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Abstract

Fourier has been a powerful mathematical tool for representing a signal into an
expression consist of sin and cos. Recently a new developed signal
decomposition theory is proposed by Pro. Tao Qian named Adaptive Fourier
Decomposition (AFD), which has the advantage in time frequency over Fourier
decomposition and without the need for a fixed window size problem such as
short-time frequency transform (STFT). Studies show that AFD can fast
decompose signals into positive-frequency functions with good analytical
properties. In this paper we apply AFD into image decomposition and
reconstruction area first time in the literature, which shows a promising result
and gives the fundamental prospect for image compression.
Keywords: Adaptive Fourier decomposition, signal processing, image
compression, image decomposition, mono-components

1. Introduction

Fourier transform expands a signal into infinite series, after it stops through some
given threshold, we can get the reconstructed signal by the inverse transform [1-
3]. Adaptive Fourier Decomposition (AFD) is a newly proposed signal
processing theory that has significant influence in signal denoising and control
theory[4]. ‘Mono-components’ is brought up here to represent signals
decomposed at each level. There are two ways that can decompose signal into
mono-components with positive frequencies [5], which makes it possible to have
some applications that are related to some mathematical analysis of signals.
Maximal Selection Principle (MSP) is used here to get the mono-components
[6,7]. AFD first generates a large pool of mono-components, then it decomposes
the signal by using these components in the pool. Fourier decomposition is a
special case of AFD, when all the corresponding parameters in AFD are all
chosen to be zero; it will be in the form of Fourier transform. By doing the
inverse transform, AFD can also get the approximate signal [8].



AFD keeps most good characteristics of Fourier transform. In general, AFD
can be applied in all applications in which Fourier transform can be used. The
advantage of AFD is that the decomposed components have distinct division for
different frequencies, which can be further used for distinguishing different
frequency components of signals. Signals decomposed by Fourier Transform (FT)
in the sum of trigonometric functions do not have such good time-varying time-
frequency instantaneous frequency (IF).

AFD can provide many potential applications in image processing. With the
better and faster converging properties, AFD can serve for some applications
such as speech recognition, image denoising[9,10], edge detection, image
compression and so on. For a given signal, by summing up it’s Fourier Series
components, we can get the approximate signal. The more components
participate in accumulation, the more likely they are. Noises are usually in the
form of high frequencies. They come later no matter in Fourier expansion or
AFD. Adding up some components decomposed in the preceding levels will take
away the high frequency part. In another word, noise elimination can be done.
Edge detection continues in this way, certain components which have some
particular frequency from the AFD are selected, by add them together, we can
get the desired signal -- edges.

Transformations are usually used in image compression. Discrete Cosine
Transform (DCT) is used in the famous JPEG compression before quantization.
Same as Fast Fourier Transformation (FFT), DCT is the transform from time
domain to frequency domain. The difference is that there exists no complex
number in the result. DCT first partitions the original image into 8×8 blocks.
Every 8×8 blocks turns to be another 8×8 group through basis function. DCT
concentrates most of the energy (low frequency) in the upper left corner of an
image and lower right corner with less energy (high frequency). JPEG is a lossy
compression that it deducts the high frequencies that are insensitive to our
human eyes. Removing 50% of the high frequencies may only loss 5% of the
encoding information. So if there are other transformations converging faster
than the one currently used in JPEG, there would be less redundancy generated.
AFD is one of the new transformations, which converges faster than Fourier
transform does.

This paper introduces AFD into the image processing area first time in the
literature. The proposed algorithm is compared with traditional Fourier transform.
The experiment results show that AFD converges much faster than Fourier
transform. It provides potential capacity for further applications.

This paper is organized as follow. The principle of the AFD based image
decomposition and reconstruction is introduced in Section 2. The experiment
results are shown in Section 3. Conclusions are drawn in Section 4.



2. Principles of AFD based image decomposition and
reconstruction approach

2.1 Brief overview of AFD

AFD is based on the rational orthogonal system,or the the Takenaka-Malmquist
system[4], where variables in Hardy Space )(2 DH turn into linear
combinations using (1) and modified blashchke products.
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Here kB is what we called Takenaka-Malmquist (TM)system, ka is in the
unit disk, ka is chosen by the decomposed signal[5,6]. Maximal Selection
Principle(MSP) is used here to select 1a first, then using the recursive formula
to find ...32 aa ， ,until we reach a certain threshold. kB is the so-called mono-
components or pre-mono-components, after multiplying iMte where M stands
as positive number, it becomes mono-components. Here when all ka are chosen
to be zero, then kB is the half of the Fourier system[7].

For general parameters }{ kB is the basis for all PH (  P1 ) satisfies
(2),
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A TM system consisted by rational parameters in Hardy space can greatly
estimate functions in the same Hardy space. H is the Hilbert transform on the
unit disk.
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AFD will stop either the the algorithm has reached to the desired level or the
energy difference has come to the accuracy  .
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In our case , we set 1a to be zero and the nth parameters is calculated
through the previous arguments.



2.2 Decomposition comparison between AFD and FT

In Fourier transform which decomposes any signals into the same basic
trigonometric functions, the entrance ikte for the Fourier expansion of a given
signal may arrive late, which is an important part of the total energy. So the
convergence is not so ideal [4].

In AFD, greedy algorithm has been applied. AFD decomposes the given
signal into different mono-components [5,6]. The mono-components
decomposed are selected based on the given signal by using Maximal Selection
Principle (MSP). MSP means that for a given signal, the AFD algorithm starts
with selecting a mono-component that is most close to the original signal in
energy sense, which starts from the low frequency to high frequency. Then at
each continuous selection, it applies the same energy principle to find each
mono-component that draws near the remainder. It is the reason that the
decomposition is said to be adaptive. The decomposition usually leads to fast
convergence than what Fourier decomposition does[7].

2.3 The algorithm of the proposed approach

The flowchart of the proposed algorithm is illustrated in Fig. 2.

Fig. 2: The flowchart our method



We can regard an image as different portions of signals according to its rows.
So we disassemble the original image into different row and then apply AFD row
by row. First we apply Hilbert transform to the rows to make the primitive
function in a complex plane, and then handle it with AFD. The ultimate step is
the combination of different rows into a whole image. The detailed algorithm is
shown below. AFD code is released in Pro. Qian’s Homepage
http://www.fst.umac.mo/en/staff/documents/fsttq/afd_form/Index.html.

Algorithm 1. Image decomposition with AFD
Input: Original image img, mn, 8bits/pixel
Output: Approximated image output New_image
1: Segment img into different rows.
2: If the number of decomposition level is N
3: for i = 1:m do
4: Apply hilbert transform to i-th row of img;
5: for j = 1:N do
6: decompose using AFD and get the j-th mono-component jB
7: end for
8: Using reverse transform to get the reconstructed signal img’
9: end for
10: Combine img’ for different rows together to get the result
New_image

3. Experimental results

Usually there are three factors to be used to judge the quality of an image. They
are Mean Square Error(MSE), Peak Signal to Noise Rate( PSNR) and Contour-
Volume(CV)[11].

I.The traditional objective rating of an image are MSE and PSNR. MSE first
calculates the mean square of original picture and reconstructed picture, then
evaluate the reconstructed image according to the result of the results. M and N
is the width and height of the original image, ijf is the original image and '

ijf is
the reconstructed image.
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II.PSNR is the most vital indicator for the evaluation of images based on
communication theory. PSNR is the ratio of the maximum information and
noise intensity. Here we assign L with 255 for dealing with discrete pixels.

MSE
LLPSNR 

 lg10 (7)

III.The more abundant the detail is , the more clear the images are, so is the



edges. CV can tell the whether the image is clear or fuzzy, the bigger number
indicates the good quality. First we use a 3×3 Laplacian window to extract the
edges. Then count the pixels of edges, sum up the absolute value of the pixels
and see the results.

Fig. 3: Lena image

(a) (b)

(c) (d)

(e) (f)



(g) (h)

Fig. 4: Image decomposition by AFD (a)(c)(e)(g) and Fourier(b)(d)(f)(h)

Four experiments are conducted in this paper. The results are illustrated in
Fig. 4, Table 1 and Table 2. The classical ‘Lena’ (see Fig. 3) with size 512×512,
8×8 bits/pixel is used. In Fig. 4, the left side column is the reconstruction result
by AFD, with 10th, 20th ,30th and 40th decomposition level. The corresponding
results by using Fourier decomposition are shown in the right side column. We
can see that at the same level, AFD based result appears more clearly than
Fourier does. Through the objective outcomes in Table 1 and 2, for AFD, the
MSE is lower than Fourier, the PSNR and CV is higher than Fourier. The overall
experiment results indicate that AFD converges faster in image decomposition,
which provides potential applications for image compression in the future.

Table 1: Comparing parameters of AFD
AFD MSE PSNR CV

10th decomposition 0.0036 24.4793 0.1518
20th decomposition 0.0013 28.7611 0.1641
30th decomposition 7.2924e-04 31.3634 0.1707
40th decomposition 4.7559e-04 33.2158 0.1754

Table 1: Comparing parameters of Fourier
Fourier MSE PSNR CV

10th decomposition 0.0087 20.5921 0.0773
20th decomposition 0.0042 23.7185 0.1133
30th decomposition 0.0027 25.7526 0.1345
40th decomposition 0.0019 27.2116 0.1514

4. Conclusions

This paper presents the principle of the AFD based image decomposition and
reconstruction approach. Our experiment results show that AFD converges faster
than Fourier transform does. Discrete cosine transform (DCT) is the real part of
the Fourier transform, which is the foundation of JPEG compression. Since DCT



has proved its advantages in JPEG, AFD can also find its corresponding
transform to replace DCT, which can be another promising method for lossy
image compression.
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