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Abstract.In this paper,a novel and robust nethod which
exploits the spatio-tenporal context for orderless
and blurred visual tracking is presented.This lets
the tracker adapt to both rigid and deformable
objects on-line even if the image is blurred. W
observe that a RGB vectorof aninage which is
resizedinto a small fixed size can keep enough useful
i nf ormat i on. Based on this observation and
conput ati onal reasons,we propose to resize the
wi ndows ofboth tenplate and candi date target inmages
into 2X2 and use Euclidean Distance to compute the
simlarity between these two RGB imagevectors for the
prelimnary screening.W then apply spatio-tenporal
context based on Bayesian framework to further
conpute a confidence nmap for obtaining the best
target |location.Experinental results on challenging
video sequences in MATLAB without code optim zation
show the proposed tracking nethod outperforns
ei ghtstate-of -the-art nethods.
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1 I ntroduction

Visual object tracking is to estimate location ofaaget in an image sequence. It
has been a long standing research topic due teidis range of applications such as
video surveillance, human computer interactiorffic@ontrol and so on[1]. Howev-
er, visual tracking is challenging due to abruptiong illumination change, cluttered
background and occlusion. Although a significardgoess has been made to over-
come these challenges, developing an efficientrabdst visual tracking method is



still a crucial topic,particularly when a rigid ardeformable object moving disorder-
lyoccurs in a blurred image sequence.

The existing visual trackingapproaches can be oaizgf into generative [2-7]and
discriminative[8-13] methods. The generative tragkmethodssearch for image re-
gions that are most similar to the template, widedminative methodsaim at differ-
entiating the target from the background.Howeuegjrtmain shortcomings are also
remarkable as follows. Firstly, too many samplebdoextracted make the computa-
tional load very heavy.Secondly, the effective ehimg algorithm and measured
approach between template and candidate samplefifficalt. Thirdly, it is hard to
distinguish the target from complicated backgrolmed¢ause of the broadly varying
background, the similarity between object and bemkd, or the object which moves
too fast to make the object itself and its surrangdlurred in an image.

In this paper, we propose a novel and robust trackigorithmto exploit spatio-
temporal local context information.Firstly, we uaesimple and powerful workto
search for object applying objectness scores. Qurk g motivated by the fact that
generic objects with well-defined closed boundafles17] share strong correlation
after resizing of their corresponding image to $titetd size. Therefore, the template
and candidate model can be resized separately2ixtd to efficiently quantify the
objectness of an image.Euclidean Distanceis usedraute the similarity between
the template and candidate model. We choose theénmmaax similarity as the best
result to compute the promising center of the abjéenspatio-temporal local con-
text information is exploited to further determitiee position of the object by using
the previous promising center. We apply the maxlaiity of the template and can-
didate model to update the template in the nexhérd he template-update in spatio-
temporal context will also consider the several roanfidence maps in the previous
certain frames. These two update measures caniprithg current target information
when the true template changes much or occlusi@tésirred,andkeep the original
information if occlusion is removed or previousckimg results are not really exact.

The main contributions of this paper are as foll¢®yg\novel and robust spatio-
temporal context based orderlessand blurred visaeking method is proposed. (2)
An efficient search algorithm is adopted in eactthing round by resizing an image
intosize 2<2 and usingEuclidean Distance to compute the giityildetween tem-
plate and candidate image for efficiently redudihg compute load. (3) Our method
makes advantage of a strong spatio-temporal rakttip between the local scenes
containing the object in consecutive frames.(4) &kperiments show that our meth-
od is robust to appearance variations introducedtrypt motion, occlusion, pose
variations, background clutter, and illuminatiorriation, especially in blurred and
disordered scene.

2 The STC Tracker

Our approachis based on the STC tracker presentefeience [14]. The STC
tracker formulates the spatio-temporal relationshiptween the object of interest and
its local context based on a Bayesian frameworkidtels the statistical correlation



between the low-level features in the target aadsitrrounding. Here, we provide a
brief overview of this approach [14].

In STC tracker, a tracking problem is formulateddoynputing a confidence map
that estimates the object location likelihood. te turrent frame, we get the object
locationx* and define the feature setX$= {c(z) = (I(2),2)|z € Q.(x*))} where
1(z) represents image intensity at locatioandQ.(x™) is the neighborhood of loca-
tionx™. We can compute the object location likelihood by

m(x) = P(x|0) = Yc@yexe P(x, c(2)[0) =X c(zyexe P(x|c(2), 0) P(c(2)]0).(1)
The spatial context model is a conditional probgbilinction, which is defined as
P(x|c(z),0) = h%¢(x — 2). (2)

h*¢(x — z)is a function regarding the relative distance amdction between ob-
ject locatiorx and its local context locatian) and it encodes the spatial context rela-
tionship of the target and its spatial relation.wéwer,h*(x — z) is not a radially
symmetricfunction.

We model the context prior probability in (2) as

P(c(2)]0) = 1w, (z — x7), ©)

wherd(-) is the image intensity that represents appearaiite context.
Inspired by the biological visual system, a focigitention function is used as a
weighted function defined by

|z—x*|2

we(z—x*)=ae o2, (4)

wherez is a normalization constant whichranges from Q tim satisfy the definition
of probability ands is a scale parameter. In this weighted functiendloser the loca-
tion is to the object center, the more contexttiocs are considered.

The confidence map of an object location is in folan(1) defined as

B
= Yreac) 6 (x = DI(@wy(z — x7) = b ()@ (1 (x)w, (x —
x%). (%)

Herepis a normalization constant,andfg are a scale parameter and a shape pa-
rameterrespectively. Eq. (5) can be transformettiedrequency domain for fast con-

volution:
_|x—_x*
Fl{be | «

HereF denotes the Fast Fourier Transform (FFT) funcdod® denotes the ele-
ment-wise product. The*°(x) is defined as

x—x*

m(x) = be_‘ a

B
) = F(R**(x)OF((x)wy (x — x7)). (6)
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sc R F(be_| a |y
h*(x) = F (—F(,(x)wtr(x_x*)))- (7)

HereF~! denotes the inverse FFT function. For more detaisrefer to [14].

3 Orderlessand Blurred Visual Tracking via Spatio-Temporal
Context

3.1 Framework
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Fig.1.Basic flow of our tracking algorithm is as shownfigure. We resize template and sam-
ple models into IXL (e.g. 2X2). Euclidean Distance is used to simply compuéesimilarity
between template and each sample models to ggirithary location. We use the best image
center(center of #i image) which has the max siityldo conduct the spatio-temporal context
process for obtaining the final object location.

Compute the new
object location.

Fig.1 shows the basic flow of our proposed traclatgprithm. The tracking pro-
cess has three steps.

Step |. We resize the candidate modelsXset{x,, x,, ..., x,} and template to K
L.In the image sequences which we used, theminirofithe lengthand the width of
the objects is51. Therefore,the value of L is frArto 51 with the interval as 7. We
use the different L to compute the average CLE aretage FPS of our research da-
tasets. We find that the average CLE does not igidrease and the average FPS
reduces highly as the value of L increases.So Wk as 2 in order to get a good bal-
ance between CLE and FPS.

Step I1. The suitable image (#i) center which is most simib the template is se-
lected. The similarity set = {r{, 3, ...,7;} can be obtained by Euclidean Distance
algorithm. Then, we compute the #i image centex pSor center in current frame.

Step 111.We use the prior center to conduct the spatio-teaipmntext process to
get the result image location in this frame. Afsgparately updating the template
which is used to compute by Euclidean Distance rélgan in the first step and the
one which is to conduct the spatio-temporal conpegtess in the last step, we con-
tinue to sample a new candidate models set tolatedrom the first step until the
end of the image sequence. The details in eachvatepe introduced in the follow-
ing content.



3.2 ImageResizing Measure

Usually,we depend on the previous object locatmpr&dict the promising location
in next frame. However,this measure will fail ifetlobject moves fast and disorder-
ly.Some researchers use a sliding window fashiosetarch for the object [18-19]
which will increase the computation burden.Therefowe propose a local search
algorithm with image resizing to help us searchtffier promising object location.

Objects are stand-alone things with well-definedsetl boundaries and centers
[15-17]. If we resize the image to a small fixedesithe little variation that closed
boundaries could present in such abstracted viewhis paper, in order to process
larger scale and reduce the computation burdelmeasame time, we decide to resize
template and candidate models intg 2 size (seen in Fig.1.).

3.3  Similarity By Euclidean Distance

We aim at narrowing the scope of our search fouced) the complexity in the
following work. We choose the Euclidean Distancecétculate the max similarigy
of resizing template and resizing candidate mouteteder to provide us a promising
object location and center. The Euclidean Distasackefined as follow.

dist(X,Y) = X, (6 — y:)? (8)

Here, X denotes the RGB vector of template, an@épfasents the RGB vector of
each candidate model. The Euclidean Distance rigtreflects whether two vectors
are relevant, but also can calculate the leveirilarity between them.

We sample the candidate models&as

X={x:llx = (x¢ + Dl < dj, (9)

wherex is the location of the sample modeldenotes the location of the object in
thet-th frame, andl represents the distance in which the center obtiject moves
between thet{1)-th frame andt{2)-th frame.Note thad can be positive and negative.

We choose RGB as the feature in this step becaaseillvexploit the gray-scale
map in the following step. We hope to introduce enmformation of an image into
our work so thatit can have a better result.Bec®G8 can be affected by the illu-
mination, we use zero mean treatment to eliminage dffects of illumination and
shadow.

The template in the next frame will be updatedhzyfbllowing function

My =1 =@M+ ¢"s (10)

HereM,,,is the template in the next franid, is the template in current framg’,
is the max similarity which has been normalizedthis frame, and is the model
image whose similarity i®*in this frame. Note that all parameters areunderctin-
dition of 2X 2 image.



34  Further Computewith Spatio-Temporal Context

We apply the spatio-temporal context in referendp[fo the following pro-
cess.After computing the similarity between tengpland candidate models, we get a
primary location of the object. Then, we will uséstpromising center to calculate the
final location. Note that, we use the image in d¢higinal size from now on, not the 2
X2 size.

In this process, assume that we initialize theetalgcation in the first frame by
some object detection algorithms. We learn theiagpatntext modeh{‘(x) (7) in the
t-th frame, which is used to update the spatio-temipoontext model S (x) (13)
and detect the object location and center in thé&){th frame.In reference [14], the
object locatiorx/,, in the (+1)-th frame is calculated by maximizing the newfto
dence map:

Xip1 = arg, max. Mgy (X), (11)
wherel (x;) is the local context region which is based onttaeked locatiorn; in
the t-th frame, and we construct the corresponding confeature setcf,; =
{c(2) = (I1+1(2), 2)|z € Qc(x)}-

Them,,,(x) in (11) in [14] is defined as

M1 () = F7HFHEL () O FUerr (Owg, (x — x7))), (12)

which is deduced from (6).
We update the spatio-temporal context model in 4]

HYG = (1 = p)HE™ + phiF, (13)

Herepis considered as a learning parameter, affdis the spatial context model
which can be obtained from (7) in théh frame.

Note that we will use zero mean treatment to evegne in order to remove the
effect from the illumination change. In additiohgtintensity in the context region
exploitsa Hamming window to reduce the frequendyénce from the image bound-
ary on the FFT [20-21]. Hamming window is defined a

0.54 — 0.46 cos (2771 t), |¢

w(t) =
0, |t

(14)

The tracking procedure is summarized in Algorithm 1

Algorithm 1. The proposed tracking method

Input:Video frame f=1:F

1. For f=1:F
2. Iff==1
3. Select the tracking object.



4. Compute thehs¢ ,then construct the template in spatio-temporatext agf;® =
hse.

5. Obtain the location; of the tracking object.

6. Resize the image of tracking object in the locatipho 2X 2 size, namely.

7. The template in RGB similarity is initialized a§ = s.

8. Else

9. Calculate the distana® between the (t-1)-th frame and (t-2)-th frame.

0.Sample the candidate modelsXset {x, x,, ..., x,}by X = {x:[[x — (x; + d)|| <
d}.

11.Resize the templat¥, and candidate models s&t to 2X 2 and calculate the simi-

larity r*,as the max similarity is defined as argmax r*,i = 1,2, ..., n.

12. Normalize the max similarity ag”.

13. Restore the i-th sample model to original size emwipute its centet,.

14.Update the templat¥, .

15. Use the centel; to conduct the spatio-temporal context procesgeta;c.

16. Update the templaigts.

17.The object location;, ,is defined ag;,; = arg max, Cee1(X).

(xt)
18.End if
19.End for

Output: Tracking result§x;, x5, ..., x5 }.

4 Experimental Resultsand Analysis

4.1  Experimental Setup

In order to make our result more reasonable, wepemenour method with other
methods in the same experiment environment andpetgrit. Our approach is im-
plemented in Matlab. The experiments are performedin Intel(R) Core(TM) i5-
2410M 2.30 GHz CPU with 2 GB RAM.In our experimerttsee parameters are used
in our algorithm as follows: the parameters of ithep function are set @ = 1.8and
B = 1. The learning parameter= 0.075. Herep and p are set as same as inrefer-
ence [14]. But in [14]a¢ = 2.25.In Eq.(5),the greater is, the larger region around
the center of object will be considered. On theeptivords, as our work focuses on
the scene where image is blurred and object moisesdirly, we will pay more at-
tention to the region around the center to avoal hilurred false image being intro-
duced into our procedure as a noise.Therefore,wesgha smallen.

Datasets:We use 8 color sequences namely: body, car2, ¢acé, dollar, deer,
shaking, david. The sequences used in our expetsnmose challenging situations
such as motion blur, abrupt movement, illuminatebranges, scale variation, occlu-
sions, rotation, background clutter, and pose tiaria Especially, we can tackle the
tracking problem in image blur and fast disordetiom



4.2  Comparison with State-of-the-art

We compare our method with 8 different state-ofahetrackers shown to provide
excellent results in literature. The trackers uded comparison are:STC[14],
WMIL[22], MIL[23], CT[8], L1[24], L1-APG[25], LOT[7] and Color Tracking[26].

In this paper, we follow the protocol used in [2Fvalidate our work. We will use
three evaluation metrics: center location error EfLdistance precision (DP) and
overlap precision (OP). CLE is valued by the averggclidean Distance between the
estimated center location of the object and themgletruth. DP is the relative number
of frames in the sequence where CLE is smaller thaertain threshold. Here, the
threshold is set as 20 pixels. OP is defined asp#reentage of frames where the
bounding box overlap exceeds a threshatd0,1]. The trackers are ranked using DP
scores at 20 pixels. We also present the speekeatfrackers in average frames per
second (FPS).

Tablel shows CLE, where smaller CLE means morerateuracking results.
From Tablel, we can know that the quantitative ltesn which our tracking algo-
rithm achieves the better performance. Fig.2 shpavs of tracking results by differ-
ent tracking methods. Table2 shows a comparisom thé mentioned state-of-the-art
methods on 8 challenging sequences. We also présenspeed in average frames per
second (FPS). The best three results are shovadjrblue and green fonts respective-
ly. Our method carries outwell both in terms ofeph@nd accuracy.

Table 1. Center location error (CLE) (in pixelgredfonts indicate the best performance while
blue fonts indicate the second best ones@menfonts indicate the third best ones.

sequence WMIL [ STC MIL LOT | L1 L1-APG | CT Colortracking| ourg
face 127 113 | 123 334 | 149 | 183 55.8| 7.5 3.9
shaking 12 82 | 145 | 736| 201 104 | 112] 132 10.7
dollar 121 | 204 | 705 | 716 208 715 |93 | 171 7.1
deer 156 | 401 | 202 | 637 781 789 211 5.1 5.4
car4 956 | 2610| 140| 313 61l615.3 115 | 8.2 15.6
car2 163 | 541 | 739 | 262 | 49.9| 156 104| 869 5.1
body 544 | 148 | 128 | 844 131 316 122 | 365 18.1
david 343 | 434 | 381 | 108| 76 39.9 40}224.1 10.9
Average CLE| g4 3 | 4187| 115.1 615 | 74.4| 84.9 83.6| 24.8 9.6




(h) david
WMIL — STC ML LOT — L1 L1-APG —— CT

ours

colortracking

Fig.2.Comparison of our approach with state-of-the-atkers in challenging situa-
tions such as motion blur, abrupt movement, illustion changes, scale variation,
partial occlusions, rotation, background clutterd @ose variation. Especially we can
tackle the tracking problem in image blur and tlisbrder motion.

Table 2. Quantitative comparison of our trackers with 8testaf-the-art methods on 8
challenging sequences. The results are presentadeirmge center location error (CLE) (in
pixels), average distance precision (DP) (%) arefane overlap precision (OP) (%). We also
provide the average frames per second (FPS). Tétethiree results are shownried blue and
greenfonts. Note that our method is best in average Giverage DP and average OP,and the
second best in terms of speed.

WMIL | STC MIL | LOT | L1 | LI-APG | CT | Colortracking| ourg
Average CLE| 643 | 418.7| 115.] 615 | 744 84.9 83.6 24.8 9.6
Average DP | 40,6 | 425 | 12.7 | 26.8| 255 21.7 29.8 72.9 88.3




Average OP | 442 | 321 | 158| 30.3| 36.9 27.8 333 802 93.0
Average FPS| 128 | 146 | 11 03| 0.2 7.8 12.1 21.1 14.1

Mation blur.Figs.2 (a), (e),(f) and (g) have the motion blunlYOour method can
deal with all the four sequences. In (a) and (&},approach and Colortracking per-
form well in terms of CLE. L1-APG also has a goagfprmance in (e), but it is not
better than ours and Colortracking at frame #122 #108. In (f) and (g), only our
method can achieve successful tracking from beggmto end.

Abrupt movement.Figs.2 (a), (d), (e) and (f) suffer from abrupt rament in
whole sequences. In (a), (d) and (e), our appraachColortracking can succeed to
track the object. However,in (f), only our methddl $rack the object successfully
from frame #236 as we show.

[llumination changes.In Figs.2 (b) and (h), the illumination often chasgstrong,
some of the trackers completely fail to track. ) &t frame #66, when the illumina-
tion changes fast and strong, only STC, Colortragkind our method still perform
well as these three method all use zero mean messtackle the effect of illumina-
tion. In (h) at frame #83, #231,and #374, zero mea@asureplays an important role
when the light changes from dark to bright.

Scale variation.In (h) at frame #231 to #496, we want to show thiitg of our
proposed method in disposing the scale variatiam.@proach, STC and Colortrack-
ingcan adapt to the scale variation of the objeictteover, our approach has the best
CLE among all 9 approaches. LOT, L1 and L1-APG detaty fail to track the ob-
ject while WMIL, MIL and CT suffer from sever drift

Partial occlusions.The object in Fig.2(b) shaking demonstrates thatpgioposed
method performs well in terms of position and rotatwhen the target undergoes
partial occlusion. Our method and STC perform betian other methods at frame
#105and #253, while other methods suffer from sedrdt and some of them fail
totrack. Thus, our method can handle occlusionitisdnot sensitive to partial occlu-
sion.

Rotation.Sequences of (g) and (h) emerge rotation of theabbin (g) from #140
to #310, our algorithm is the only one which caspdse the rotation of body of the
walking man. All8 other state-of-the-art algoritHaik The man turns the bodyin (h)
from #496 to #579, the trackers of STC, Colortragkand ours can deal with the
rotation in this scene. In conclusion, our algamtfs the last winner in the tracking
problem in the way of rotation.

Pose variation.Fig.2 (c) at frame #70, the part of dollar is faldso that MIL,L1
and CT present their sensitivity in a certain aspépose variation. At frame #130, a
pile of dollar is being divided into two piles, tite same time WMIL, STC and our
method still exactly distinguish the right locatiofithe object. MIL, LOT and L1-
APG have total failure when the two piles of doae completely separated at frame
#204. As showed at #290, if the two piles comeelmseach other, it will also have
some impact on the trackers. Therefore, only ouhatweand Colortracking can con-
tinue to develop their ability. To sum up, only quoposed method can keep accurate
performance in the whole sequence.



Background clutter.The trackers are easily confused if the objecteis/\similar
to the background.Figs.2 (b), (d) and (e) havebtiekground clutter. Only our meth-
od can deal with this tracking problem. Other texskdrift or else completely fail to
track.

4.3 Discussion

As shown in our experiments, our method can addres$actors such as motion
blur, abrupt movement, illumination changes, sealgation, heavy occlusions, rota-
tion, background clutter, and pose variation. Eglgcwe can tackle the tracking
problem in image blur and fast disorder motion. Téasons are as follows. (1) Our
method exploits temporal and spatial context infatiom for tracking, which is very
insensitive to multiple factors. (2) A simple bugeful preliminary screening by Eu-
clidean Distance is introduced between object tatepind candidate samples. (3)
The measure of resizing the object template andidate samples to a small size like
2X 2 can keep enough information we need. In addittartgn abandon the redundant
information to reduce the amount of calculationiadfpand can be realized easily.

5 Concluding Remarks

In this paper, a novel and robust method namedriesteand blurred visual track-
ing is proposed. Firstly,template and candidateggnare resized to small size to re-
duce the computation load. Then,Euclidean Distaesed to compute the similarity
between these two RGBvectors from the resized @mp@ind candidate image for the
preliminary screening. Finally,in order to addréss shortcomings of current ap-
proaches for blurred images and orderless moti@enadopt the spatio-temporal con-
textbased on Bayesian framework to compute a cendied map for obtaining the best
target location. Therefore, our method is very is#tive to appearance change. Ex-
periments on some challenging video sequences dewenstrated the superiority of
the proposed approach to 8 existing state-of-thedaes in terms of accuracy and
robustness.
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