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Abstract. Achieving or proving energy efficiency necessarily relies on
the ability to perform power measurements at some point. In order to
simplify power measurements at the CPU level, recent processors sup-
port model-based energy accounting interfaces such as Intel RAPL or
AMD APM. Though such interfaces are an attractive option for energy
characterization, their accuracy and reliability has to be verified before
using them.

We propose a new statistical validation methodology for CPU power
estimators that does not require any complex hardware system instru-
mentation. The methodology only relies on a single full-system AC power
meter and is able to make statistically relevant decisions about the probes
reliability. We also present an experimental evaluation using two Intel
machines equipped with a RAPL interface and investigate the impact of
multiple parameters such as the CPU frequency or the number of active
cores on the probe accuracy.

Keywords: Statistical performance evaluation, Power measurement,
RAPL.

1 Introduction

Reducing energy consumption is now a major concern for computing systems.
Indeed, application power accounting, power modeling, power capping, and Dy-
namic Voltage and Frequency Scaling (DVFS) are now common tasks performed
in data centers. All of them share a common requirement: they are all based on
physical power measurements, including device-specific measurements. However,
device-specific power measurements often require physical access to the device
and expensive measurement probes.

In order to ease power measurements on processors, new CPU devices inte-
grate model-based interfaces for energy consumption estimation like Intel Run-
ning Average Power Limit (RAPL) [16] or AMD Application Power Management
(APM) [1]. In both systems, power or energy can be read directly by userspace
software using Model Specific Registers (MSR). The spreading of such model-
based interfaces provokes a considerable attraction for power measurement at
the CPU package or at CPU core level. However, the accuracy and reliability of
such interfaces has to be considered and validated before using them.
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Obviously, the most precise approach to validate power estimation interfaces
is to add a power probe directly on the CPU. However, setting up an additional
probe on the CPU is complex and requires a physical access to an experimental
machine. To simplify the validation, we propose a statistical validation method-
ology that does not require precise instrumentation of the processor. Instead, we
only use a full-system digital power measurement (DPM) device. A statistical
quantification approach is then employed to overcome the limits of system-level
instrumentation. Thus, the presented method simplifies and reduces the cost of
CPU power probe validation while maintaining a high accuracy thanks to statis-
tics. It is then possible to easily expose some of the limits of the power probes
without having to void the hardware warranty because of the instrumentation
process. Moreover, it allows anyone with a calibrated full system power meter
to check the power probes before using them in a production mode.

The paper is organized as follows. Section 2 defines our protocol for statistical
validation of the RAPL power estimation. Section 3 describes our experimental
setup (software and hardware) and our measurement methodology. Section 4
shows experimental results on two Intel machines. Finally, we present some re-
lated work in Section 5, and conclude in the last section.

2 Validation Methodology

To mitigate the low precision of system-level instrumentation, the presented
methodology is based on the execution of a large number of micro-benchmarks
stressing only the CPU. Power consumption is measured for the whole execution
of each micro-benchmark with various experimental configurations, no sampling
is performed. The RAPL power estimation is compared against whole system
power measurements obtained by a digital power meter (DPM). The intuition
behind the experimental methodology is the following: the DPM measures power
consumption for the whole system, including processors, then, if the RAPL in-
terface indicates an increased power consumption, the DPM must report at least
an equivalent increase.

2.1 Experimental Configuration and Validity Test

We define an experimental configuration as a set of experimental parameters,
each one being either a hardware setting such as the CPU frequency, a software
parameter such as the number of cores on which the benchmark is replicated on,
or an environmental factor such as the system temperature. An experimental
configuration could consist for instance in having a benchmark replicated on all
the cores, the highest frequency set, the CPU temperature left to the ambient
one. Such configuration is not related to any benchmark and can be used for
many of them.

Let us consider that we have two experimental configurations C'1 and C2
that differ only by a single parameter. C2 is such that it implies a higher CPU
power consumption than C'1. For instance, C2 could be a configuration similar
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to C1 except that more CPU cores are used. We then expect that the power
consumption measured when running a benchmark b under C?2 is higher than
that of C'1, both at the CPU and system level. Let Pcpu(C,b) be the power
measured at the CPU level using the RAPL interface when running b with
an experimental configuration C, and Psys(C,b) be the power consumption
reported by the DPM. Pepu(C,b) and Psys(C,b) are the median of multiple
measurements. Depending on the power increase observed at each level, we may
encounter two different situations.

First, Psys(C2,b) — Psys(C1,b) > Pcpu(C2,b) — Pcpu(C1,b). The power
consumption increased more on the system than on the CPU. Consequently, we
cannot conclude that the model-based CPU power estimation is inaccurate. Note
that the CPU probes are however not proven accurate.

Second, Psys(C2,b) — Psys(C1,b) < Pcepu(C2,b) — Pepu(C1,b). Either the
rest of the system power consumption decreased, or the DPM is wrong, or the
RAPL interface is wrong. However, C2 is chosen to generate a higher CPU
power consumption than C'1, the benchmarks are built so that they only stress
the CPU, and the rest of the system is kept idle by stopping all the non-essential
processes. Thus, some components may increase their consumption (think about
fans for instance) but cannot possibly consume less power. Moreover, the DPM is
assumed to be working and correctly calibrated. Thus, there is a strong evidence
that the CPU power estimation is inaccurate. Moreover, C'1 and C2 differ only
by a single parameter, which provides hints on the cause of the inaccuracy.

The test does not allow us to find all the potential flaws of the probe. Indeed,
it only detects situations where the RAPL interface reports excessive power
increase. When the power increase is under estimated, it cannot be detected be-
cause the extra power consumption measured at the system level can also be due
to other components activity. Thus, the test may report false positives. However,
it exposes all the situations where the power increase is over-approximated by the
RAPL interface without having to perform complex hardware instrumentation.

The described test is the core of our methodology. The complete probe valida-
tion methodology is described hereafter along with the statistical tools required
to decide whether the probe can be considered as accurate or not.

2.2 Statistical Significance

Let us define B be the set of micro-benchmarks. For each pair of experimental
configurations C'1 and C2, where C2 implies a higher CPU power consumption
than C'1, computing the set of power differences is done as follows:

1. For each micro-benchmark b € B, compute APsys(b) = Psys(C2,b) —
Psys(C1,b) and APcpu(b) = Pepu(C2,b) — Pepu(C1,b)

2. Compute the set AP = {APsys(b) — APcpu(b)|Vb € B} of power increase
differences between DPM measurements and model-based CPU power esti-
mations.

The set AP contains the power increase differences between those reported
by the DPM and the RAPL interface. Thus, checking for negative values in AP
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is the simplest way to determine if there are cases where the RAPL interface
miss-estimate power consumption. However, because the system-level measure-
ments are often not precise enough, such simple test frequently reports irrelevant
RAPL errors. Consequently, we use a more robust statistical method to check
for positive values in AP.

Statistical hypothesis testing is a widely used technique in the process of
decision making based on empirical or observed data. The idea behind hypothesis
testing is to make a choice (accept or reject) between two hypotheses: the null
hypothesis called Hy, and the alternative hypothesis called H,. Hj represents
our general belief about a particular data set. For example, a medicine A is not
more efficient than an another medicine B. On the other hand, H, represents an
another belief about the data set. Then, having a fixed risk level a, a hypothesis
test evaluates whether Hy can be proven false. If Hy is rejected with a risk level
«, then the alternative hypothesis H, is usually considered to be true with a
confidence level 1 — «, although it only approximates the exact confidence level
1— B [20]. Such statistical hypothesis tests are useful to determine if a particular
belief on a data-set can be considered true or not, which is exactly what needs
to be done in our case.

We rely on the Wilcozon Signed-Rank Test [14], a one-sample statistical test. It
imposes that Hy is formulated as the median of a sample is equal to an arbitrarily
chosen value. Then, the test computes a p-value, which is a probability that
quantifies the strength of evidence to not reject Hy. If the p-value is very small,
then Hj is unlikely to be true, and the alternative hypothesis is likely to be true.
In practice, if p-value < a, where « is a specified risk level, then Hj is rejected
and H, is usually accepted with a confidence level 1 — . Unlike other statistical
hypothesis tests, the Wilcoxon test does not assume any specific distribution
of the data set. Indeed, most of the statistical tests in the literature impose
that the data distribution follows the normal distribution. However none of our
experimental results follow the normal distribution. The Wilcoxon Signed-Rank
test is then perfectly suited to our case. Moreover, we fulfill the two conditions
that are required to correctly use the test: 1) all the values in AP are mutually
independent, and 2) each value in AP comes from a continuous population (not
necessarily the same).

Let us now show how we can use the test in our context. The test imposes
that Hy is formulated as med(AP) = 0, and H, is formulated as med(AP) > 0
or med(AP) < 0 or med(AP) # 0. We also know that to prove that RAPL cor-
rectly estimates power, we must prove med(AP) > 0. However, there is nothing
in the forms of Hy and H, that allow us to express med(AP) > 0. Consequently,
instead of proving that RAPL is accurate, we try to prove that RAPL is inaccu-
rate. Thus, we express H, as med(AP) < 0. If we succeed to reject Hy, then we
can prove with an approximated confidence level 1 — « that RAPL is inaccurate.
Otherwise, we assume that RAPL is accurate.

The Wilcoxon test allows us to verify a binary knowledge on a data-set. How-
ever, rather than providing a yes/no answer about the accuracy of the measure-
ments with a fixed confidence level, it would be more useful to determine the
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probability for the RAPL interface to incorrectly estimate power. In fact, the
p-value resulting from the test can be used for that purpose. Indeed, accepting
H,, requires p-value < «, then 1 — p-value > 1 — «a, where 1 — « represents the
confidence level one desires in order to accept H,. Thus, 1 — p-value is the max-
imal confidence level one can have when considering H, as true. Thus, rather
than comparing the p-value with a risk level a as it is classically done in the
Wilcoxon test, we consider 1 — p-value as the confidence one can have when
considering the RAPL interface as inaccurate.

2.3 Comparison to Simple Metrics

Let us show the benefits of a rigorous statistical protocol for probe validation
over simple metrics like proportions or sample median. A sample proportion p
represents the fraction N~ out of N benchmarks, where the power increase dif-
ference between that reported by the DPM and the RAPL interface is negative.
One may consider that the higher this proportion is, the better is our confidence
on the inaccuracy of CPU power probe. The sample median and p are both
simple tests that could typically be used to distinguish between a failure of the
RAPL interface or a success.

Figure 1 reports an observed distribution of power increase differences when
the benchmarks are run on 1 or 2 cores on the SandyBridge machine while the
idle cores remain in the level C2 C-state. In addition to the histogram, the figure
reports the 1-p-value, the sample proportion p, and the sample median. In the
presented case, p = 51%, i.e. there are slightly more negative values than positive
ones in AP. Moreover the median is close to 0. Thus, the conclusion about the
RAPL interface precision in this case is uncertain, especially with regard to the
dispersion in the set. On the other hand, the Wilcoxon test indicates that in order
to declare that the RAPL interface overestimates power consumption, we should
accept at most a confidence level 1 — p-value of 47.46%. Such low confidence level
clearly states that the RAPL interface can hardly be said incorrect, whereas the
other metrics are unclear. In fact, the p-value resulting from the Wilcoxon test
takes into account the data distribution and is then more robust than the other
considered metrics. Thus, not only the Wilcoxon test provides a clearer answer

in the presented case, but it is also more reliable than classical metrics one could
think of.

2.4 Discussion

The methodology detects when RAPL estimations are incorrect either because
power consumption in the low power configuration C1 is under-estimated or
because it is over-estimated in the high power configuration C'2. However, the
methodology cannot distinguish which one of the two cases happened. Moreover,
the methodology is also not sensitive to over-estimations of power in C'1 nor
under-estimations in C2. Although the two limitations restrict the precision of
the diagnostic, the methodology is already sufficient to uncover many issues with
the power probes, as shown in the experiments.
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The methodology allows one to detect incorrect power estimations with only
whole system instrumentation. If one is also interested in estimating the impor-
tance of the detected flaws in AP, other metrics such as confidence intervals or
probability density functions can be used. Such tools are then useful to quantify
the errors detected by the test.
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3 Experimental Setup and Methodology

We performed measurements on two distinct Intel machines highlighting different
use cases. First, a SandyBridge machine consisting in a Intel Xeon E3-1240
processor with 4 cores, where Hyper-Threading is disabled. On that machine,
the minimal CPU frequency is 1.6 GHz and the maximal one is 3.3 GHz. Second,
a IvyBridge machine consisting in a Intel Core i7-3770 processor of 4 cores
with Hyper-Threading enabled. There are 8 hardware threads available in the
machine and frequencies range from 1.6 GHz to 3.4 GHz. All the test machines
run a x86 64 Linux kernel version higher than 3.2.

Each processor has a RAPL interface to estimate energy consumption. The
modeled energy values are obtained by combining the status of a set of architec-
tural performance events and energy weight across the set of cores on the chip.
The RAPL interface works at the granularity of power planes that enclose the
various CPU parts. Usually, three power planes are provided: one for the whole
package, one for the cores, and one for the uncore part, sometimes replaced by
DRAM power consumption on some server chips [5]. During our experiments, we
considered the package power plane and accessed it through MSRs. Our testing
processors do not provide any DRAM power plane.
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In this study, RAPL power estimation is compared against a digital power
meter (DPM). The RAPL and the DPM were configured to measure energy con-
sumption instead of power. Power consumption is then computed using energy
and measurement duration. We use a Yokogawa WT210 measurement device
located between the power supply of the computer and the electrical plug, inte-
grating the overall energy consumption of the system from power measurements
performed every 0.1s.

The accuracy of RAPL power estimation is studied in various experimental
configurations. The goal of the experiments is to determine if each parameter
affects the accuracy of RAPL. We consider the following parameters: First, CPU
frequency: minimal and maximal frequency. Second, number of cores: the micro-
benchmark is replicated over 1 to the maximal number of cores available. Third,
temperature: cold or warm CPU. Finally, idleness: idle or active CPU. Though
the IvyBridge machine has Hyper-Threading, we did not study its accuracy. In
fact, it is not obvious whether using all the hardware threads (8 in our case)
may lead to a higher power consumption than using only 4 hardware threads
(1 hardware thread per core). With an 8 threads execution, the result is an
interleaved execution of the 8 threads. Consequently, due to context switching,
we may observe a lower power consumption for some micro-benchmarks.

Knowing that RAPL power estimation accounts only for processor power con-
sumption, our experimental methodology considers only workloads that stress
the processor components. Indeed, workloads accessing memory create off-chip
activity that is not accounted by the RAPL interface but that is measured by
the DPM. Moreover, it is often unclear how memory power consumption evolves
when an experimental parameter varies. For instance, although we can safely
expect the CPU power consumption to increase when more cores are used, it
is not certain that using more cores will increase memory consumption. Indeed,
resource contention and the increased number of opportunities for batching mem-
ory accesses may in fact lead to a slightly lower memory power consumption.
Consequently, to ensure the predictability of our experimental results, we con-
sider compute-intensive workloads with negligible memory traffic.

For our evaluation, we automatically generated 500 distinct random compute-
bound micro-benchmark. The average LLC miss rate is around 1.6e~% indicating
a negligible memory activity. Each micro-benchmark exhibits a distinct mix
of scalar and vector instructions. The instructions are randomly taken from
the most represented instructions in the binary programs available in our /bin
directory and are expressed as inline assembly. The benchmarks are compiled
using the gcc-4.6 compiler with flag -03. While the execution of our micro-
benchmarks is repeated 5 times, each of them was sized to run for at least 10s
(shorter runs lead to unstable results). Considering long measurements allows
us to ensure the reproducibility of the results. Measurement probes (time and
energy) are inserted before and after the execution of the micro-benchmarks,
limiting the introduction of noise or overhead in our measurements.

To achieve high precision in our measurements, we use thread affinity for
better performance stability and the time stamp counter (TSC) for precise time
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measurements. To access TSC, we follow the measurement technique proposed
by Intel [15]. For our test machines, the time stamp counter increments at a
fixed rate [16] and is not affected by CPU frequency change. Furthermore, it
ensures accurate time measurements regardless of the used CPU frequency. We
use the userspace Linux governor to select a particular CPU frequency. The test
machines were entirely dedicated during the experiments to a single user. The
experiments were done on a minimally-loaded machine (disable all inessential
OS services), minimizing I/O and memory activity.

Raw data, including the micro-benchmark source code, results, and the scripts
used to process them are also provided at http://github.com/BenoitP/eprobe_
validation. As can be seen on the repository, we used the R software to process
the data.

4 Experimental Results and Analysis

4.1 CPU Frequency

The goal of the first set of experiments is to study the impact of CPU frequency
on the accuracy of the RAPL interface. We analyze the power differences be-
tween the DPM and RAPL interface when setting the minimal and maximal
CPU frequencies. All the other experimental parameters remain fixed during
the measurements in order to isolate the impact of frequencies on the RAPL
interface accuracy. Then, we have to check whether the power increase between
the minimal and maximal CPU frequencies estimated by RAPL is at least the
same as the one reported by the DPM.

The statistical protocol leads to the results presented in Tables 1 and 2 that
report the maximal accepted confidence level 1 — p-value to declare if RAPL is
inaccurate for different number of cores. They also report the sample proportion
p of benchmarks having negative power increase difference between DPM and
RAPL. As far as CPU frequency is considered, and except for the case of single
thread executions on the IvyBridge machine, the methodology reveals no errors
in the RAPL interface. Indeed, regardless of the test machine, all the computed
confidence levels are equal or close to 0 %, where the p-values are close to 1. We
can also observe that all the reported proportions are very small.

However, when using a single core on the IvyBridge machine, all the values
in AP but one are negative. We then conclude that the RAPL interface estima-
tion is inaccurate. The methodology however does not determine if it is due to
under-estimations with the minimal frequency, over-estimation with the maxi-
mal frequency, or both. As a conclusion, it is clear that the RAPL interface is
inaccurate when a single core is used on that machine and care must be taken
when considering the RAPL interface power information in such situation.

4.2 Number of Active Cores

Let us now analyze the RAPL power estimation accuracy while the benchmarks
are replicated over an increasing number of cores. For a fixed CPU frequency, we
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analyze power differences between the DPM and RAPL interface for each pair
of increasing number of cores. For example, with a quad-core CPU, our protocol
will test the pairs (1,2), (1,3), (1,4), (2,3), (2,4) and (3,4). Using more processor
cores should always translate into a higher power consumption.

Table 3. Impact of the number of cores Table 4. Impact of the number of cores

used on the IvyBridge machine used on the SandyBridge machine
Minimal frequency Maximal frequency Minimal frequency Maximal frequency
Cores used 1 — p-value p 1—p-value p Cores used 1 — p-value p 1—p-value p

(%) (%) (%) (%) (%) (%) (%) (%)
1=2 100 100 0 0 1=2 100 86.8 100 86.2
1=3 100 100 0 0 1=3 0 0 100 89.2
1=4 0 0 0 0 1=4 0 0 100 79.2
2=3 100 84.4 0 0 2=3 0 0 100 89.2
2=4 0 0 0 0 2=4 0 0 100 68.6
3=>4 0 0 0 0 3=>4 100 66.8 0 14.2

Table 3 reports 1—p-value resulting from the Wilcoxon test and the proportion
p of benchmarks which have negative power increase difference between DPM
and RAPL on the IvyBridge machine. All the metrics agree on the absence of
power miss-estimation from the RAPL interface for any number of active cores
when the maximal frequency is used. On the other hand, this observation does
not hold when the minimal CPU frequency is used. Indeed, while half of the
tested configurations exhibits significant confidence level (100%), the remaining
half exhibits negligible ones (0%). Among the configurations where the RAPL
power estimation accuracy is low, two of them involve the case of using 1 core.
The results can be correlated to the data from Table 1: both tables indicate
that the RAPL interface tends to report incorrect power consumption when the
frequency is low and when a small number of cores is used on that machine.

Similarly, Table 4 reports the same power metrics for the SandyBridge ma-
chine. Unlike IvyBridge, the maximal frequency seems to be a problematic case
for the RAPL interface as it nearly always reports inconsistent values when in-
creasing the number of cores. Note that, in the presented case, the statistical
methodology is not only more robust but it also provides a clearer decision on the
RAPL interface accuracy compared to simple proportions. On the other hand,
setting the minimal CPU frequency shows that only 2 out 6 configurations ex-
hibit important confidence on the inaccuracy of the RAPL interface. As shown
in Table 2, while changing the CPU frequency on the SandyBridge platform
does not lead to incorrect power estimation, changing the number of cores, may
lead to inaccurate power estimation with RAPL interface on that machine.

The methodology reveals flaws in both platforms. The measurements per-
formed under the problematic conditions should then be considered with care
and, ideally, validated with another measurement tool. However, the exact solu-
tion to handle such inaccuracy depends on the ultimate goal of the measurements
and is then out of the scope of the methodology.
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4.3 Other Parameters

Along the frequency and the number of active cores, we also evaluated two other
parameters that may have an impact of the RAPL interface accuracy. First,
we varied the CPU temperature by running a long and intense workload before
performing the measurements. Second, we also evaluated the RAPL interface
accuracy when the CPU is idle compared to having one or several active cores.
Both parameters were evaluated but our methodology did not expose any issue
with such configurations.

5 Related Work

Many energy-related work in the past exploited power measurement for vari-
ous purposes. Some research efforts focused on power efficiency of large scale
HPC systems [18,9]. In the context of power monitoring tools, the Power Pack
framework [8] aims at isolating power consumption of devices like disks, mem-
ory, inter-connect networks and processors in HPC clusters. Georgiou et al. [11]
propose a framework integrated to SLURM [21] allowing energy accounting for
distinct jobs at the cluster node level. Power measurements are also widely used
for performance-profile based estimations. In [2,19,17] total energy consumption
measurements are combined to hardware performance counters to estimate en-
ergy usage of either hardware or software components. Obviously, precise power
measurements can only be performed if the probes themselves are accurate.
Thus, it is of primary importance for the work based on measurements to be
able to assess the probes accuracy. The presented methodology can then help
improving the correctness of any results based on power measurements.
Despite its large usage, only a few research efforts focused on the accuracy of
on-chip model-based power estimation for x86 architectures. In [6,7] the accuracy
of RAPL interface is studied using linear algebra kernels and algorithms. For
the tested algorithms, they concluded that RAPL power estimation represents a
viable alternative to physical power meters. Hackenberg et al. [12] performed a
quantitative comparison of various power measurement techniques on compute
nodes. They showed that the RAPL interface is accurate in most of the cases.
However, the RAPL interface was showed to be inadequate to measure energy
for short codes [13,3]. All previous studies validate the accuracy of the RAPL
interface either by simply comparing RAPL estimation to full system power
meter measurements or to dedicated CPU power devices. On the other hand, we
propose a more rigorous statistical validation approach of CPU power probes.
Statistical analysis has recently gained more focus in the computer science
community. However, the majority of the proposed analysis techniques address
only temporal performance. Georges et al. [10] proposed statistical measurement
methodologies based on the analysis of variance to compare the performance of
Java programs. Touati et al. [20] proposed a performance analysis protocol that
computes statistically significant speedups. The proposed protocol relies on well-
known parametric and non-parametric hypothesis tests. Similarly, to compare
the performance of computers, Chen et al. [4] proposed a statistical protocol that
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relies on non-parametric tests. We extend previous works to check the accuracy
of power measurement probes by means of statistical techniques.

6 Conclusion

We propose a rigorous statistical approach to validate the accuracy of model-
based CPU power estimation. The main advantages are twofold: portability and
low cost. First, the statistical protocol can be extended to support the validation
of any kind of power measurement probe. Second, the approach does not require
complex hardware instrumentation as only full-system instrumentation such as
a DPM or an IPMI-based probe is needed. Statistical validation is also more
robust than simple metrics such as the sample median or proportions. With this
regard, the proposed method outperforms the techniques commonly used.

The proposed methodology is able to pinpoint the couple of experimental
parameters that influence the most the accuracy of power probes, although it
does not exactly indicate which parameter is the source of the observed flaws.
As an illustration, we applied our methodology on two Intel based machines and
report the incorrect estimations detected and the associated parameters that
seem to cause them. We also observed that in overall, RAPL power estimation
is more accurate on IvyBridge than on SandyBridge, reflecting an increased
accuracy in newer processors.
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