Skip to main content

Hierarchical Spanning Tree-Structured Approximation for Conditional Random Fields: An Empirical Study

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

Abstract

We present a learning algorithm to construct a discriminative Conditional Random Fields cascade model. We decompose the original grid-structured graph model using a set of spanning trees which are learned and added into the cascade architecture iteratively one after another. A spanning tree at each cascade layer takes both outputs from the previous layer nodes as well as the observed variables, which are processed by all the layers. The structure of spanning trees is generated uniformly at random among all spanning trees of the original graph. The result of the learning is the number of cascade layers, the structure of the generated spanning trees, and the set of optimized parameters corresponding to the spanning trees. We performed the experimental validation on synthetic and real-world imagery datasets and demonstrated better performance of the cascade tree-based model over the original grid-structured CRF model with loopy belief propagation inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (ICML) (2001)

    Google Scholar 

  2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1998)

    Google Scholar 

  3. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Advances in Neural Information Processing Systems (NIPS) (2001)

    Google Scholar 

  4. Globerson, A., Jaakkola, T.: Approximate inference using planar graph decomposition. In: Advances in Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  5. Batra, D., Gallagher, A.C., Rarikh, D., Chen, T.: Beyond trees: MRF inference via outer-panar decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  6. Kolmogorov, V., Zabih, R.: What energy functions can be optimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  8. Shimony, S.E.: Finding MAPs for belief networks is NP-hard. Artificial Intelligence 68, 399–410 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195 (1975)

    Article  Google Scholar 

  10. Besag, J.: Efficiency of pseudo-likelihood estimation for simple gaussian fields. Biometrika 64(3), 616–618 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sutton, C., McCallum, A.: Piecewise pseudolikelihood for efficient CRF training. In: Proceedings of the 24th International Conference on Machine Learning (ICML) (2007)

    Google Scholar 

  12. Sutton, C., McCallum, A.: Piecewise training for structured prediction. Machine Learning 77(2-3), 165–194 (2009)

    Article  Google Scholar 

  13. Wainwright, M., Jaakkola, T., Willsky, A.: MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches. IEEE Transactions on Information Theory 51(11), 3697–3717 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  15. Pletscher, P., Ong, C.S., Buhmann, J.M.: Spanning tree approximations for conditional random fields. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, (AISTATS) (2009)

    Google Scholar 

  16. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC) (1996)

    Google Scholar 

  17. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization methods. Mathematical Programming 45, 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: Advances in Neural Information Processing Systems (NIPS) (2003)

    Google Scholar 

  19. Kumar, S., Hebert, M.: Discriminative random fields. International Journal of Computer Vision 68(2), 179–201 (2006)

    Article  Google Scholar 

  20. Skurikhin, A.N.: Learning tree-structured approximations for conditional random fields. In: Proc. IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Skurikhin, A.N. (2014). Hierarchical Spanning Tree-Structured Approximation for Conditional Random Fields: An Empirical Study. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics