adaptive Resource Provisioning 439

11. Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah, M.: Minimizing data center
sla violations and power consumption via hybrid resource provisioning. In: Green
Computing Conference and Workshops, pp. 1–8. IEEE (2011)

12. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1), 96–129 (1998)

13. Karypis, G., Kumar, V.: METIS - a software package for partitioning unstructured
graphs, meshes, and computing fill-reducing orderings of sparse matrices-version
5.0. University of Minnesota (2011)

14. Li, S., Wang, Y., Qiu, X., Wang, D., Wang, L.: A workload prediction-based multi-
vm provisioning mechanism in cloud computing. In: Asia-Pacific Network Opera-
tions and Management Symposium, pp. 1–6. IEEE (2013)

15. Osogami, T., Imamichi, T., Mizuta, H., Morimura, T., Raymond, R., Suzumura,
T., Takahashi, R., Ide, T.: IBM Mega Traffic Simulator. Technical report, Technical
Report RT0896, IBM Research–Tokyo (2012)

16. Osogami, T., Imamichi, T., Mizuta, H., Suzumura, T., Ide, T.: Toward simulat-
ing entire cities with behavioral models of traffic. IBM Journal of Research and
Development 57(5), 1–6 (2013)

17. Paolucci, M., et al.: Towards a living earth simulator. The European Physical
Journal Special Topics 214(1), 77–108 (2012)

18. Raney, B., Cetin, N., Völlmy, A., Vrtic, M., Axhausen, K., Nagel, K.: An agent-
based microsimulation model of swiss travel: First results. Networks and Spatial
Economics 3(1), 23–41 (2003)

19. Suzumura, T., Kanezashi, H.: Accelerating large-scale distributed traffic simulation
with adaptive synchronization method. In: ITS World Congress (2013)

20. Suzumura, T., Kato, S., Imamichi, T., Takeuchi, M., Kanezashi, H., Ide, T., On-
odera, T.: X10-based massive parallel large-scale traffic flow simulation. In: ACM
SIGPLAN X10 Workshop, p. 3. ACM (2012)

21. Ventresque, A., Bragard, Q., Liu, E.S., Nowak, D., Murphy, L., Theodoropoulos,
G., Liu, J.Q.: SParTSim: A space partitioning guided by road network for dis-
tributed traffic simulations. In: DS-RT, pp. 202–209. IEEE (2012)


	Towards a Framework for Adaptive Resource Provisioning in Large-Scale Distributed Agent-Based Simulation
	1 Introduction
	2 Background
	2.1 IBM Mega Traffic Simulator
	2.2 Pay-as-you-go Cost Model for Computing Resources

	3 Framework for Adaptive Resource Provisioning
	3.1 Simulation Model of Megaffic Simulation
	3.2 Overview of the System

	4 Efficient Migration for Agent-Based Simulation
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References




