Skip to main content

Designing Process Modeling Tools to Facilitate Semantic Standardization: Increasing the Speed of Innovation in a Digital World

  • Chapter
  • First Online:
BPM - Driving Innovation in a Digital World

Part of the book series: Management for Professionals ((MANAGPROF))

Abstract

Business process management (BPM) projects are increasing in size and becoming ever more complex. With companies being subject to increasing degrees of competition and a more dynamic market environment, it is crucial to implement organizational changes rapidly in order to remain innovative and competitive. BPM projects are an important tool to achieve this, yet they are often delayed or fail completely. Frequently they suffer from a high degree of heterogeneity resulting from huge project teams modeling hundreds of processes. Modeling conventions can help harmonize process models, yet they are hard to develop and enforce in large teams. Building modeling tools such that modelers must comply with conventions can alleviate these problems. In this chapter, I present five design principles for such tools and one prototypical implementation, the icebricks modeling tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.xcbl.org/

  2. 2.

    http://www.hl7.org/implement/standards/rim.cfm

References

  • Becker, J., Algermissen, L., Pfeiffer, D., & Räckers, M. (2007a). Bausteinbasierte Modellierung von Prozesslandschaften mit der PICTURE-Methode am Beispiel der Universitätsverwaltung Münster. Wirtschaftsinformatik, 49(4), 267–279.

    Article  Google Scholar 

  • Becker, J., Algermissen, L., Pfeiffer, D., & Räckers, M. (2007b). Local, participative process modelling – The PICTURE-approach. In 1st international workshop on management of business processes in government (pp. 33–48). Brisbane, Australia.

    Google Scholar 

  • Becker, J., Clever, N., Holler, J., Püster, J., & Shitkova, M. (2013). Integrating process modeling methodology, language and tool – A design science approach. In 6th IFIP WG 8.1 working conference, PoEM 2013 (pp. 221–235). Riga, Latvia.

    Google Scholar 

  • Becker, J., Kugeler, M., & Rosemannm, M. (2011). Process management: A guide for the design of business processes (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Becker, J., Probandt, W., & Vering, O. (2012). Grundsätze ordnungsmäßiger Modellierung: Konzeption und Praxisbeispiel für ein effizientes Prozessmanagement. Berlin: Springer.

    Book  Google Scholar 

  • Becker, J., Rosemann, M., & von Uthmann, C. (2000). Guidelines of business process modeling. In W. M. P. van der Aalst, J. Desel, & A. Oberweis (Eds.), Business process management models, techniques, and empirical studies (pp. 30–49). Springer: Berlin.

    Google Scholar 

  • Becker, J., & Schütte, R. (2004). Handelsinformationssysteme (2nd ed.). Frankfurt am Main: Redline Wirtschaft.

    Google Scholar 

  • Breuker, D., Pfeiffer, D., & Becker, J. (2009). Reducing the variations in intra- and interorganizational business process modeling – An empirical evaluation. In Internationale Tagung Wirtschaftsinformatik. Vienna, Austria.

    Google Scholar 

  • Cardoso, J. (2006). Process control-flow complexity metric: An empirical validation. In 2006 I.E. international conference on services computing (SCC’06) (pp. 167–173). Chicago, IL.

    Google Scholar 

  • Claes, J., Vanderfeesten, I., Reijers, H., Pinggera, J., Weidlich, M., Zugal, S., et al. (2012). Tying process model quality to the modeling process: The impact of structuring, movement, and speed background on the process of process modeling. In 10th international conference on business process management (BPM 2012) (pp. 33–48). Tallinn, Estonia.

    Google Scholar 

  • Delfmann, P., Herwig, S., & Lis, L. (2009). Unified enterprise knowledge representation with conceptual models – Capturing corporate language in naming conventions. In 30th international conference on information systems. Phoenix, Arizona.

    Google Scholar 

  • Dijkman, R., La Rosa, M., & Reijers, H. A. (2012). Managing large collections of business process models – Current techniques and challenges. Computers in Industry, 63(2), 91–97.

    Article  Google Scholar 

  • Fellbaum, C. (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hallerbach, A., Bauer, T., & Reichert, M. (2010). Capturing variability in business process models: The Provop approach. Journal of Software Maintenance and Evolution: Research and Practice, 22(6–7), 519–546.

    Google Scholar 

  • Houy, C., Fettke, P., Loos, P., van der Aalst, W. M. P., & Krogstie, J. (2011). Business process management in the large. Business and Information Systems Engineering, 3(6), 385–388.

    Article  Google Scholar 

  • Keller, G., & Teufel, T. (1998). SAP R/3 process–oriented implementation: Iterative process prototyping. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Kettinger, W. J., Teng, J. T. C., & Guha, S. (1997). Business process change: A study of methodologies, techniques, and tools. MIS Quarterly, 21(1), 55–80.

    Article  Google Scholar 

  • Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the OMG! In fifth international AAAI conference on weblogs and social media (pp. 538–541). Barcelona, Spain.

    Google Scholar 

  • Lange, C. F. J., DuBois, B., Chaudron, M. R. V., & Demeyer, S. (2006). Experimentally investigating the effectiveness and effort of modeling conventions for the UML. In 9th international conference on model driven engineering languages and systems (MoDELS 2006) (pp. 27–41). Genova, Italy.

    Google Scholar 

  • Levin, B. (1993). English verb classes and alternations: A preliminary investigation (Vol. 37). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Malone, T. W. (2003). Organizing business knowledge: The MIT process handbook. Cambridge, MA: MIT Press.

    Google Scholar 

  • Matzner, M., Alexandrini, F., Araujo, T. S., & Becker, J. (2009). Process modeling in Brazilian public administrations: The domain-specific PICTURE approach. In Americas conference on information systems. San Francisco, CA.

    Google Scholar 

  • Mendling, J., Recker, J., & Reijers, H. A. (2010). On the usage of labels and icons in business process modeling. International Journal of Information System Modeling and Design, 1(2), 40–58.

    Article  Google Scholar 

  • Mendling, J., Reijers, H. A., & van der Aalst, W. M. P. (2010). Seven process modeling guidelines (7PMG). Information and Software Technology, 52(2), 127–136.

    Article  Google Scholar 

  • Moody, D. L. (2009). The “physics” of notations: Toward a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering, 35(6), 756–779.

    Article  Google Scholar 

  • Petre, M. (2006). Cognitive dimensions “beyond the notation”. Journal of Visual Languages and Computing, 17(4), 292–301.

    Article  Google Scholar 

  • Pfeiffer, D. (2008). Semantic business process analysis – Building block-based construction of automatically analyzable business process models. Dissertation, University of Münster, Germany.

    Google Scholar 

  • Piattini, M., Visaggio, C. A., Canfora, G., Ruiz, F., & García, F. (2005). A family of experiments to validate metrics for software process models. Journal of Systems and Software, 77(2), 113–129.

    Article  Google Scholar 

  • Pinggera, J., Zugal, S., Weber, B., Fahland, D., Weidlich, M., Mendling, J., & Reijers, H. (2010). How the structuring of domain knowledge helps casual process modelers. In 29th international conference on conceptual modeling (ER 2010) (Vol. 6412, pp. 445–451). Vancouver, BC.

    Google Scholar 

  • Recker, J. (2012). “Modeling with tools is easier, believe me”: The effects of tool functionality on modeling grammar usage beliefs. Information Systems, 37(3), 213–226.

    Article  Google Scholar 

  • Reijers, H. A., & Mendling, J. (2011). A study into the factors that influence the understandability of business process models. IEEE Transactions on Systems, Man, and Cybernetics – Part A, 41(3), 449–462.

    Article  Google Scholar 

  • Reijers, H. A., Recker, J., & Mendling, J. (2010). Activity labeling in process modeling: Empirical insights and recommendations. Information Systems, 35(4), 467–482.

    Article  Google Scholar 

  • Rosemann, M. (2006a). Potential pitfalls of process modeling: Part A. Business Process Management Journal, 12(2), 249–254.

    Article  Google Scholar 

  • Rosemann, M. (2006b). Potential pitfalls of process modeling: Part B. Business Process Management Journal, 12(3), 377–384.

    Article  Google Scholar 

  • Schmelzer, H. J., & Sesselmann, W. (2010). Geschäftsprozessmanagement in der Praxis: Kunden zufrieden stellen – Produktivität steigern - Wert erhöhen (7th ed.). Munich: Carl Hanser.

    Google Scholar 

  • Schmiedel, T., & vom Brocke, J. (2015). Business process management: Potentials and challenges of driving innovation. In J. vom Brocke & T. Schmiedel (Eds.), Business process management: Driving innovation in a digital world. Berlin: Springer.

    Google Scholar 

  • Schrepfer, M., Wolf, J., Mendling, J., & Reijers, H. A. (2009). The impact of secondary notation on process model understanding. In Second IFIP WG 8.1 working conference, PoEM 2009 (pp. 161–175). Stockholm, Sweden.

    Google Scholar 

  • Schütte, R., & Rotthowe, T. (1998). The guidelines of modelling as an approach to enhance the quality of information models. In 17th international conference on conceptual modeling (ER’98) (pp. 240–254). Singapore.

    Google Scholar 

  • Sharp, A., & McDermott, P. (2008). Workflow modeling: Tools for process improvement and applications development. Data management (2nd ed.). Norwood, MA: Artech House.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.

    Article  Google Scholar 

  • Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems analysis and design grammars. Information Systems Journal, 3(4), 217–237.

    Article  Google Scholar 

  • Weber, B., Reichert, M., Mendling, J., & Reijers, H. A. (2011). Refactoring large process model repositories. Computers in Industry, 62(5), 467–486.

    Article  Google Scholar 

  • Weidlich, M., Dijkman, R., & Mendling, J. (2010). The ICoP framework: Identification of correspondences between process models. In Proceedings of the 22nd international conference on advanced information systems engineering CAiSE (pp. 483–498).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, J. (2015). Designing Process Modeling Tools to Facilitate Semantic Standardization: Increasing the Speed of Innovation in a Digital World. In: vom Brocke, J., Schmiedel, T. (eds) BPM - Driving Innovation in a Digital World. Management for Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-14430-6_12

Download citation

Publish with us

Policies and ethics