
Orderlessand Blurred Visual Tracking via Spatio-
Temporal Context 

Manna Dai1, Peijie Lin1, Lijun Wu1, Zhicong Chen1,Songlin Lai1, Jie Zhang1,Shuying 
Cheng1*, Xiangjian He2 

1Institute of Micro/Nano Devices and Solar Cells,College of Physics and Information Engineer-
ing, Fuzhou University, Fuzhou 350108, China 

2Faculty of Engineering and Information Technology, University of Technology, Sydney, Aus-
tralia 

*Corresponding author email: sycheng@fzu.edu.cn 

Abstract.In this paper,a novel and robust method which 
exploits the spatio-temporal context for orderless 
and blurred visual tracking is presented.This lets 
the tracker adapt to both rigid and deformable 
objects on-line even if the image is blurred.We 
observe that a RGB vectorof animage which is 
resizedinto a small fixed size can keep enough useful 
information.Based on this observation and 
computational reasons,we propose to resize the 
windows ofboth template and candidate target images 
into 2×2 and use Euclidean Distance to compute the 
similarity between these two RGB imagevectors for the 
preliminary screening.We then apply spatio-temporal 
context based on Bayesian framework to further 
compute a confidence map for obtaining the best 
target location.Experimental results on challenging 
video sequences in MATLAB without code optimization 
show the proposed tracking method outperforms 
eightstate-of-the-art methods. 
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1 Introduction 

Visual object tracking is to estimate location of a target in an image sequence. It 
has been a long standing research topic due to its wide range of applications such as 
video surveillance, human computer interaction, traffic control and so on[1]. Howev-
er, visual tracking is challenging due to abrupt motion, illumination change, cluttered 
background and occlusion. Although a significant progress has been made to over-
come these challenges, developing an efficient and robust visual tracking method is 



still a crucial topic,particularly when a rigid or a deformable object moving disorder-
lyoccurs in a blurred image sequence. 

The existing visual trackingapproaches can be categorized into generative [2-7]and 
discriminative[8-13] methods. The generative tracking methodssearch for image re-
gions that are most similar to the template, whilediscriminative methodsaim at differ-
entiating the target from the background.However, their main shortcomings are also 
remarkable as follows. Firstly, too many samples to be extracted make the computa-
tional load very heavy.Secondly, the effective searching algorithm and measured 
approach between template and candidate samples are difficult. Thirdly, it is hard to 
distinguish the target from complicated background because of the broadly varying 
background, the similarity between object and background, or the object which moves 
too fast to make the object itself and its surrounding blurred in an image. 

In this paper, we propose a novel and robust tracking algorithmto exploit spatio-
temporal local context information.Firstly, we use a simple and powerful workto 
search for object applying objectness scores. Our work is motivated by the fact that 
generic objects with well-defined closed boundaries [15-17] share strong correlation 
after resizing of their corresponding image to small fixed size. Therefore, the template 
and candidate model can be resized separately into 2×2 to efficiently quantify the 
objectness of an image.Euclidean Distanceis used to compute the similarity between 
the template and candidate model. We choose the maximum similarity as the best 
result to compute the promising center of the object.Thenspatio-temporal local con-
text information is exploited to further determine the position of the object by using 
the previous promising center. We apply the max similarity of the template and can-
didate model to update the template in the next frame.The template-update in spatio-
temporal context will also consider the several max confidence maps in the previous 
certain frames. These two update measures canbring in the current target information 
when the true template changes much or occlusion is occurred,andkeep the original 
information if occlusion is removed or previous tracking results are not really exact. 

The main contributions of this paper are as follows.(1)Anovel and robust spatio-
temporal context based orderlessand blurred visual tracking method is proposed. (2) 
An efficient search algorithm is adopted in each tracking round by resizing an image 
intosize 2×2 and usingEuclidean Distance to compute the similarity between tem-
plate and candidate image for efficiently reducing the compute load. (3) Our method 
makes advantage of a strong spatio-temporal relationship between the local scenes 
containing the object in consecutive frames.(4) The experiments show that our meth-
od is robust to appearance variations introduced by abrupt motion, occlusion, pose 
variations, background clutter, and illumination variation, especially in blurred and 
disordered scene. 

2 The STC Tracker 

Our approachis based on the STC tracker presented inreference [14]. The STC 
tracker formulates the spatio-temporal relationships between the object of interest and 
its local context based on a Bayesian framework. It models the statistical correlation 



between the low-level features in the target and its surrounding. Here, we provide a 
brief overview of this approach [14]. 

In STC tracker, a tracking problem is formulated by computing a confidence map 
that estimates the object location likelihood. In the current frame, we get the object 
location �∗ and define the feature set as �� = {��	
 = ���	
, 	
|	 ∈ Ω���∗

} where ��	
 represents image intensity at location z and Ω���∗
 is the neighborhood of loca-
tion�∗. We can compute the object location likelihood by 

m�x
 = P�x|o
 = ∑ ���, ��	
|�
 =���
∈�� ∑ ���|��	
, �
���
∈�� ����	
|�
.(1) 

The spatial context model is a conditional probability function, which is defined as 

P�x|c�z
, o
 = ℎ���� − 	
.	                                            (2) 

ℎ���� − 	
is a function regarding the relative distance and direction between ob-
ject location x and its local context location z, and it encodes the spatial context rela-
tionship of the target and its spatial relation. However, ℎ���� − 	
 is not a radially 
symmetricfunction. 

We model the context prior probability in (2) as 

P�c�z
|o
 = I�z
#$�	 − �∗
,                                         (3) 

whereI�⋅
 is the image intensity that represents appearance of the context. 
Inspired by the biological visual system, a focus of attention function is used as a 

weighted function defined by 

#$�	 − �∗
 = &'(|)*+∗|,-, ,                                              (4) 

where& is a normalization constant whichranges from 0 to 1 to satisfy the definition 
of probability and . is a scale parameter. In this weighted function,the closer the loca-
tion is to the object center, the more context locations are considered. 

The confidence map of an object location is in formula (1) defined as 

m�x
 = b'(0(+*+∗1 02 = ∑ ℎ���� − 	
��	
#$�	 − �∗
 = ℎ����
⨂4���
#$�� −�∈5��6∗
�∗
7. (5) 

Here,bis a normalization constant, 8 and 9 are a scale parameter and a shape pa-
rameterrespectively. Eq. (5) can be transformed to the frequency domain for fast con-
volution: 

F ;b'(0+*+∗< 02= = F�ℎ���x

⨀F�I�x
#$�x − �∗

.                        (6) 

Here,F denotes the Fast Fourier Transform (FFT) function and ⨀ denotes the ele-
ment-wise product. The ℎ����
 is defined as 



ℎ����
 = ?(@� A�BC*0+*+∗< 02
A�D�6
E-�6(6∗


.                                        (7) 

Here,?(@ denotes the inverse FFT function. For more details, we refer to [14]. 

3 Orderlessand Blurred Visual Tracking via Spatio-Temporal 
Context 

3.1 Framework 
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Fig.1.Basic flow of our tracking algorithm is as shown in figure. We resize template and sam-
ple models into L×L (e.g. 2×2). Euclidean Distance is used to simply compute the similarity 
between template and each sample models to get the primary location. We use the best image 
center(center of #i image) which has the max similarity to conduct the spatio-temporal context 
process for obtaining the final object location. 

Fig.1 shows the basic flow of our proposed tracking algorithm. The tracking pro-
cess has three steps.  

Step I. We resize the candidate models setX = {�@, �G, … , �I} and template to L×
L.In the image sequences which we used, theminimum of the lengthand the width of 
the objects is51. Therefore,the value of L is from 2 to 51 with the interval as 7. We 
use the different L to compute the average CLE and average FPS of our research da-
tasets. We find that the average CLE does not highly increase and the average FPS 
reduces highly as the value of L increases.So we set L as 2 in order to get a good bal-
ance between CLE and FPS. 

Step II. The suitable image (#i) center which is most similar to the template is se-
lected. The similarity setJ∗ = {J@∗, JG∗, … , JI∗} can be obtained by Euclidean Distance 
algorithm. Then, we compute the #i image center as a prior center in current frame.  

Step III.We use the prior center to conduct the spatio-temporal context process to 
get the result image location in this frame. After separately updating the template 
which is used to compute by Euclidean Distance algorithm in the first step and the 
one which is to conduct the spatio-temporal context process in the last step, we con-
tinue to sample a new candidate models set to circulate from the first step until the 
end of the image sequence. The details in each step will be introduced in the follow-
ing content. 

Frame t+1             sample models (M×N) 

…  
#1             #2             #3                  #4     …   #n 

         resize    L×L 

…  
#1                #2                  #3                  #4      …       #n 

Frame t 

 
Template (M×N) 
resize 

 
L×L 

i=argmax(r*) 
Restore #i sample model to  
M×N and get object center. 

Spatio-Temporal 
context process 

Compute the new 
object location. 



3.2 Image Resizing Measure 

Usually,we depend on the previous object locationstopredict the promising location 
in next frame. However,this measure will fail if the object moves fast and disorder-
ly.Some researchers use a sliding window fashion to search for the object [18-19] 
which will increase the computation burden.Therefore, we propose a local search 
algorithm with image resizing to help us search for the promising object location. 

Objects are stand-alone things with well-defined closed boundaries and centers 
[15-17]. If we resize the image to a small fixed size, the little variation that closed 
boundaries could present in such abstracted view. In this paper, in order to process 
larger scale and reduce the computation burden at the same time, we decide to resize 
template and candidate models into 2×2 size (seen in Fig.1.). 

3.3 Similarity By Euclidean Distance 

We aim at narrowing the scope of our search for reducing the complexity in the 
following work. We choose the Euclidean Distance to calculate the max similarityK 
of resizing template and resizing candidate models in order to provide us a promising 
object location and center. The Euclidean Distance is defined as follow. 

dist�X, Y
 = Q∑ ��R − SR
GIRT@                                              (8) 

Here, X denotes the RGB vector of template, and Y represents the RGB vector of 
each candidate model. The Euclidean Distance not only reflects whether two vectors 
are relevant, but also can calculate the level of similarity between them.  

We sample the candidate modelsset Xas 

 X = {�: ‖� − ��W∗ + Y
‖ < Y}, (9) 

where � is the location of the sample model, �W∗denotes the location of the object in 
the t-th frame, and Y represents the distance in which the center of the object moves 
between the (t-1)-th frame and (t-2)-th frame.Note that Y can be positive and negative. 

We choose RGB as the feature in this step because we will exploit the gray-scale 
map in the following step. We hope to introduce more information of an image into 
our work so thatit can have a better result.Because RGB can be affected by the illu-
mination, we use zero mean treatment to eliminate the effects of illumination and 
shadow. 

The template in the next frame will be updated by the following function 

[W\@ = �1 − K∗
[W + K∗s                                            (10) 

Here,[W\@is the template in the next frame, [W is the template in current frame, K∗ 
is the max similarity which has been normalized in this frame, and s is the model 
image whose similarity is K∗in this frame. Note that all parameters areunder the con-
dition of 2×2 image. 



3.4 Further Compute with Spatio-Temporal Context 

We apply the spatio-temporal context in reference[14] to the following pro-
cess.After computing the similarity between template and candidate models, we get a 
primary location of the object. Then, we will use this promising center to calculate the 
final location. Note that, we use the image in the original size from now on, not the 2
×2 size. 

In this process, assume that we initialize the target location in the first frame by 
some object detection algorithms. We learn the spatial context model ℎW����
 (7) in the 
t-th frame, which is used to update the spatio-temporal context model ̂W\@�W� ��
 (13) 
and detect the object location and center in the (t+1)-th frame.In reference [14], the 
object location �W\@∗  in the (t+1)-th frame is calculated by maximizing the new confi-
dence map: 

�W\@∗ = &J_ max6∈5��6a∗
 mW\@��
,                                        (11) 

whereΩ���W∗
 is the local context region which is based on the tracked location �W∗ in 
the t-th frame, and we construct the corresponding context feature set �W\@� ={��	
 = ��W\@�	
, 	
|	 ∈ Ω���W∗
}. 

The mW\@��
 in (11) in [14] is defined as  

mW\@�x
 = ?(@�?� Ŵ\@�W� ��

 ⊙ ?��W\@��
#$a�� − �W∗


,                   (12) 

which is deduced from (6). 
We update the spatio-temporal context model in [14] by 

Ŵ\@�W� = �1 − ρ
 Ŵ�W� + dℎW��,                                         (13) 

Here,ρis considered as a learning parameter, and  ℎW�� is the spatial context model 
which can be obtained from (7) in the t-th frame. 

Note that we will use zero mean treatment to every frame in order to remove the 
effect from the illumination change. In addition, the intensity in the context region 
exploitsa Hamming window to reduce the frequency influence from the image bound-
ary on the FFT [20-21]. Hamming window is defined as 

#�t
 = e0.54 − 0.46 cos jGkl mn , |m| ≤ lG0,																																								|m| > lG
                                   (14) 

The tracking procedure is summarized in Algorithm 1. 

Algorithm 1. The proposed tracking method 
Input:Video frame f=1:F 

1. For f=1:F 
2. If f==1 
3. Select the tracking object. 



4. Compute the  ℎ�� ,then construct the template in spatio-temporal context aŝ @�W� =ℎ��. 
5. Obtain the location�@∗ of the tracking object. 
6. Resize the image of tracking object in the location �@∗ to 2×2 size, namelys. 
7. The template in RGB similarity is initialized as [@ = s. 
8. Else 
9. Calculate the distance Y between the  (t-1)-th frame and (t-2)-th frame. 

10. Sample the candidate models setX = {�@, �G, … , �I}by X = {�: ‖� − ��W∗ + Y
‖ <Y}. 
11. Resize the template [W and candidate models set �∗ to 2×2 and calculate the simi-

larity J∗,as the max similarity is defined as i = argmax	J∗, i = 1,2, … , n. 
12. Normalize the max similarity as K∗. 
13. Restore the i-th sample model to original size and compute its center uW. 
14. Update the template [W. 
15. Use the center  uW to conduct the spatio-temporal context process to get ℎW��. 
16. Update the templatêW\@�W� . 
17. The object location �W\@∗ is defined as �W\@∗ = &J_ max6∈5��6a∗
 �W\@��
.  

18. End if 
19. End for 

Output: Tracking results {�@∗, �G∗, … , �A∗ }. 
4 Experimental Results and Analysis 

4.1 Experimental Setup 

In order to make our result more reasonable, we compare our method with other 
methods in the same experiment environment and equipment. Our approach is im-
plemented in Matlab. The experiments are performed on an Intel(R) Core(TM) i5-
2410M 2.30 GHz CPU with 2 GB RAM.In our experiments, the parameters are used 
in our algorithm as follows: the parameters of the map function are set to 8 = 1.8and 9 = 1. The learning parameter d = 0.075. Here 9 and  d are set as same as inrefer-
ence [14]. But in [14], 8 = 2.25.In Eq.(5),the greater 8 is, the larger region around 
the center of object will be considered. On the other words, as our work focuses on 
the scene where image is blurred and object moves disorderly, we will pay more at-
tention to the region around the center to avoid the blurred false image being intro-
duced into our procedure as a noise.Therefore,we choose a smaller α. 

Datasets:We use 8 color sequences namely: body, car2, car4, face, dollar, deer, 
shaking, david. The sequences used in our experiments pose challenging situations 
such as motion blur, abrupt movement, illumination changes, scale variation, occlu-
sions, rotation, background clutter, and pose variation. Especially, we can tackle the 
tracking problem in image blur and fast disorder motion. 



4.2 Comparison with State-of-the-art 

We compare our method with 8 different state-of-the-art trackers shown to provide 
excellent results in literature. The trackers used for comparison are:STC[14], 
WMIL[22], MIL[23], CT[8], L1[24], L1-APG[25], LOT[7] and Color Tracking[26]. 

In this paper, we follow the protocol used in [27] to validate our work. We will use 
three evaluation metrics: center location error (CLE), distance precision (DP) and 
overlap precision (OP). CLE is valued by the average Euclidean Distance between the 
estimated center location of the object and the ground-truth. DP is the relative number 
of frames in the sequence where CLE is smaller than a certain threshold. Here, the 
threshold is set as 20 pixels. OP is defined as the percentage of frames where the 
bounding box overlap exceeds a threshold t ∈ y0,1z. The trackers are ranked using DP 
scores at 20 pixels. We also present the speed of the trackers in average frames per 
second (FPS). 

Table1 shows CLE, where smaller CLE means more accurate tracking results.  
From Table1, we can know that the quantitative results in which our tracking algo-
rithm achieves the better performance. Fig.2 shows part of tracking results by differ-
ent tracking methods. Table2 shows a comparison with the mentioned state-of-the-art 
methods on 8 challenging sequences. We also present the speed in average frames per 
second (FPS). The best three results are shown in red, blue and green fonts respective-
ly. Our method carries outwell both in terms of speed and accuracy. 

Table 1. Center location error (CLE) (in pixels). Red fonts indicate the best performance while 
blue fonts indicate the second best ones,and green fonts indicate the third best ones. 

sequence WMIL STC MIL LOT L1 L1-APG CT Colortracking ours 

face 127 113 123 33.4 149 183 55.8 7.5 3.9 

shaking 12 8.2 145 73.6 29.1 104 11.2 13.2 10.7 

dollar 12.1 20.4 70.5 71.6 20.5 71.5 9.3 17.1 7.1 

deer 15.6 401 202 63.7 78.1 78.9 211 5.1 5.4 

car4 95.6 2610 140 31.3 61.6 15.3 115 8.2 15.6 

car2 163 5.41 73.9 26.2 49.9 156 104 86.9 5.1 

body 54.4 148 128 84.5 131 31.6 122 36.5 18.1 

david 34.3 43.4 38.1 108 76.1 39.9 40.2 24.1 10.9 
Average CLE 64.3 418.7 115.1 61.5 74.4 84.9 83.6 24.8 9.6 

 
 

(a) face 

 
(b) shaking 



Fig.2.Comparison of our approach with state-of-the-art trackers in challenging situa-
tions such as motion blur, abrupt movement, illumination changes, scale variation, 
partial occlusions, rotation, background clutter, and pose variation. Especially we can 
tackle the tracking problem in image blur and fast disorder motion. 

Table 2. Quantitative comparison of our trackers with 8 state-of-the-art methods on 8 
challenging sequences. The results are presented in average center location error (CLE) (in 
pixels), average distance precision (DP) (%) and average overlap precision (OP) (%). We also 
provide the average frames per second (FPS). The best three results are shown in red, blue and 
green fonts. Note that our method is best in average CLE, average DP and average OP,and the 
second best in terms of speed. 

 WMIL STC MIL LOT L1 L1-APG CT Colortracking ours 

Average CLE 64.3 418.7 115.1 61.5 74.4 84.9 83.6 24.8 9.6 

Average DP 40.6 42.5 12.7 26.8 25.5 21.7 29.8 72.9 88.3 

 
(f)    car2 

 
(g)    body 

 
(d)    deer 

 
(e)    car4 

 
(h)    david 

 

 
(c)    dollar 



Average OP 44.2 32.1 15.8 30.3 36.8 27.8 33.3 80.2 93.0 

Average FPS 12.8 14.6 1.1 0.3 0.2 7.8 12.1 21.1 14.1 

Motion blur.Figs.2 (a), (e),(f) and (g) have the motion blur. Only our method can 
deal with all the four sequences. In (a) and (e), our approach and Colortracking per-
form well in terms of CLE. L1-APG also has a good performance in (e), but it is not 
better than ours and Colortracking at frame #122 and #198. In (f) and (g), only our 
method can achieve successful tracking from beginning to end. 

Abrupt movement.Figs.2 (a), (d), (e) and (f) suffer from abrupt movement in 
whole sequences. In (a), (d) and (e), our approach and Colortracking can succeed to 
track the object. However,in (f), only our method still track the object successfully 
from frame #236 as we show. 

Illumination changes.In Figs.2 (b) and (h), the illumination often changes strong, 
some of the trackers completely fail to track. In (b) at frame #66, when the illumina-
tion changes fast and strong, only STC, Colortracking and our method still perform 
well as these three method all use zero mean measure to tackle the effect of illumina-
tion. In (h) at frame #83, #231,and #374, zero mean measureplays an important role 
when the light changes from dark to bright. 

Scale variation.In (h) at frame #231 to #496, we want to show the ability of our 
proposed method in disposing the scale variation. Our approach, STC and Colortrack-
ingcan adapt to the scale variation of the object. Moreover, our approach has the best 
CLE among all 9 approaches. LOT, L1 and L1-APG completely fail to track the ob-
ject while WMIL, MIL and CT suffer from sever drift. 

Partial occlusions.The object in Fig.2(b) shaking demonstrates that the proposed 
method performs well in terms of position and rotation when the target undergoes 
partial occlusion. Our method and STC perform better than other methods at frame 
#105and #253, while other methods suffer from sever drift and some of them fail 
totrack. Thus, our method can handle occlusion and it is not sensitive to partial occlu-
sion. 

Rotation.Sequences of (g) and (h) emerge rotation of the object. In (g) from #140 
to #310, our algorithm is the only one which can dispose the rotation of body of the 
walking man. All8 other state-of-the-art algorithmsfail. The man turns the bodyin (h) 
from #496 to #579, the trackers of STC, Colortracking and ours can deal with the 
rotation in this scene. In conclusion, our algorithm is the last winner in the tracking 
problem in the way of rotation. 

Pose variation.Fig.2 (c) at frame #70, the part of dollar is folded so that MIL,L1 
and CT present their sensitivity in a certain aspect of pose variation. At frame #130, a 
pile of dollar is being divided into two piles, at the same time WMIL, STC and our 
method still exactly distinguish the right location of the object. MIL, LOT and L1-
APG have total failure when the two piles of dollar are completely separated at frame 
#204. As showed at #290, if the two piles come close to each other, it will also have 
some impact on the trackers. Therefore, only our method and Colortracking can con-
tinue to develop their ability. To sum up, only our proposed method can keep accurate 
performance in the whole sequence. 



Background clutter.The trackers are easily confused if the object is very similar 
to the background.Figs.2 (b), (d) and (e) have the background clutter. Only our meth-
od can deal with this tracking problem. Other trackers drift or else completely fail to 
track. 

4.3 Discussion 

As shown in our experiments, our method can address the factors such as motion 
blur, abrupt movement, illumination changes, scale variation, heavy occlusions, rota-
tion, background clutter, and pose variation. Especially we can tackle the tracking 
problem in image blur and fast disorder motion. The reasons are as follows. (1) Our 
method exploits temporal and spatial context information for tracking, which is very 
insensitive to multiple factors. (2) A simple but useful preliminary screening by Eu-
clidean Distance is introduced between object template and candidate samples. (3) 
The measure of resizing the object template and candidate samples to a small size like 
2×2 can keep enough information we need. In addition, it can abandon the redundant 
information to reduce the amount of calculation rapidly and can be realized easily. 

5 Concluding Remarks 

In this paper, a novel and robust method named orderless and blurred visual track-
ing is proposed. Firstly,template and candidate image are resized to small size to re-
duce the computation load. Then,Euclidean Distance is used to compute the similarity 
between these two RGBvectors from the resized template and candidate image for the 
preliminary screening. Finally,in order to address the shortcomings of current ap-
proaches for blurred images and orderless motion, we adopt the spatio-temporal con-
textbased on Bayesian framework to compute a confidence map for obtaining the best 
target location. Therefore, our method is very insensitive to appearance change. Ex-
periments on some challenging video sequences have demonstrated the superiority of 
the proposed approach to 8 existing state-of-the-art ones in terms of accuracy and 
robustness. 
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