Skip to main content

Moving Object Tracking with Structure Complexity Coefficients

  • Conference paper
Book cover MultiMedia Modeling (MMM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8935))

Included in the following conference series:

  • 3714 Accesses

Abstract

Target appearance change during tracking is always a challenging problem for visual object tracking. In this paper, we present a novel visual object tracking algorithm based on Structure Complexity Coefficients (SCC) in addressing the motion related appearance change problem fundamentally. Based on our careful analysis, we found that the motion related appearance change is quite related to the SCC of target surface, where the appearance of complex structural regions is easier to change comparing with that of smooth structural regions with target motion. With the proposed SCC, a SCC-GL distance is defined in addressing both the appearance change and occlusion related problems during tracking. Moreover, an Observation Dependent Hidden Markov Model (OD-HMM) framework is designed where the observation dependency between neighboring frames is considered comparing with the standard HMM based tracking framework. The observation dependency is computed with the proposed SCC. We also present a novel outlier removing method in appearance model updating to avoid error accumulation. Experimental results on various challenging video sequences demonstrate that the proposed observation dependent tracker (ODT) achieves better performance than existing related tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418. IEEE (2013)

    Google Scholar 

  2. Kim, T.: k., Cho, I.M., Lee, J.H.: Illumination-invariant object tracking method and image editing system using the same, US Patent 7,171,023 (2007)

    Google Scholar 

  3. He, S., Yang, Q., Lau, R.W., Wang, J., Yang, M.H.: Visual tracking via locality sensitive histograms. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2427–2434. IEEE (2013)

    Google Scholar 

  4. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. BMVC 1, 6 (2006)

    Google Scholar 

  5. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 983–990. IEEE (2009)

    Google Scholar 

  6. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77, 125–141 (2008)

    Article  Google Scholar 

  7. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2259–2272 (2011)

    Article  Google Scholar 

  8. Wang, D., Lu, H.: On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Processing 93, 1608–1623 (2013)

    Article  Google Scholar 

  9. Kwon, J., Lee, K.M.: Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 2427–2441 (2013)

    Article  Google Scholar 

  10. Wu, Y., Shen, B., Ling, H.: Visual tracking via online nonnegative matrix factorization. IEEE Transactions on Circuits and Systems for Video Technology 24, 374–383 (2014)

    Article  Google Scholar 

  11. Chou, C.H., Li, Y.C.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology 5, 467–476 (1995)

    Article  Google Scholar 

  12. Ginsburg, A.: Pattern recognition techniques suggested from psychological correlates of a model of the human visual system. NAECON 73, 309–316 (1973)

    Google Scholar 

  13. Wang, D., Lu, H., Yang, M.H.: Least soft-threshold squares tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2371–2378. IEEE (2013)

    Google Scholar 

  14. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1845. IEEE (2012)

    Google Scholar 

  15. Li, X., Parizeau, M., Plamondon, R.: Training hidden markov models with multiple observations-a combinatorial method. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 371–377 (2000)

    Article  Google Scholar 

  16. Park, D.W., Kwon, J., Lee, K.M.: Robust visual tracking using autoregressive hidden markov model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1964–1971. IEEE (2012)

    Google Scholar 

  17. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2042–2049. IEEE (2012)

    Google Scholar 

  18. Potmesil, M., Chakravarty, I.: Modeling motion blur in computer-generated images. ACM SIGGRAPH Computer Graphics 17, 389–399 (1983)

    Article  Google Scholar 

  19. Liu, R., Li, Z., Jia, J.: Image partial blur detection and classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  20. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 1409–1422 (2012)

    Article  Google Scholar 

  21. Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred target tracking by blur-driven tracker. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1100–1107. IEEE (2011)

    Google Scholar 

  22. Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270. IEEE (2011)

    Google Scholar 

  23. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: Prost: Parallel robust online simple tracking. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723–730. IEEE (2010)

    Google Scholar 

  24. Klein, D.A., Schulz, D., Frintrop, S., Cremers, A.B.: Adaptive real-time video-tracking for arbitrary objects. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 772–777. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, Y., Fang, Y., Weisi, L. (2015). Moving Object Tracking with Structure Complexity Coefficients. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds) MultiMedia Modeling. MMM 2015. Lecture Notes in Computer Science, vol 8935. Springer, Cham. https://doi.org/10.1007/978-3-319-14445-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14445-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14444-3

  • Online ISBN: 978-3-319-14445-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics