The External Recovery Problem*

Arkadiusz Danilecki, Mateusz Holenko, Anna Kobusiriska, and Piotr Zierhoffer

Institute of Computing Science
Poznan University of Technology, Poland
{adanilecki,akobusinska,mholenko}@cs.put.poznan.pl

Abstract. We consider an external recovery problem, where a system
is divided into autonomous subsystems which can be recovered only by
the means of logging the messages exchanged between the subsystems.
The question follows: what restrictions to the subsystem’s autonomy are
required to make the external recovery possible? We present example
solutions affecting different aspects of system’s independence.

Keywords: Message logging, fault tolerance, checkpointing, distributed
system.

1 Introduction

The probability of a node crash in a modern, large-scale computing systems, con-
sisting of hundreds of thousands of nodes, comes near certainty. One approach
is to divide the system into subsystems, and to isolate the crash effects within
a subsystem where the crash occurred. Then, a coordinated checkpointing can
be used within a subsystem [13], while to prevent crash effects from spread-
ing, the messages exchanged with processes from different subsystems could be
logged in a pessimistic manner. An interesting theoretical question arises: under
which conditions a subsystem could be recovered only by logging the messages
exchanged with other subsystems — by what we call an external recovery.

There is an unspoken assumption that all parts of the system are under control
of one organization, that they cooperate freely and that they expose all informa-
tion necessary for the recovery. These assumptions may not hold in the future,
when subsystems may be more independent. Future cooperating components
involved in distributed computation may be unwilling to restrict their indepen-
dence by e.g. revealing the information commonly assumed to be available for
the message logging protocols. Nevertheless, if the subsystem is to be recovered
using external message logging, it can’t completely retain its independence.This
observation spurred the question: What must be minimally known about a system
and what minimal restrictions must be imposed on a system behavior, in order
to make the external recovery possible?

This paper is a first step in the direction of solving this puzzle, by identifying
the problem, the possible trade-offs, and by presenting two example approaches

* This work was supported by the Polish National Science Center under Grant No.
DEC-2011/03/D/ST6,/01331.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 535-546, 2014.
© Springer International Publishing Switzerland 2014

536 A. Danilecki et al.

to restricting system independence. While we find the problem interesting from
purely theoretical reasons, we are convinced that it will have practical applica-
tions, for example in creation of recovery protocols for federated clusters [16].
Our paper is organized as follows. Section 2 introduces the system model.
Sections 3 and 4 present solutions restricting different aspects of a subsystem’s
independence. Section 5 discusses related work. Section 6 concludes the paper.

2 System Model

We consider a distributed system § = PUWUZ, where P = {Py, P»,...P,} is a
set of n processes, VW denotes external world, and Z is an interceptor. Intuitively,
if S would be a set of clusters, then P would denote processes in a particular
cluster under a consideration and W would consist from processes from all other
clusters (for simplicity treated as singular entity). Interceptor Z is a layer respon-
sible for logging the messages exchanged between P and W. The processes in
P communicate via message passing using asynchronous reliable FIFO links. In
addition, YW may send messages to any P; € P (hereafter denoted as inputs) and
any P; € P may send messages to W (outputs). The inputs and outputs always
pass through Z where they may be inspected, delayed, discarded, or stored in
a stable storage. We stress that the interceptor is just a theoretical construct.
7 may be implemented as a single node, many independent nodes, or even as
logging mechanism atop processes in P.

Processes have states. At any given time ¢, a sum of states of all processes in
P forms a global state of P. We understand the consistent state of P in a usual
way |7]. Processes execute programs, generating events. Each event changes the
process state. Of special interest are send and receive events, produced when
process sends or receives a message. For brevity, a receive event of an input will
be called an input event. Processes in P are initially passive; they become active
only as an effect of receive event. It follows that absent inputs, processes in P
are continuously passive. Each time a process P; becomes active, it produces a
finite sequence of events. Each event changes P;’s state and may involve sending
messages to some P; € P or to W.

History H(t) at a global time t is a set of events produced by all processes
in P until ¢, partially ordered by Lamport’s happened-before — relation [12]. Tt
follows that the global state of P at ¢ is a result of H(¢). In addition, there is

a relation of true dependency 1, hetween the events [24]', and we say that if

YA e, then e was truly caused by e/. A session S of an input M is a set of

all events truly caused by the receipt of M, ordered by — relation. Each event
in a history H belongs to some session. We assume sessions do not overlap and
are of finite size. A reaction to an input M is a set of outputs forwarded by the
7T to W, whose send events belong to session of M.

! Lamport’s relation reflects system point of view; that is, if e — €', system must
assume that indeed e’ was caused by e, and without e, ¢’ would not happen. True
dependency reflects real, logical dependencies resulting from application logic. See
also always-happened-before relation in [21].

The External Recovery Problem 537

Forany P; € P, given the P, state, only some events are possible. If only one event
is possible, then this event is deterministic. Otherwise, it is non-deterministic. In
a piecewise-deterministic (PWD) model, all the non-deterministic events (usually,
only the receive events) can be identified, and their determinants (the information
needed to replay the event) can be stored [23]. Given some initial state of P;, always
the same state of P; is produced when a sequence of events is generated from a
given set of determinants. In a send-deterministic [6] model, informally, the order
of receive events does not influence the send events.

The processes in P may crash, losing their state. In that case we assume all
processes within P restart from an initial, consistent state, but the algorithms
may be extended to P periodically taking consistent checkpoints (e.g. by finding
out which messages do not have to be replayed during the recovery). A perfect
failure detector is available, notifying Z when all processes in P are restarted.
We assume Z and W do not crash, crashes are rare and no crash happens during
a recovery; this is a reasonable assumption, if the size of a P is small enough (e.g.
within a range of hundreds, rather than thousands of processes). The recovery
is correct if the reaction to any input in a history with the crash and recovery
events would be possible in some history without crash events.

There exists a mechanism discarding messages sent before, but received after
the crash, including inputs sent to P by interceptor, e.g. by using epoch num-
bers. Let all processes in P and Z maintain epoch number e incremented after
each restart (note Z and P will have always identical epoch numbers). Each
message (including inputs) is assigned a current epoch number. Processes ignore
all messages with epoch smaller than e.

3 Restricting the Behavior Only

The following constraints may be imposed on P’s autonomy: its behavior (set of
possible histories) may be restricted a priori; the information about the behavior
(the history of the computation) and about the P’s structure (e.g. how many
processes are in P) may be exposed to Z; finally, processes in P may have to
cooperate with Z during the recovery (e.g. exchanging control messages with 7).

Intuitively, the external recovery is possible if P can be treated (from the point
of view of 7) as a single, piecewise-deterministic (PWD) process. If processes in
‘P are piecewise-deterministic, then from the definition of PWD we conclude that
unless the determinants of non-deterministic events are exposed to Z, and unless
‘P cooperates with Z during the recovery, P cannot be externally recovered. From
this we can see that either the system behavior must be restricted (e.g. it have
to follow more restrictions than piecewise-determinism), and/or it must expose
more information about its behavior and the structure. Algorithms which do not
follow either of those methods, must be incorrect.

Remark 1. If P does not expose internal information and does not cooperate
with Z, and if processes in P work under a PWD model, then external recovery
of P is impossible.

538 A. Danilecki et al.

Variables used in a description:

queue<messages> @ : Queue of input messages
queue<messages> L :: Queue of messages sent to P
queue<messages> Out :: Queue of output messages
enum<ready,busy > state <— ready :: State of the interceptor
integer count :: Number of outputs for last input
Upon receiving message M Upon receiving message M° from P at Z
from W at 7
1: Q<+ QUM = M is appended at 8: if M ¢ Out then
the end of Q 9: Out <+ Out U M°
10: forward M° to W
When Q # 0 A state = ready 11: else
2: state <— busy 12: discard M° : discarding
3: M < Q.front duplicates
4: count < 0 13: end if
5:send M to P 14: increment count

15: if count = kys then
Upon detecting a restart in P at Z 16: M + @Q.front
17: Q+— Q\M
:w Fvent is fired when restart of 18: state < ready

P is finished 19: if M ¢ L then
6: Q< LUQ = The U operator 20: L+~ LUM
prepends L to Q) 21: end if
7: state + ready 22: end if

Fig. 1. Algorithm 1, requiring no cooperation with P, restricting P’s behavior only

We will now demonstrate the possibility of external recovery with restricting
only one aspect of P’s independence, with no cooperation between Z and P
during the recovery and without requiring P to expose any information to Z. As
a reminder, we require that after a single crash in P, all processes restart and Z
is notified by failure detector restart is completed.

We impose the following restrictions on the P’s behavior: (R1) Within each
session, processes in P are send-deterministic. Note (R1) applies only to receive
events within each session, not to input events. (R2) After kjs-th message in a
reaction to input M is sent to Z, no events truly caused by M may occur in P,
where kps > 0 is known a priori and may differ for every M.

The interceptor Z maintains three FIFO message queues @, L and Out, and
a variable state, set initially to ready (fig. 1). Arriving inputs are appended at
the end of Q. While in ready state, Z continuously checks a condition Q # . If
Q # 0, state is set to busy and T sends the message M in front of Q to P. When
an output M° arrives at Z, it is discarded if it is already in an output queue Out,
otherwise Z stores M in Out before forwarding it to W. If this is kj;-th output
in reaction to M, M is removed from @ and appended to L queue. Finally, Z sets
state to ready. When a crash and restart of P is detected, interceptor prepends

The External Recovery Problem 539

all messages in L at the beginning of () and sets state to ready. Processes in P
do not distinguish between messages sent during normal operation or recovery.

Theorem 1. For any history H with a crash, the recovery of P is correct

Proof. From R1), the send events are determined only by the ordering of the
input events in H and the initial state. The algorithm ensures that after receiving
an input M, new input may arrive to P only when 7 receives k,, outputs. From
R2), at that point the session of M has ended and the processes in P have
already sent all messages forming a reaction to M, so new inputs cannot impact
a reaction to M. It follows that a reaction to M is determined solely by the order
in which Z sends inputs. In case of crash all processes restart from the initial
state and Z resends inputs in an exactly the same order as before the crash,
so after the recovery P produces the reactions possible if the crash would not
occur in H. Some of the messages forming reaction to M produced by P; € P
(outputs) may be duplicates of the messages sent before the crash — due to our
assumptions, those are the only duplicates which our algorithm must handle.
Those duplicated outputs are discarded by Z. We conclude that the reactions
observed by W would be possible if a crash would not occur in H.

Constraints on the P’s behavior could be understood both as expressing which
histories are possible, and which possible histories with different event ordering
lead to the same P’s global state (i.e. which histories are equivalent with respect
to P’s state). For example, ordering of receive events matters in PWD, but not
in the send-deterministic model. If a constraint C' allows for all histories allowed
by C’ and in addition at least one history not allowed by C’, then C’ is more
strict than C. Similarly, if under C histories H and H' are equivalent (despite
having different ordering of the events), while under C’ they are not, C' is more
strict than C” with respect to event ordering. Full determinism is more strict (in
both senses) than PWD, PWD is more strict than send-determinism and so on.
We will now prove that the constraints on P’s behavior are minimal in the
sense that a deterministic external recovery (producing the same outputs in the
same order) is possible without requiring cooperation and/or more information
from P, only when a constraint w.r.t. event ordering is at least as strict as R1)2,
and R1) is not enough unless a constraint at least as strict as R2) is imposed.

Theorem 2. The restrictions imposed on a P’s behavior are minimal.

Proof. Minimality of R1). Assume that send events may be impacted not just
by the ordering of the input events, but in addition there is a non-deterministic
event e and depending on whether a history H contains e, or depending on
ordering of e with respect to other events, it is possible that H will produce
different outputs, say either M° or M (not necessarily a reaction to the same
M). Assume that e occurred before a crash, producing M°. After the recovery
e may not happen or may be ordered differently, producing M. Since M°

2 Channel-determinism|[21] would produce the same outputs, but possibly in different
order, which may or might not matter from the point of W.

540 A. Danilecki et al.

and M® are different, Z would not discard one of them as a duplicate, causing
W to observe both — impossible in a history without a crash. That could be
prevented only by replaying e, which would require preserving its determinants.
Since processes have no stable storage, determinants could be preserved only by
sending them to Z (exposing information) and during the recovery the processes
would have to know how to use that information (requiring cooperation).
Minimality of R2). Assume that R1) holds and while there still may occur the
events truly caused by M, a new input M’ arrives. Depending on the ordering of
the event of receiving M’ with respect to the events truly caused by M, a history
may contain an event of sending either M©° or M, but not both. By reasoning
analogous as with the discussion of R1) we conclude that the correct recovery
requires exposing information to Z and a cooperation with Z. Therefore, new
input must arrive into P only when no events truly caused by the previous input
will occur. Interceptor cannot determine this if Z does not not know a priori
the number of outputs, unless processes in P expose information to Z (e.g. by
attaching tags to outputs, to notify Z whether the output is the last one).

4 Restricting the Behavior, Exposing the Information

The solution analysed in previous section is mostly of theoretical value. Obvi-
ously it would severely limit the performance of most applications, as it forces
P to process all inputs serially. If P could process n inputs in parallel, both
recovery and normal processing would be at least n times slower. This would
be acceptable for applications where processing is done in request-reply manner,
requiring cooperation of all processes in P, or with applications where size of
P is limited. Allowing inputs to be processing in parallel would both increase
the performance, the potential size of P, and the number of cases where exter-
nal recovery would be applicable. The approach presented below, based on our
previous work[5], demonstrates trade-offs inherent in the external recovery: to
achieve higher performance, we must put more constraints on P’s independence.

Let S be a set of all sessions in H(t), and let Ve € H(¢),3S € S: e € S. Set
of sessions S C H(t) is serializable if there exists a total order relation 2 in S,
preserving + relation (Ve € S,Ve/ € 8’ : e — ¢’ = S % §’). Each session S € S
has a unique session identifier S.id. Slightly abusing the notation, we will say
that a message m belongs to a session S if the event of sending m belongs to S.

We restrict the P’s behavior as follows: (R1) processes in P are
send-deterministic within each session. (R3) The sessions are serializable. (R4)
For each input M, number of outputs kj; > 0 in a reaction to M is known a
priori (note R4 is less strict version of R2). (R5) VP, € P, when P; receives a
message from session .S, it must eventually send at least one message (possibly,
an output) within S.

P expose the information about how the sessions were serialized: each message
m (including each output) has the session identifier m.sId and the ordered set
of all the preceding sessions m.prec. We assume sessions are serializable.

The interceptor Z maintains sets M and F (fig. 2). Each element x € M™
represents a session and has five fields: an input msg, an input’s session identifier

The External Recovery Problem 541

sId, a set of preceding session identifiers prec, a set of outputs out (a reaction to
msg), and a boolean fwd. When an input M arrives at Z, 7 creates an element
x with z.msg < M, sets M.sId and x.sId to a new unique session identifier
sld, x.prec < F, x.out < () and z.fwd < false. The z is then added to M™,
and M is send to P.

When an output M?° arrives at Z, Z finds an element z in M with z.sId =
MP°.sId. M° is discarded if M° € z.out. Otherwise Z appends M°.prec to a
z.prec field, M? is stripped from prec and sld fields and added to x.out. If
cardinality of z.out is kjs, then x.sId is added to F. For each x € M™, the
interceptor Z periodically checks a condition z.sId € F AVy € M™ : y.sld ¢
F = x.sld € y.precV y.sld € x.prec. If the condition is true, Z sets z.fwd «+
true and forwards messages in x.out to W.

When P crashes, 7 stops passing messages into P and creates two sets: M’
contains a copy of all elements x € M™ such that z.fwd = true, while M°" =
M\ M’ (fig. 3). Then, Yo € M : —z.fwd = x.0ut + (. Next, an element
z € M’ : xz.prec = () is chosen and a message x.msg is sent to P. Interceptor
7 then waits until it receives kj; outputs, discarding each of them. When this
happens, z is removed from M’ and Vy € M’y # xz, x.sId is removed from
y.prec. Finally, another element with an empty prec set is chosen. If M’ is
empty, Z sends all messages from M°" set to P (in any order, sequentially or
in parallel). Normal execution then resumes.

The information about session serialization is gathered as follows: each process
P; maintains set of session identifiers prec; and current session identifier sld;.
When P; receives m such that m.sId # sld;, prec; < prec; Um.precU sld; and
sld; < m.sId. When P; sends a message m, the prec; is added to m as m.prec.
The set prec; can be prevented from growing indefinitely with the use of garbage
collecting, or by putting stricter constraints on P’s behavior.

Lemma 1. For every session S’ # S such that S’ has started before S has
ended, and for any event e € S at P;, e can be replayed during recovery if and
only if either no event from S’ occurs at P;, or information of precedence between
S’ and S with respect to —; 1s preserved at T.

Proof. From R3), we know that if a process P; receives message first from a
session S and then from a session S’ # S, P; will receive no further messages
from S (P; sees that locally S precedes S’). Let —; denote the session ordering
as seen by P;. Obviously, S —; 8’ = S 3 §’. From R1), a send event e at P;
from S can be impacted only by the previous receive events at P;, belonging to
different sessions, i.e. by the sessions preceding S w.r.t. —; relation. To replicate
e, we must 1) replay all sessions preceding S before S and 2) make sure that all
the sessions preceded by S will be executed after S. If S has ended before S’ has
started, S’ cannot precede S w.r.t. ;. So, to be sure we can replay e, for every
session S’ £ S such that S’ has started before S has ended, we must be able to
tell that either no event from S’ occurs at P;, or whether S’ +—; S or S —; S’.
This information must be then preserved at Z.

542

Message type Packet () is:

A. Danilecki et al.

Structure Session is:

message msg :: Input starting the session
integer sld integer sId :: Session identifier
set <integer> prec set<integer> prec :: preceding sessions
message data set<message> out :: Ouiputs lo the session

boolean fwd :: Were outputs forwarded to VW

Variables used in a description:

set<Session> M"™ :: Sessions
set<integer> F :: Finished sessions
set<Session> M/ :: Part of M'"
set<Session> M°" :: Part of M™
Session = :: Single session element
Packet pkt :: Packets used within P
enum<ready,busy > mode < ready

Upon receiving message M

oo

© 0N U W

from W at 7
z.msg < M

. z.sld + new unique session

identifier

: z.prec + 0, z.out <+ 0

1 x.fwd < false

M MU

. pkt.data < M

: pkt.sld < x.sld

: pkt.prec < 0

: wait until mode = ready
: send pkt to P

Upon receiving message M° of type

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Packet from P at 7
T {z rx e MM ANxsld = M”.s[d}
M M \LL’
if M°.data & x.out then
z.prec < x.prec U M°.prec
z.out < z.outU (M°.data)
M™ e MUz
if |z.out| = ky then
F «— FUz.sld
end if
else
discard M°
end if

When 3z € M"™ : z.sld € F A z.fwd = false A\Vy € M™,y.sld ¢ F = x.sld € y.prec V y.sld € z.prec

23:
24:
25:
26:

z.fwd < true

foreach msg € z.out do
send msg to W

end for

Fig. 2. Algorithm 2, part 1: failure-free execution

The External Recovery Problem 543

Upon detecting a restart in P at 7
: Fvent s fired when restart of P is finished

L mode < busy in 15: pkt.msg < x.msg
M1+ {z e M™ : z.fwd = true} 16: Dkt prec «

o Copy of elements in M™ ’
Moth P Mm \M/ 17: pktS[d +— x.sld

»

3:
in 18: send pkt to P
; foreach @ €M do 19: for i€ {l.ky} do
6: if z.fw tf gue en 20: receive pkt from P
7: dz..fou < 21: discard pkt
8. de? ! 22: end for
: end for
. 23: M= M\ z
1?)'. Whlf}e M;l# 0 d./(i/l d 24: foreach y € M/ do
) oreach c€M/do 25: y.prec < y.prec \ z.sld
11: if z.prec = () then 26: end for
At least one element with) .
. . 27: end while
:: empty prec field must be in 98: foreach z € M°" do
i M1 due to (RY) 29; pkt.msg < x.msg
:: restriction on P’s behavior .
12 break 30: pkt.prec + 0
: rea
1: s .s1
13 end if 3 pkt.sld < x.sld

32: send pkt to P
33: end for
34: mode < ready

14: end for

Fig. 3. Algorithm 2, part 2: recovery

Lemma 2. For some x € M'™ and S € S, let S.prec be x.prec where x.s1d =
S.id. When a ky-th output M° from S arrives to I, for each S’ € S such that
S’ has not started after S has ended, S'.id € S.prec < AP, € P: S +; S.

Proof. When P; receives a message from a session S’, sId; < S’.id. Later, when
P; receives a message from a session S, S’ is added to the prec; (S’ —; SAsId; =
S.id = S’.id € prec;). Before sending a message m within S, P; sets m.prec <
prec;, so0 S' —; SAm.sId = S.id = S’.id € m.prec. When P; receives a message
m from P; it adds m.prec to prec;. By recursion, it follows that for every m
(including every output) m.sId = S.id A S’.id € m.prec = 3P, € P : 5" +—; S.
Since S.prec is a sum of all outputs’ prec fields, this concludes the if part. From
R5), at least one message is sent by P; within a session S, containing prec;, either
to W or to some P;. Since our system models assumes all sessions are finite, and
by R4) number of outputs is finite, eventually there must be an output (at most
ka-th) including ordering of S” and S w.r.t. +; (only if part).

Theorem 3. For any history H with a crash, the recovery of P is correct

Proof. Let x € M’, and let S.prec be x.prec where z.id = S.id. Let 2y will be
a relation on S, such that if $” € S.prec = S' % S. Algorithm ensures that no
output M? from session S (reaction to S) is send to W until for all other session

544 A. Danilecki et al.

S8 eFvS B SsvSE S Assume S’ € F and —(S" & Sv S 5 S'). From
R4) and R5), no new events within S’ will happen. If any event in S” would
occur at P;, then by R5) and lemma 2), S’ 2, 5vS 5 8 so we conclude that
no event from S’ occurred at P;.

Assume S’ % Sv S 5 S’ From lemma 2) we conclude that §' % § <
P, e P: S —; S (resp. S LS — 3P eP: Sy S’), or S started
after S has ended. From that and from lemma 1) we conclude that to replicate
reaction to S, it is enough to replay all the sessions preceding S with respect
to & . It is easy to see that algorithm does exactly that during the recovery.
After that, inputs for which no output was forwarded to VW may be send to P
in any order; from lemma 1) it is clear that any such input couldn’t impact any
output forwarded to W before the crash, and reaction to any such input could
be impacted by sessions from M’ in a history without a crash.

After the recovery all sessions which produced outputs forwarded to W be-
fore a crash will be replayed while outputs which could not be replicated and
duplicates will be discarded. Any additional output forwarded to W could also
appear if a crash would not occur in H. We conclude that a reaction to any
input M in H could occur in a history without a crash.

5 Related Work

In the context of message-passing systems, there are two general techniques
for system recovery: checkpointing and message logging (See [15] for survey).
Checkpointing may be done in a coordinated manner [13] or independently. In
the latter case a domino effect may appear [19], leading researchers to propose
many communication-induced protocols: index-based [25] or model-based [22,17].

Message logging may be pessimistic, optimistic or causal. With pessimistic
logging event determinants are saved immediately into the stable storage [3].
The performance penalty of this approach is avoided by optimistic logging where
determinants may be stored in volatile memory before being written to the stable
storage [11]. Optimistic approach complicates recovery. Causal logging tries to
combine advantages of both approaches [1]. Send-determinism is a promising
model of system behavior, allowing new, efficient protocols [8,9]. Message logging
was also studied in the context of the SOA systems [2] and Distributed Shared
Memory [18].

The independent recovery of large system’s sub-components was analyzed in
the context of cluster federations, in which processes/nodes could be statically
assigned to the independent, non-overlapping groups [16,10], may be divided
into groups using either the code analysis or based on their behavior [20,14],
or by residing on single, multi-core machine [4]. Usually coordinated checkpoint
is used within a group, while only messages exchanged between the groups are
logged [9].

The External Recovery Problem 545
6 Conclusions

This paper is a first step in an exploration of the external recovery problem. We
presented two algorithms allowing the system to be recovered using the messages
logged by an intercepting layer. The algorithms differ in the kind of restrictions
imposed on a system, serving as an illustration of the tradeoffs involved when a
system is to be recovered by external message logging: one must either expose
more system information and agree to cooperate more with intercepting layer,
or impose a stricter constraints on possible system behaviors.

Our work could be extended in several ways. First, the externally recoverable
systems offer a possibility of building large-scale systems where each subsystem
could be dynamically modified or replaced, with different internal fault-handling
logic. Second, it would be interesting to investigate other ways in which system’s
behavior could be restricted, especially if there exists other set minimal restric-
tions allowing system’s external recovery. Third, a similar work could be carried
on the questions of minimal information needed by external recovery mechanism
given particular restriction on system’s behavior. Finally, important part of fu-
ture work is experimental analysis of performance of presented solutions, and of
their scaling characteristics.

References

1. Alvisi, L., Marzullo, K.: Message logging: Pessimistic, optimistic, causal, and op-
timal. Software Engineering 24(2), 149-159 (1998)

2. Barga, R.S., Lomet, D.B., Shegalov, G., Weikum, G.: Recovery guarantees for
internet applications. ACM Trans. Internet Techn. 4(3), 289-328 (2004)

3. Bouteiller, A., Cappello, F., Hérault, T., Krawezik, G., Lemarinier, P., Magniette,
F.: MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic sender
based message logging. In: SC, p. 25. ACM (2003)

4. Bouteiller, A., Hérault, T., Bosilca, G., Dongarra, J.J.: Correlated set coordination
in fault tolerant message logging protocols for many-core clusters. Concurrency and
Computation: Practice and Experience 25(4), 572-585 (2013)

5. Brzeziniski, J., Danilecki, A., Hotenko, M., Kobusinska, A., Kobusinski, J., Zier-
hoffer, P.: D-RESERVE: Distributed reliable service environment. In: Morzy, T.,
Hérder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS, vol. 7503, pp. 71-84. Springer,
Heidelberg (2012)

6. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in par-
allel HPC applications. In: 2010 Proceedings of 19th International Conference on
Computer Communications and Networks (ICCCN), pp. 1-8 (2010)

7. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375-408
(2002)

8. Guermouche, A.; Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
checkpointing without domino effect for send-deterministic message passing ap-
plications. In: Accepted to the 25th IEEE International Parallel and Distributed
Processing Symposium, IPDPS (May 2011)

546

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Danilecki et al.

Guermouche, A., Ropars, T., Snir, M., Cappello, F.: HydEE: Failure containment
without event logging for large scale send-deterministic mpi applications. In: 2012
IEEE 26th International Parallel Distributed Processing Symposium (IPDPS), pp.
1216-1227 (2012)

Gupta, B., Rahimi, S., Allam, V., Jupally, V.: Domino-effect free crash recovery
for concurrent failures in cluster federation. In: Wu, S., Yang, L.T., Xu, T.L. (eds.)
GPC 2008. LNCS, vol. 5036, pp. 4-17. Springer, Heidelberg (2008)

Johnson, D., Zwaenepoel, W.: Recovery in distributed systems using optimistic
message logging and checkpointing. J Algorithms 11, 462-491 (1990)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558-565 (1978)

Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., Cappello, F.: Improved
message logging versus improved coordinated checkpointing for fault tolerant MPI.
In: CLUSTER 2004: Proceedings of the 2004 IEEE International Conference on
Cluster Computing, Washington, DC, USA, pp. 115-124 (2004)

Luo, Y., Manivannan, D.: Hope: A hybrid optimistic checkpointing and selective
pessimistic message logging protocol for large scale distributed systems. Future
Generation Comp. Syst. 28(8), 1217-1235 (2012)

Maloney, A., Goscinski, A.: A survey and review of the current state of rollback-
recovery for cluster systems. Concurrency and Computation: Practice and Experi-
ence 21(12), 1632-1666 (2009)

Monnet, S., Morin, C., Badrinath, R.: A hierarchical checkpointing protocol for
parallel applications in cluster federations. In: IPDPS (2004)

Netzer, R.H.B., Xu, J.: Necessary and sufficient conditions for consistent global
snapshots. IEEE Transactions on Parallel and Distributed Systems 6(2), 165-169
(1995)

Park, T., Lee, 1., Yeom, H.Y.: An efficient causal logging scheme for recoverable
distributed shared memory systems. Parallel Computing 28(11), 1549-1572 (2002)
Randell, B.: System structure for software fault tolerance. IEEE Transactions on
Software Engineering 1(2), 221-232 (1975)

Ropars, T., Guermouche, A., Ugar, B., Meneses, E., Kalé, L.V., Cappello, F.: On
the use of cluster-based partial message logging to improve fault tolerance for MPI
HPC applications. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 567-578. Springer, Heidelberg (2011)

Ropars, T., Martsinkevich, T.V., Guermouche, A., Schiper, A., Cappello, F.: Spbc:
Leveraging the characteristics of mpi hpc applications for scalable checkpointing.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2013, pp. 8:1-8:12. ACM, New York (2013)
Russell, D.L.: State restoration in systems of communicating processes. IEEE
Trans. Software Eng. 6(2), 183-194 (1980)

Storm, R., Yemini, S.: Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst. 3(3), 204-226 (1985)

Tarafdar, A., Garg, V.K.: Addressing false causality while detecting predicates in
distributed programs. In: Proceedings of the 18th IEEE International Conference
on Distributed Computing Systems (ICDCS 1998), pp. 94-101 (1998)

Tsai, J.: An efficient index-based checkpointing protocol with constant-size control
information on messages. IEEE Trans. Dependable Sec. Comput. 2(4), 287-296
(2005)

	The External Recovery Problem
	1 Introduction
	2 System Model
	3 Restricting the Behavior Only
	4 Restricting the Behavior, Exposing the Information
	5 Related Work
	6 Conclusions
	References

